Abdel Hakim, A. A., Nassar, M., Emam, A., & Sultan, M. (2011). Preparation and characterization of rigid polyurethane foam prepared from sugar-cane bagasse polyol. Materials Chemistry and Physics, 129(1–2), 301-307.
Aelterman, P., Rabaey, K., Pham, H. T., Boon, N., & Verstraete, W. (2006). Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environmental Science & Technology, 40(10), 3388–3394.
Ahn, Y., & Logan, B. E. (2010). Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures. Bioresource Technology, 101(2), 469–475.
An, Z., Zhang, H., Wen, Q., Chen, Z., & Du, M. (2014). Desalination combined with copper (II) removal in a novel microbial desalination cell. Desalination, 346, 115–121.
Anderson, M. A., Cudero, A. L., & Palma, J. (2010). Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochimica Acta, 55(12), 3845–3856.
Arechederra, R., & Minteer, S. (2009). Complete oxidation of glycerol in an enzymatic biofuel cell. Fuel Cells, 9(1), 63–69.
Biesheuvel, P., Zhao, R., Porada, S., & Van der Wal, A. (2011). Theory of membrane capacitive deionization including the effect of the electrode pore space. Journal of Colloid and Interface Science, 360(1), 239–248.
Brastad, K. S., & He, Z. (2013). Water softening using microbial desalination cell technology. Desalination, 309, 32-37.
Cao, X., Huang, X., Liang, P., Xiao, K., Zhou, Y., Zhang, X., & Logan, B. E. (2009). A new method for water desalination using microbial desalination cells. Environmental Science & Technology, 43(18), 7148–7152.
Chaudhuri, S. K., & Lovley, D. R. (2003). Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nature Biotechnology, 21(10), 1229–1232.
Chen, S., Liu, G., Zhang, R., Qin, B., & Luo, Y. (2012). Development of the microbial electrolysis desalination and chemical-production cell for desalination as well as acid and alkali productions. Environmental Science & Technology, 46(4), 2467–2472.
Chen, W., Rakhi, R., & Alshareef, H. N. (2012). High energy density supercapacitors using macroporous kitchen sponges. Journal of Materials Chemistry, 22(29), 14394–14402.
Cheng, S., & Logan, B. E. (2011). High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing. Bioresource Technology, 102(3), 3571-3574.
Fan, Y., Sharbrough, E., & Liu, H. (2008). Quantification of the internal resistance distribution of microbial fuel cells. Environmental Science & Technology, 42(21), 8101–8107.
Feng, C., Hou, C.-H., Chen, S., & Yu, C.-P. (2013). A microbial fuel cell driven capacitive deionization technology for removal of low level dissolved ions. Chemosphere, 91(5), 623–628.
Feng, Y., Wang, X., Logan, B. E., & Lee, H. (2008). Brewery wastewater treatment using air-cathode microbial fuel cells. Applied Microbiology and Biotechnology, 78(5), 873–880.
Ghangrekar, M., & Shinde, V. (2007). Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production. Bioresource Technology, 98(15), 2879–2885.
Gui, X., Wei, J., Wang, K., Cao, A., Zhu, H., Jia, Y., Shu, Q., & Wu, D. (2010). Carbon nanotube sponges. Advanced Materials, 22(5), 617–621.
Heijne, A. T., Liu, F., Weijden, R. v. d., Weijma, J., Buisman, C. J., & Hamelers, H. V. (2010). Copper recovery combined with electricity production in a microbial fuel cell. Environmental Science & Technology, 44(11), 4376–4381.
Hong, Y., Call, D. F., Werner, C. M., & Logan, B. E. (2011). Adaptation to high current using low external resistances eliminates power overshoot in microbial fuel cells. Biosensors and Bioelectronics, 28(1), 71–76.
Huang, S.-Y., Fan, C.-S., & Hou, C.-H. (2014). Electro-enhanced removal of copper ions from aqueous solutions by capacitive deionization. Journal of Hazardous Materials, 278, 8–15.
Humplik, T., Lee, J., O’hern, S., Fellman, B., Baig, M., Hassan, S., Atieh, M., Rahman, F., Laoui, T., & Karnik, R. (2011). Nanostructured materials for water desalination. Nanotechnology, 22(29), 292001.
Jacobson, K. S., Drew, D. M., & He, Z. (2011). Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode. Bioresource Technology, 102(1), 376–380.
Jia, J., Tang, Y., Liu, B., Wu, D., Ren, N., & Xing, D. (2013). Electricity generation from food wastes and microbial community structure in microbial fuel cells. Bioresource Technology, 144, 94–99.
Kalathil, S., Lee, J., & Cho, M. H. (2011). Granular activated carbon based microbial fuel cell for simultaneous decolorization of real dye wastewater and electricity generation. New Biotechnology, 29(1), 32–37.
Kim, N., Choi, Y., Jung, S., & Kim, S. (2000). Effect of initial carbon sources on the performance of microbial fuel cells containing Proteus vulgaris. Biotechnology and Bioengineering, 70(1), 109–114.
