跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/15 02:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:端木豫
研究生(外文):Yu Tuan-Mu
論文名稱:極端風況與尾流動態分析在風場開發之應用
論文名稱(外文):An Application of Extreme Wind Regimes and Wake Dynamical Analysis in Wind Farm Developments
指導教授:張建成張建成引用關係郭志禹郭志禹引用關係
指導教授(外文):Chien-Cheng ChangChih-Yu Kuo
口試日期:2017-07-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:129
中文關鍵詞:台灣福海颱風IEC 61400s 規範極限風速模型一般紊流模型極端紊流模型垂直風切風機選擇種類WRF 模式適當正交分解擾動動態分析
外文關鍵詞:Fuahai areatyphoonIEC 61400s standardsthe extreme wind speed modelthe normal turbulence modelthe extreme turbulence modelvertical wind shearsubclass of wind turbinesWRF modelproper orthogonal decompositionthe dynamical analysis of wake fluctuation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:389
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
台灣近年致力於發展再生能源,特別是離岸風電場的開發。雖然台灣海峽擁有世上罕見的絕佳風場,但是卻有一些問題必須面對。不同於離岸風場發展成熟的北歐地區,亞洲地區每年夏秋之際都受到颱風侵襲。對於颱風侵襲,中央氣象局依據颱風侵台路線歸類出10種路徑。在本研究中,研究從2015年9月到2016年底之間四種不同侵臺路徑的颱風:杜鵑、尼伯特、莫蘭蒂與梅姬颱風。

本研究藉由彰濱外海福海氣象塔紀錄四個颱風所量測到的實際資料進行風況特徵分析,並與IEC 61400s所規範的極限風速模型、一般紊流模型、極端紊流模型與垂直風切值進行比較,給出福海地區建議的風機選擇種類與設計要求。除了實際資料分析外,本研究使用中尺度數值天氣預報系統(WRF模式)進行福海地區極端氣候的風況重建,並在結果中呈現了GFS-FNL初始資料在極端氣候下模擬相對於ERA-interim初始資料更近似於實際風況,也應證全時段模擬法相對於大氣研究常用的36小時模擬法更適用在極端氣候下之模擬。除了極端氣候下風況會造成離岸風場葉片斷裂與崩塌外,風場後方尾流擾動效應亦會造成風機的疲勞性結構破壞,因此本研究利用適當正交分解法(POD)分析彰濱外海預定30台SWT-4.0-120風機後方尾流擾動動態分析,藉由主要的模態描述整段時間下的尾流擾動結構,快速傅立葉轉換所對應的重建係數求出每個模態所對應的響應頻率。

總結,希望藉由本文研究呈現福海地區在極端氣候下的風況特徵,並利用WRF模式重建該地區極端風況的歷史訊息,給出福海地區離岸風場在極端氣候下的風機建議選擇,最後藉由POD分析尾流擾動動態,以期作為福海地區下游風場規劃與開發的重要依據。
Renewable energy has been recently devoted to developing in Taiwan, especially the development of offshore wind farms. Taiwan Strait is gifted with the rarest outstanding offshore wind resources in the world. However, couples of dilemmas are followed when constructing wind farms on it. Different from the developed wind farms of Northern Europe, the regime of Pacific Asia are facing with the typhoon strikes in the period between summer and autumn of every single year. According to the typhoon databases of Central Weather Bureau, the typhoon trajectories are divided into ten different paths. In this study, four of ten kinds of typhoon:Du-Juan, Nepartak, Meranti and Megi that have struck on Taiwan between September 2015 and December 2016 are addressed.

