|
[1] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods: Fundamentals in Single Domains, Springer-Verlag, Berlin Heidelberg, 2007. [2] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics, Springer-Verlag, Berlin Heidelberg,2007. [3] M. Carpenter, D. Gottlieb, Spectral methods on arbitrary grids, J. Comput. Phys. 129 (1996) 74-86. [4] H. Chen, Y. Su, B. D. Shizgal, A direct spectral collocation Poisson solver in polar and cylinder coordinates. J. Comput. Phys. 160 (2000) 453-469. [5] H. Dang-Vu, C. Delcarte, An accurate solution of the Poisson equation by the Chebyshev Collocation method. J. Comput. Phys. 104 (1993) 211-220. [6] M. Deville, P. F. Fischer, E. H. Mund, High-Order Methods for Incompressible Fluid Flow, Cambridge University Press, Cambridge UK, 2002. [7] W. Don, D. Gottlieb, The Chebyshev-Legendre method: Implementing Legendre methods on Chebyshev points, SIAM J. Numer Anal. 31 (1994) 1519-1524. [8] U. Ehrenstein, R. Peyret, A Chebyshev Collocation method for the Navier-Stokes equations with application to double-diffusive convection, International Journal for numerical methods in fluids, 9 (1989) 427-452. [9] D. Funaro, D. Gottlieb, A new method of imposing boundary conditions in pseudo-spectral approximations of hyperbolic equations, Math. Comp. 51 (1988) 599-613. [10] D. Funaro, D. Gottlieb, Convergence results for pseudospectral approximations of hyperbolic systems by a penalty-type boundary treatment, Math. Comp. 57 (1991) 585-596. [11] W. J. Gordon, C. A. Hall, Trans nite element methods: Blending-function interpolation over arbitrary curved element domains, Numer. Math. 21 (1973) 109-129. [12] W. J. Gordon, C. A. Hall, Construction of curvilinear co-ordinate systems and applications to mesh generations, Int. J. Numer. Meth. Eng. 7 (1973) 461-477. [13] D. Gottlieb, M. Gunzburger, E. Turkel, On numerical boundary treatment for hyperbolic systems, SIAM J. Numer. Anal. 19 (1982) 671-697. [14] D. B. Haidvogel, T. Zang, The accurate solution of Poisson''s equation by expansion in Chebyshev polynomials, J. Comput. Phys. 30 (1979) 167-180. [15] J. S. Hesthaven and D. Gottlieb, A stable penalty method for the compressible Navier-Stokes equations: I. open boundary contitions, SIAM J. Sci. Comput. 17 (1996) 579-612. [16] J. S. Hesthaven, A stable penalty method for the compressible Navier-Stokes equations: III. multidimensional domain decomposition schemes, SIAM J. Sci. Comput. 20 (1999) 62-93. [17] J. S. Hesthaven, Spectral penalty methods, Appl. Numer. Math. 33 (2000) 23-41. [18] J. S. Hesthaven, T. Warburton, Nodal high-order methods on unstructured grids: I. time-domain solution of Maxwell''s equations, J. Comput. Phys. 181 (2002) 186-221. [19] J. S. Hesthaven, S. Gottlieb, D. Gottlieb, Spectral Methods for Time-Dependent Problems, Cambridge University Press, Cambridge, UK, 2007. [20] T. L. Horng, C. H. Teng, An error minimized pseudospectral penalty direct Poisson solver, J.Comput. Phys. 231 (2012) 2498-2509. [21] Y.-L. Huang, J.-G. Liu, W.-C. Wang, An FFT based fast Poisson solver on spherical shells, Commun. Comput. Phys. 9 (2011) 649-667. [22] G. E. Karniadakis, S. J. Sherwin, A triangular spectral element method: Applications to the incompressible Navier-Stokes equations, Comput. Meth. Appl. Mech. Engrg., 123 (1995), 189-220. [23] G. E. Karniadakis, S. J. Sherwin, Spectral/hp Element Methods for CFD, Oxford University Press, New York, USA, 1999. [24] G. E. Karniadakis, S. J. Sherwin, Spectral/hp Element Methods for Computational Fluid Dynamics, 2nd edition, Oxford University Press, New York, USA, 2005. [25] D. A. Kopriva, Multidomain spectral solution of the Euler gas-dynamics equation, J. Comput. Phys. 96 (1991) 428-450. [26] D. A. Kopriva, S. L. Woodru , M. Y. Hussaini, Computation of electromagnetic scattering with a non-conforming discontinuous spectral element method, Int. J. Numer. Meth. Engrg. 53 (2002) 105-122. [27] H. C. Ku, R. S. Hirsh, T. Taylor, A pseudospectral method for solution of the three-dimensional incompressible Navier-Stokes equations. J. Comput. Phys. 70 (1987) 493-462. [28] R. E. Lynch, J. R. Rice, D. H. Thomas, Direct solution of partial di erence equations by tensor product methods, Numer: Math. 6 (1964) 185-199. [29] J. M. Melenk, On condition number in hp-FEM with Gauss-Lobatto-based shape functions, J. Comput. Appl. Math. 139 (2002) 21-48. [30] M. C. Navarro, H. Herreor, S. Hoyas, Chebyshev collocation for optimal control in a thermoconductive flow, Commun. Comput. Phys. 5 (2009) 649-666. [31] A. T. Patera, A spectral element method for fluid dynamics: Laminar flow in a channel expansion, J. Comput. Phys. 54, (1984) 468-488. [32] J. Shen, E cient spectral-Galerkin method II. Direct solvers of second and fourth order equations by using Chebyshev polynomials, SIAM J. SCI. Comput. 16 (1995) 74-87. [33] J. Shen, L.-L.Wang, Some recent advances on spectral methods for unbounded domains, Compun. Comput. Phys. 5 (2009) 195-241. [34] Bikerman,J. J., 1942, Structure and capacity of electrical double layer, Philos. Mag. 33:384 [35] Borukhov, I., D. Andelman, and H. Orland, 1997, Steric effects in electrolytes: a modified Poisson-Boltzmann equation, Phys. Rev. Lett. 79:435-438. [36] Lu, B. and Y. C. Zhou, 2012, PoissonNernstPlanck equations for simulating biomolecular diffusion-reaction processes II: size effects on ionic distributions and diffusion-reaction rates, Biophys. J. 100:24752485. [37] Liu, J.-L. and B. Eisenberg, 2013, Correlated ions in a calcium channel model: a PoissonFermi theory, J. Phys. Chem. B 117:12051-12058. [38] Liu, J.-L. and B. Eisenberg, 2014, Poisson-Nernst-Planck-Fermi theory for modeling biological ion channels, J. Chem. Phys. 141:22D532. [39] Lin, Tai-Chia, and Bob Eisenberg. A new approach to the Lennard-Jones potential and a new model: PNP-steric equations. Communications in Mathematical Sciences 12.1 (2014): 149-173. [40] Lin, Tai-Chia, and Bob Eisenberg. Multiple solutions of steady-state Poisson -Nernst - Planck equations with steric effects. Nonlinearity 28.7 (2015): 2053.
|