Kim, Y., & Logan, B. E. (2011). Series assembly of microbial desalination cells containing stacked electrodialysis cells for partial or complete seawater desalination. Environmental Science & Technology, 45(13), 5840–5845.
Komarneni, S. (1992). Nanocomposites. J. Mater. Chem., 2(12), 1219-1230.
Liang, P., Yuan, L., Yang, X., & Huang, X. (2015). Influence of circuit arrangement on the performance of a microbial fuel cell driven capacitive deionization (MFC-CDI) system. Desalination, 369, 68–74.
Lee, J.-B., Park, K.-K., Eum, H.-M., & Lee, C.-W. (2006). Desalination of a thermal power plant wastewater by membrane capacitive deionization. Desalination, 196(1), 125–134.
Li, H., & Zou, L. (2011). Ion-exchange membrane capacitive deionization: a new strategy for brackish water desalination. Desalination, 275(1), 62–66.
Li, X., Chen, S., Quan, X., & Zhang, Y. (2011). Enhanced adsorption of PFOA and PFOS on multiwalled carbon nanotubes under electrochemical assistance. Environmental Science & Technology, 45(19), 8498–8505.
Liu, H., Grot, S., & Logan, B. E. (2005). Electrochemically assisted microbial production of hydrogen from acetate. Environmental Science & Technology, 39(11), 4317–4320.
Liu, H., & Logan, B. E. (2004). Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science & Technology, 38(14), 4040–4046.
Liu, Y., Qu, X., Guo, H., Chen, H., Liu, B., & Dong, S. (2006). Facile preparation of amperometric laccase biosensor with multifunction based on the matrix of carbon nanotubes–chitosan composite. Biosensors and Bioelectronics, 21(12), 2195–2201.
Logan, B. E. (2008). Microbial fuel cells: John Wiley & Sons.
Logan, B. E. (2010). Scaling up microbial fuel cells and other bioelectrochemical systems. Applied Microbiology and Biotechnology, 85(6), 1665–1671.
Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., & Rabaey, K. (2006). Microbial fuel cells: methodology and technology. Environmental Science & Technology, 40(17), 5181–5192.
Logan, B. E., & Regan, J. M. (2006). Microbial fuel cells-challenges and applications. Environmental Science & Technology, 40(17), 5172-5180.
Ma, C.-Y., Wu, C.-H., & Lin, C.-W. (2015). A Novel V-Shaped Microbial Fuel Cell for Electricity Generation in Biodegrading Rice Straw Compost. Journal of Advanced Agricultural Technologies Vol, 2(1).
Mehanna, M., Saito, T., Yan, J., Hickner, M., Cao, X., Huang, X., & Logan, B. E. (2010). Using microbial desalination cells to reduce water salinity prior to reverse osmosis. Energy & Environmental Science, 3(8), 1114–1120.
Morel, A., Zuo, K., Xia, X., Wei, J., Luo, X., Liang, P., & Huang, X. (2012). Microbial desalination cells packed with ion-exchange resin to enhance water desalination rate. Bioresource Technology, 118, 43–48.
Pant, D., Singh, A., Van Bogaert, G., Olsen, S. I., Nigam, P. S., Diels, L., & Vanbroekhoven, K. (2012). Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. Rsc Advances, 2(4), 1248–1263.
Park, D. H., & Zeikus, J. G. (2000). Electricity generation in microbial fuel cells using neutral red as an electronophore. Applied and Environmental Microbiology, 66(4), 1292–1297.
Ping, Q., Abu-Reesh, I. M., & He, Z. (2015). Boron removal from saline water by a microbial desalination cell integrated with donnan dialysis. Desalination, 376, 55–61.
Qiao, Y., Li, C. M., Bao, S.-J., & Bao, Q.-L. (2007). Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. Journal of Power Sources, 170(1), 79–84.
Qu, Y., Feng, Y., Wang, X., Liu, J., Lv, J., He, W., & Logan, B. E. (2012). Simultaneous water desalination and electricity generation in a microbial desalination cell with electrolyte recirculation for pH control. Bioresource Technology, 106, 89–94.
Rabaey, K., Lissens, G., Siciliano, S. D., & Verstraete, W. (2003). A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnology letters, 25(18), 1531–1535.
Rabaey, K., & Verstraete, W. (2005). Microbial fuel cells: novel biotechnology for energy generation. TRENDS in Biotechnology, 23(6), 291–298.
Shanmugam, S., & Osaka, T. (2011). Efficient electrocatalytic oxygen reduction over metal free-nitrogen doped carbon nanocapsules. Chemical Communications, 47(15), 4463–4465.
Sharma, T., Mohana Reddy, A. L., Chandra, T. S., & Ramaprabhu, S. (2008). Development of carbon nanotubes and nanofluids based microbial fuel cell. International Journal of Hydrogen Energy, 33(22), 6749–6754.
