|
[1] P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization algorithms on matrix manifolds. Princeton University Press, 2009. [2] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, third edition, 1999. [3] J. Barzilai and J. M. Borwein. Two-point step size gradient methods. IMA Journal of Numerical Analysis, 8(1):141–148, 1988. [4] T.-L. Chen, D. D. Chang, S.-Y. Huang, H. Chen, C. Lin, and W. Wang. Integrating multiple random sketches for singular value decomposition. arXiv preprint arXiv:1608.08285, 2016. [5] S.Fiori, T.Kaneko, and T.Tanaka. Mixed maps for learning a kolmogoroff-nagumo-type average element on the compact Stiefel manifold. IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP), pages 4518– 4522, 2014. [6] I. Griva, S. G. Nash, and A. Sofer. Linear and nonlinear optimization. Siam, 2009. [7] N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM review, 53(2):217–288, 2011. [8] T.Kaneko, S.Fiori, and T.Tanaka. Empirical arithmetic averaging over the compact Stiefel manifold. IEEE Transations on Signal Processing, 61(4):883–894, 2013. [9] J. R. Magnus and H. Neudecker. The commutation matrix: some properties and applications. The Annals of Statistics, pages 381–394, 1979. [10] V. Rokhlin, A. Szlam, and M. Tygert. A randomized algorithm for principal component analysis. SIAM Journal on Matrix Analysis and Applications, 31(3):1100–1124, 2009. [11] Z. Wen and W. Yin. A feasible method for optimization with orthogonality constraints. Mathematical Programming, 142(1-2):397–434, 2013. [12] H. Zhang and W. W. Hager. A nonmonotone line search technique and its application to unconstrained optimization. SIAM Journal on Optimization, 14(4):1043–1056, 2004.
|