|
[1]S. Chol, Enhancing thermal conductivity of fluids with nanoparticles, ASME-Publications-Fed 231 (1995) 99-106. [2]J.A. Eastman, S. Phillpot, S. Choi, P. Keblinski, Thermal transport in nanofluids 1, Annu. Rev. Mater. Res. 34 (2004) 219-246. [3]P. Keblinski, J.A. Eastman, D.G. Cahill, Nanofluids for thermal transport, Materials today 8 (6) (2005) 36-44. [4]S.K. Das, S.U. Choi, H.E. Patel, Heat transfer in nanofluids—a review, Heat transfer engineering 27 (10) (2006) 3-19. [5]X.-Q. Wang, A.S. Mujumdar, Heat transfer characteristics of nanofluids: a review, International journal of thermal sciences 46 (1) (2007) 1-19. [6]S. Murshed, K. Leong, C. Yang, Thermophysical and electrokinetic properties of nanofluids–a critical review, Applied Thermal Engineering 28 (17) (2008) 2109-2125. [7]R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, H. Tyagi, Small particles, big impacts: a review of the diverse applications of nanofluids, Journal of Applied Physics 113 (1) (2013) 1. [8]P. Shima, J. Philip, B. Raj, Magnetically controllable nanofluid with tunable thermal conductivity and viscosity, Applied physics letters 95 (13) (2009) 133112. [9]E. Andablo-Reyes, R. Hidalgo-Álvarez, J. de Vicente, Controlling friction using magnetic nanofluids, Soft Matter 7 (3) (2011) 880-883. [10]S. Bagheli, H.K. Fadafan, R.L. Orimi, M. Ghaemi, Synthesis and experimental investigation of the electrical conductivity of water based magnetite nanofluids, Powder Technology 274 (2015) 426-430. [11]S. Ganguly, S. Sikdar, S. Basu, Experimental investigation of the effective electrical conductivity of aluminum oxide nanofluids, Powder Technology 196 (3) (2009) 326-330. [12]葉星毅, 二氧化鈦奈米流體黏滯性質的實驗探討, 臺灣大學應用力學研究所學位論文 (2014) 1-52. [13]J.C. Maxwell, A treatise on electricity and magnetism, Clarendon press, 1881. [14]R.C. Cruz, J. Reinshagen, R. Oberacker, A.M. Segadães, M.J. Hoffmann, Electrical conductivity and stability of concentrated aqueous alumina suspensions, Journal of colloid and interface science 286 (2) (2005) 579-588. [15]R. Iglesias, M. Rivas, J.C.R. Reis, T. Iglesias, Permittivity and electric conductivity of aqueous alumina (40nm) nanofluids at different temperatures, The Journal of Chemical Thermodynamics 89 (2015) 189-196. [16]T. Iglesias, M. Rivas, R. Iglesias, J.C.R. Reis, F. Cohelho, Electric permittivity and conductivity of nanofluids consisting of 15nm particles of alumina in base milli-q and milli-ro water at different temperatures, The Journal of Chemical Thermodynamics 66 (2013) 123-130. [17]L. Shen, H. Wang, M. Dong, Z. Ma, H. Wang, Solvothermal synthesis and electrical conductivity model for the zinc oxide-insulated oil nanofluid, Physics Letters A 376 (10) (2012) 1053-1057. [18]K.K. Sarojini, S.V. Manoj, P.K. Singh, T. Pradeep, S.K. Das, Electrical conductivity of ceramic and metallic nanofluids, Colloids and Surfaces A: Physicochemical and Engineering Aspects 417 (2013) 39-46. [19]J.T. Edward, Molecular volumes and the Stokes-Einstein equation, J. chem. Educ 47 (4) (1970) 261. [20]D. Henry, in: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, 1931, pp. 106-129. [21]J. Jiang, G. Oberdörster, P. Biswas, Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies, Journal of Nanoparticle Research 11 (1) (2009) 77-89. [22]B.C. Pak, Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Experimental Heat Transfer an International Journal 11 (2) (1998) 151-170. [23]F. Fogolari, A. Brigo, H. Molinari, The Poisson–Boltzmann equation for biomolecular electrostatics: a tool for structural biology, Journal of Molecular Recognition 15 (6) (2002) 377-392. [24]R.J. Hunter, Zeta potential in colloid science: principles and applications, Academic press, 2013. [25]G.K. Batchelor, An introduction to fluid dynamics, Cambridge university press, 2000. [26]E. Cummings, S. Griffiths, R. Nilson, Applied microfluidic physics LDRD final report, SAND 8018 (2002) 65-93. [27]R. Prasher, P.E. Phelan, P. Bhattacharya, Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid), Nano letters 6 (7) (2006) 1529-1534. [28]H. Akoh, Y. Tsukasaki, S. Yatsuya, A. Tasaki, Magnetic properties of ferromagnetic ultrafine particles prepared by vacuum evaporation on running oil substrate, Journal of Crystal Growth 45 (1978) 495-500. [29]謝秉倫, 二氧化鈦奈米流體熱傳導性質的實驗探討, 臺灣大學應用力學研究所學位論文 (2014) 1-55. [30]J. Fal, G. Żyła, M. Gizowska, A. Witek, M. Cholewa, Electrical Properties of Aluminum Oxide-Ethylene Glycol (Al 2 O 3-EG) Nanofluids, Acta Physica Polonica, A. 128 (2) (2015). [31]E.V. Timofeeva, A.N. Gavrilov, J.M. McCloskey, Y.V. Tolmachev, S. Sprunt, L.M. Lopatina, J.V. Selinger, Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory, Physical Review E 76 (6) (2007) 061203.
|