Tandukar, M., Huber, S. J., Onodera, T., & Pavlostathis, S. G. (2009). Biological chromium (VI) reduction in the cathode of a microbial fuel cell. Environmental Science & Technology, 43(21), 8159–8165.
Tsai, H.-Y., Wu, C.-C., Lee, C.-Y., & Shih, E. P. (2009). Microbial fuel cell performance of multiwall carbon nanotubes on carbon cloth as electrodes. Journal of Power Sources, 194(1), 199–205.
Wang, B., & Han, J.-I. (2009). A single chamber stackable microbial fuel cell with air cathode. Biotechnology letters, 31(3), 387–393.
Wang, S.-F., Shen, L., Zhang, W.-D., & Tong, Y.-J. (2005). Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules, 6(6), 3067–3072.
Welgemoed, T., & Schutte, C. (2005). Capacitive deionization technology™: an alternative desalination solution. Desalination, 183(1), 327–340.
Wen, Q., Zhang, H., Yang, H., Chen, Z., Nan, J., & Feng, Y. (2014). Improving desalination by coupling membrane capacitive deionization with microbial desalination cell. Desalination, 354, 23–29.
Woan, K., Pyrgiotakis, G., & Sigmund, W. (2009). Photocatalytic Carbon‐Nanotube–TiO2 Composites. Advanced Materials, 21(21), 2233–2239.
Wolska, A., Goździkiewicz, M., & Ryszkowska, J. (2012). Thermal and mechanical behaviour of flexible polyurethane foams modified with graphite and phosphorous fillers. Journal of Materials Science, 47(15), 5627–5634.
Yang, J., Zhou, M., Hu, Y., & Yang, W. (2016). Cost-effective copper removal by electrosorption powered by microbial fuel cells. Bioprocess and Biosystems Engineering, 39(3), 511–519.
Yang, J., Zhou, M., Zhao, Y., Zhang, C., & Hu, Y. (2013). Electrosorption driven by microbial fuel cells to remove phenol without external power supply. Bioresource Technology, 150, 271–277.
Yang, W., Han, H., Zhou, M., & Yang, J. (2015). Simultaneous electricity generation and tetracycline removal in continuous flow electrosorption driven by microbial fuel cells. RSC Advances, 5(61), 49513–49520.
Yu, L., Zhang, G., Yuan, C., & Lou, X. W. D. (2013). Hierarchical NiCo2O4@MnO2 core–shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. Chemical Communications, 49(2), 137–139.
Yuan, H., Abu-Reesh, I. M., & He, Z. (2015). Enhancing desalination and wastewater treatment by coupling microbial desalination cells with forward osmosis. Chemical Engineering Journal, 270, 437–443.
Yuan, L., Yang, X., Liang, P., Wang, L., Huang, Z.-H., Wei, J., & Huang, X. (2012). Capacitive deionization coupled with microbial fuel cells to desalinate low-concentration salt water. Bioresource Technology, 110, 735–738.
Zhai, T., Wang, F., Yu, M., Xie, S., Liang, C., Li, C., Xiao, F., Tang, R., Wu, Q., Lu, X. (2013). 3D MnO2–graphene composites with large areal capacitance for high-performance asymmetric supercapacitors. Nanoscale, 5(15), 6790–6796.
Zhan, Y., Pan, L., Nie, C., Li, H., & Sun, Z. (2011). Carbon nanotube–chitosan composite electrodes for electrochemical removal of Cu(II) ions. Journal of Alloys and Compounds, 509(18), 5667–5671.
Zhang, B., Feng, C., Ni, J., Zhang, J., & Huang, W. (2012). Simultaneous reduction of vanadium (V) and chromium (VI) with enhanced energy recovery based on microbial fuel cell technology. Journal of Power Sources, 204, 34–39.
Zhang, B., & He, Z. (2013). Improving water desalination by hydraulically coupling an osmotic microbial fuel cell with a microbial desalination cell. Journal of Membrane science, 441, 18–24.
Zhao, R., Biesheuvel, P., Miedema, H., Bruning, H., & Van der Wal, A. (2009). Charge efficiency: a functional tool to probe the double-layer structure inside of porous electrodes and application in the modeling of capacitive deionization. The Journal of Physical Chemistry Letters, 1(1), 205–210.
Zhao, R., Biesheuvel, P., & Van der Wal, A. (2012). Energy consumption and constant current operation in membrane capacitive deionization. Energy & Environmental Science, 5(11), 9520–9527.
Zhou, M., Chi, M., Luo, J., He, H., & Jin, T. (2011). An overview of electrode materials in microbial fuel cells. Journal of Power Sources, 196(10), 4427–4435.
黃承業(2012)。以電容去離子技術去除無機鹽類之電吸附行為研究(碩士論文)。東海大學環境科學與工程學系,台中市。黃詩晴(2014)。製備多壁奈米碳管/幾丁聚醣複合式電極以電吸附方式移除苯胺之研究(碩士論文)。東海大學環境科學與工程學系,台中市。