In this study, the wind data of four typhoons were recorded by Fuhai offshore meteorological mast which is located at about 8 km from the Chunghwa coastline. Based on the characteristics of extreme winds and the diversified model analysis of IEC 61400s standards, the extreme wind speed model (EWM), the normal turbulence model (NTM), the extreme turbulence model (ETM) and vertical wind shear are included into the standard criterion. Furthermore, the adoption of the type of wind turbine and design requirements for the Fuhai offshore wind farm is suggested. On the other hand, the Weather Research and Forecast model (WRF model), a famous mesoscale atmospheric numerical system, is selected to reconstruct the characteristics of wind regimes of Fuhai area and the associated numerical results are evaluated by the measured wind data. Consider the results of extreme weather condition with two different initial data, the GFS-FNL is better than the ERA-interim reanalysis data, and the full-time method is more reliable than the commonly used 36hrs method in atmospheric studies. Additionally, the collapse and damage of the wind turbines are the significant issues for the maintenance of the wind farm operation. Not only in the extreme weather condition but the effect of wake fluctuation might also cause the structural damage of the downstream wind turbines. Therefore, the proper orthogonal decomposition (POD) is chosen to discuss the dynamic structures of the wake fluctuation behind the 30 SWT-4.0-120 of wind turbines around Fuhai area. Through this method, the main structure of the wake fluctuation during the simulation period can be identified by the main mode and the corresponded response frequencies are available to be obtained by the Fast Fourier Transform with the given reconstruction coefficients of each mode.

To sum up, this study is aiming to present the extreme wind characteristics in Fuhai area, apply WRF model to reconstruct the historical wind condition, provide the adoption of wind turbines based on the extreme weather condition in Fuhai area. Last but not the least, it is expected to be an important contribution on the basis of POD dynamic analysis for the deployment and development of the offshore wind farm behind the Fuhai offshore wind farm.
口試委員會審定書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv
第一章緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 背景介紹& 文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 貢獻摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
第二章模擬方法與理論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 WRF 模式. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.1 WRF 模式介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 WRF 模式流程圖. . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 WRF 設定& 方法. . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.4 風機參數化. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 IEC 規範. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1 風切值模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 一般紊流模型與極端紊流模型. . . . . . . . . . . . . . . . . . 20
2.2.3 極端風速模型. . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 誤差統計方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 適當正交分解. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.1 直接法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4.2 POD 快照法. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
第三章極端氣候. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1 杜鵑颱風(Du-Juan) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.1 杜鵑基本概況. . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.2 杜鵑資料分析. . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.3 杜鵑風機建議選擇. . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 尼伯特颱風(Nepartak) . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.1 尼伯特基本概況. . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.2 尼伯特資料分析. . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.3 尼伯特風機建議選擇. . . . . . . . . . . . . . . . . . . . . . . 47
3.3 莫蘭蒂颱風(Meranti) . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.1 莫蘭蒂基本概況. . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.2 莫蘭蒂資料分析. . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3.3 莫蘭蒂風機建議選擇. . . . . . . . . . . . . . . . . . . . . . . 55
3.4 梅姬颱風(Megi) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.1 梅姬基本概況. . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.2 梅姬資料分析. . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4.3 梅姬風機建議選擇. . . . . . . . . . . . . . . . . . . . . . . . 63
第四章數值模擬結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.1 杜鵑颱風之模擬. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 尼伯特颱風之模擬. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.3 莫蘭蒂颱風之模擬. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.4 梅姬颱風之模擬. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
第五章尾流動態分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.0.1 風速為15 m/s . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.0.2 風速為10 m/s . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
第六章結論與未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.1 極端氣候. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.2 數值模擬結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.3 尾流動態分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.4 未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
附錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
[1] T. W. Feng, C. H. Lee, C. T. Chen, C. Y. Kuo, and C. C. Chang. Installation and Data Acquisition Analysis of the Primary Offshore Meteorological Mast of Taiwan. In Proceedings of the 18th Ocean & Underwater Technology and , National Cheng Kung University. Chinese Ocean & Underwater Technology Association, May 2016.
[2] A. Ho, A. Mbistrova, G. Corbetta, I. Pineda, and K. Ruby. The European offshore wind industry - key trends and statistics 2016. Technical report, European Wind Energy Association, 2017.
[3] IEC 61400-1. Wind turbines part 1: Design requirements. International Electrotechnical Commission, 2005.
[4] IEC 61400-3. Design requirements for offshore wind turbines. International Electrotechnical Commission, 2009.
[5] Z. Q. Li, S. J. Chen, H. Ma, and T. Feng. Design defect of wind turbine operating in typhoon activity zone. Engineering Failure Analysis, 27:165–172, 2013.
[6] T. S. Leu, J. M. Yo, Y. T. Tsai, J. J. Miau, T. C. Wang, and C. C. Tseng. Assessment of IEC 61400-1 Normal Turbulence Model for Wind Conditions in Taiwan West Coast Areas. In International Journal of Modern Physics: Conference Series, volume 34, page 1460382. World Scientific, 2014.
[7] J. Y. Chen, H. Y. Tsai, T. S. Leu, and J. J. Miau. Wind Characteristics Studies of Fuhai Offshore Wind Mast of Taiwan Generations Corporation and its Comparison with Normal Wind Conditions in IEC 61400. In Taiwan Wind Energy Association, National Taiwan Ocean University. Taiwan Wind Energy Association, December 2016.
[8] T. Ishihara, A. Yamaguchi, K. Takahara, T. Mekaru, and S. Matsuura. An analysis of damaged wind turbines by typhoon maemi in 2003. In Proceedings of the sixth asia-pacific conference on wind engineering, pages 1413–1428, 2005.
[9] K. KARIKOMI, A. HONDA, and S. HIRAI. Guideline for wind turbines in japan: Measurements of wind conditions and turbine loads. Renewable Energy, pages 5–8, 2008.
[10] D. Carvalho, A.o Rocha, M. Gómez-Gesteira, and C. Santos. A sensitivity study of the WRF model in wind simulation for an area of high wind energy. Environmental Modelling & Software, 33:23–34, 2012.
[11] D. Carvalho, A. Rocha, M. Gómez-Gesteira, and C. Santos Silva. WRF wind simulation and wind energy production estimates forced by different reanalyses: comparison with observed data for Portugal. Applied Energy, 117:116–126, 2014.
[12] C. Mattar and D. Borvarán. Offshore wind power simulation by using WRF in the central coast of Chile. Renewable Energy, 94:22–31, 2016.
[13] J. Gu, Q. Xiao, Y. H. Kuo, D. M. Barker, J. Xue, and X. Ma. Assimilation and simulation of typhoon Rusa (2002) using the WRF system. Advances in Atmospheric Sciences, 22(3):415–427, 2005.
[14] L. F. Hsiao, C. S. Liou, T. C. Yeh, Y. R. Guo, D. S. Chen, K. N. Huang, C. T. Terng, and J. H. Chen. A vortex relocation scheme for tropical cyclone initialization in advanced research WRF. Monthly Weather Review, 138(8):3298–3315, 2010.
[15] J. H. Kwun, Y. K. Kim, J. W. Seo, J. H. Jeong, and S. H. You. Sensitivity of MM5 and WRF mesoscale model predictions of surface winds in a typhoon to planetary boundary layer parameterizations. Natural hazards, 51(1):63–77, 2009.
[16] A. C. Fitch, J. B. Olson, J. K. Lundquist, J. Dudhia, A. K. Gupta, J. Michalakes, and I. Barstad. Local and mesoscale impacts of wind farms as parameterized in a mesoscale NWP model. Monthly Weather Review, 140(9):3017–3038, 2012.
[17] L. Sirovich. Turbulence and the dynamics of coherent structures. I. Coherent structures. Quarterly of applied mathematics, 45(3):561–571, 1987.
[18] S. Sanghi and N. Hasan. Proper orthogonal decomposition and its applications. Asia-Pacific Journal of Chemical Engineering, 6(1):120–128, 2011.
[19] K. M. Lam. Application of POD analysis to concentration field of a jet flow. Journal of Hydro-environment Research, 7(3):174–181, 2013.
[20] J. Lumley. The structure of inhomogeneous turbulent flows. In: Yaglam, A.M. , Tatarsky, V.I. (Eds.), Proceedings of the International Colloquium on the Fine Scale Structure of the Atmosphere and its Influence on Radio Wave Propagation. 1967. Page: 166-178.
[21] Y. M. Shim, R. N. Sharma, and P. J. Richards. Proper orthogonal decomposition analysis of the flow field in a plane jet. Experimental Thermal and Fluid Science, 51:37–55, 2013.
[22] K. E. Meyer, J. N. Sørensen, R. F. Mikkelsen, and B. B. Watz. Frequency and flow structure detection in a cylindrical cavity using POD. In 14th Int Symp on Applications of Laser Techniques to Fluid Mechanics, 2008.
[23] S. S. Dol. Proper orthogonal decomposition analysis of vortex shedding behind a rotating circular cylinder. In EPJ Web of Conferences, volume 114, page 02019. EDP Sciences, 2016.
[24] N. Hamilton, M. Tutkun, and R. B. Cal. Low-order representations of the canonical wind turbine array boundary layer via double proper orthogonal decomposition. Physics of Fluids, 28(2):025103, 2016.
[25] P. Premaratne, T. Wei, and H. Hu. Analysis of Turbine Wake Characteristics using Proper Orthogonal Decomposition (POD) and Triple Decomposition Methods. In 46th AIAA Fluid Dynamics Conference, page 3780, 2016.
[26] D. Bastine, B. Witha, M. Wächter, and J. Peinke. POD analysis of a wind turbine wake in a turbulent atmospheric boundary layer. In Journal of Physics: Conference Series, volume 524, page 012153. IOP Publishing, 2014.
[27] C. VerHulst and C. Meneveau. Large eddy simulation study of the kinetic energy entrainment by energetic turbulent flow structures in large wind farms. Physics of Fluids, 26(2):025113, 2014.
[28] K. Saranyasoontorn and L. Manuel. Low-dimensional representations of inflow turbulence and wind turbine response using proper orthogonal decomposition. Journal of Solar Energy Engineering, 127(4):553–562, 2005.
[29] J. Michalakes, S. Chen, J. Dudhia, L. Hart, J. Klemp, J. Middlecoff, and W. Skamarock. Development of a next generation regional weather research and forecast model. In Developments in Teracomputing: Proceedings of the Ninth ECMWF Workshop on the use of high performance computing in meteorology, volume 1, pages 269–276. World Scientific, 2001.
[30] W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X. Y. Huang, W. Wang, and J. G. Powers. A description of the advanced research WRF version 2. Technical report, DTIC Document, 2005.
[31] NCL. The NCAR Command Language (version 6.1.2) [Software]. UCAR/NCAR Computational and Information Systems Laboratory, Boulder, Colorado, 2013. URL http://dx.doi.org/10.5065/D6WD3XH5.
[32] D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, and P. Bauer. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the royal meteorological society, 137(656):553–597, 2011.
[33] C. T. Chen. An Application of the Weather Prediction Model and the Wind Farm Development. Master’s thesis, Institute of Applied Mechanics, National Taiwan University, 2016.
[34] X. M. Hu, J. W. Nielsen-Gammon, and F. Zhang. Evaluation of three planetary boundary layer schemes in the WRF model. Journal of Applied Meteorology and Climatology, 49(9):1831–1844, 2010.
[35] X. Li. Sensitivity of WRF simulated typhoon track and intensity over the Northwest Pacific Ocean to cumulus schemes. Science China Earth Sciences, pages 1–12, 2013.
[36] T. Haghroosta, W. R. Ismail, P. Ghafarian, and S. M. Barekati. The efficiency of the Weather Research and Forecasting (WRF) model for simulating typhoons. Natural Hazards and Earth System Sciences, 14(8):2179, 2014.
[37] S. Basualdo. Load alleviation on wind turbine blades using variable airfoil geometry. Wind Engineering, 29(2):169–182, 2005.
[38] J. M. Pedersen. Analysis of Planar Measurements of Turbulent Flows. Fluid Mechanics Department of Mechanical Engineering Technical University of Denmark, 2003.
[39] P. Holmes, J. L. Lumley, and G. Berkooz. Turbulence, coherent structures, dynamical systems and symmetry. Cambridge university press, 1998.
[40] P. Holmes, J. L. Lumley, G. Berkooz, and C. W. Rowley. Turbulence, coherent structures, dynamical systems and symmetry. Cambridge university press, 2012.
[41] K. E. Meyer, J. M. Pedersen, and O. Özcan. A turbulent jet in crossflow analysed with proper orthogonal decomposition. Journal of Fluid Mechanics, 583:199–227, 2007.
[42] B. W. van Oudheusden, F. Scarano, N. P. van Hinsberg, and D. W. Watt. Phaseresolved characterization of vortex shedding in the near wake of a square-section cylinder at incidence. Experiments in Fluids, 39(1):86–98, 2005.
[43] F. Ichihashi, S. M. Jeng, and K. Cohen. Proper Orthogonal Decomposition and Fourier Analysis on the Energy Release Rate Dynamics. In 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, page 22, 2010.
[44] D. Carvalho, A. Rocha, C. Santos Silva, and R. Pereira. Wind resource modelling in complex terrain using different mesoscale–microscale coupling techniques. Applied Energy, 108:493–504, 2013.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top