跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/08 16:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:馬緻宇
研究生(外文):Chih-Yu Ma
論文名稱:微生物脫鹽電池驅動薄膜電容去離子裝置應用於產電-脫鹽技術之研究
論文名稱(外文):Development of Microbial Desalination Cell Driven Membrane Capacitive Deionization for Energy Production and Desalination
指導教授:侯嘉洪
口試委員:李公哲于昌平許聿翔
口試日期:2016-06-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:中文
論文頁數:88
中文關鍵詞:薄膜電容去離子技術微生物脫鹽電池微生物燃料電池三維孔洞電極海綿電吸附
外文關鍵詞:membrane capacitive deionizationmicrobial desalination cellmicrobial fuel cellthree-dimension porous electrodespongeelectrosorption
相關次數:
  • 被引用被引用:0
  • 點閱點閱:426
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
隨著全球人口快速增加與對經濟發展的追求,於近年來社會大眾對於水資源之需求日益遽增。另一方面,水淡化過程中需耗損大量能源,造成水淡化技術成本居高不下。因此,如何開發具有永續性之水處理技術,已成為現今研究學者所熱切關注之議題。微生物脫鹽電池(Microbial Desalination Cell, MDC)是以微生物燃料電池(Microbial Fuel Cell, MFC)為基礎而衍生之新興生物電化學系統,因具有可同時產電、廢水處理與脫鹽之效能,因此被視為一項具發展潛力之生物脫鹽技術。此外,電容去離子技術(Capacitive Deionization, CDI) 為一項新穎之水處理技術,以電極/溶液界面之電雙層為運行原理,利用電吸附程序去除溶液中之無機離子,具有無二次性污染、低能量消耗以及可逆性等優勢。
電極材料對生物電化學系統之產電效能佔有重要影響,而透過奈米碳管改質之三維立體結構碳電極,除了擁有良好的導電性能與高比表面積外,還能增加基質與電極間之接觸面積,並提供陽極內微生物聚集或附著所需要的空間,加速電子之傳遞,進而大幅的提升系統電能輸出,因此於近幾年開始受到廣泛關注。本研究結合微生物脫鹽電池與薄膜電容去離子技術各自特點,以微生物脫鹽電池作為能源驅動電吸附程序,發展具有廢水處理與脫鹽之永續性水淡化系統。並進一步以奈米碳管複合材料製備之三維孔洞電極作為MDC電極使用,探討電極改良對於MDC產電效能與脫鹽成效之提升。結果顯示:(1) 於MDC系統中,脫鹽率接近99%,COD去除率達到90%;(2) 以電吸附程序處理MDC脫鹽槽出流水,於批次實驗下,其溶液導電度能降至15 μS/cm以下;(3) 使用三維孔洞電極之MDC系統驅動CDI裝置,於濃度為5 mM NaCl 溶液中進行電吸附實驗,因MDC輸出電壓增加,使CDI移除效率可達到84.14%,較使用商用電極MDC系統之CDI移除效率(43.14%)提升約一倍。本研究結果證實:MDC-CDI系統作為一項多功能之水處理技術,擁有良好之處理效果與永續發展之可能性。而三維孔洞電極應用於微生物脫鹽電池中,則可有效提升系統效能,並增加其運用於其他電化學處理程序之應用潛力。
致謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vii
表目錄 x
第一章 緒論 1
1.1. 研究背景 1
1.2. 研究動機 2
1.3. 研究目的 3
1.4. 研究架構 4
第二章 文獻回顧 5
2.1. 生物電化學系統之理論及沿革 5
2.1.1. 生物電化學系統之演進 5
2.1.2. 生物電化學系統之產電原理 6
2.1.3. 生物電化學系統之應用與發展 7
2.1.4. 微生物脫鹽電池 8
2.2. 電容去離子技術之原理與發展 10
2.2.1. 電容去離子技術之發展 10
2.2.2. 電容去離子技術之運行原理 11
2.2.3. 薄膜電容去離子技術 12
2.2.4. 電容去離子技術之特點 13
2.3. 生物電化學系統驅動電容去離子技術 14
2.3.1. 生物電化學系統之瓶頸與挑戰 14
2.3.2. 生物電化學系統驅動電容去離子技術之發展 16
2.4. 電極材料於生物電化學系統之應用 19
2.4.1. 奈米碳管複合材料 20
2.4.2. 三維孔洞電極 22
第三章 材料與方法 23
3.1. 實驗藥品與設備 23
3.1.1. 實驗用藥品 23
3.1.2. 實驗設備與儀器 25
3.2. 生物電化學系統反應器 26
3.2.1. 微生物燃料電池系統組態 26
3.2.2. 微生物脫鹽電池系統組態 27
3.2.3. 菌種來源及馴養 28
3.3. 製備三維孔洞之奈米碳管電極 29
3.3.1. 多壁奈米碳管之純化 29
3.3.2. 多壁奈米碳管/幾丁聚醣複合式材料之合成 29
3.3.3. 三維孔洞海綿電極之製備 30
3.4. 電容去離子裝置 31
3.4.1. 活性碳碳電極之製備 31
3.4.2. 電容去離子裝置組態 32
3.5. 三維孔洞電極之電容特性分析 33
3.5.1. 循環伏安法實驗 34
3.5.2. 定電流充放電測試 36
3.5.3. 電化學阻抗分析 37
3.6. 三維孔洞電極之表面特性分析 38
3.6.1. 壓汞式孔隙孔徑分析儀 38
3.6.2. 比表面積與孔隙分佈分析儀 38
3.6.3. 掃描式電子顯微鏡 39
3.6.4. 熱重分析儀 39
3.7. 生物電化學系統之產電能力分析 40
3.7.1. 電壓量測與紀錄 40
3.7.2. 內電阻分析 40
3.8. 生物電化學系統之水質分析 42
3.8.1. 化學需氧量 42
3.8.2. 導電度 42
3.8.3. pH值 42
3.9. 電吸附實驗 43
第四章 結果與討論 45
4.1. 微生物脫鹽電池-薄膜電容去離子技術系統之探討 45
4.1.1. 微生物脫鹽電池效能之探討 45
4.1.2. 微生物脫鹽電池電路連接與產電之關係 49
4.2. 微生物脫鹽電池驅動薄膜電容去離子技術之效能探討 51
4.2.1. 不同初始濃度對於電吸附之影響 52
4.2.2. 不同電路連接型態對於電吸附之效果 54
4.2.3. 電吸附程序處理MDC脫鹽槽出流鹽水 57
4.3. 三維孔洞海綿電極之特性分析 59
4.3.1. 電極之表面形態分析 59
4.3.2. 比表面積、孔隙與孔徑分析 62
4.3.3. 熱重分析 64
4.3.4. 電容特性分析 65
4.4. 三維孔洞海綿電極應用於微生物脫鹽電池之探討 68
4.4.1. 不同電極材料之電化學特性比較 68
4.4.2. 不同電極材料應用於微生物燃料電池之性能比較 70
4.4.5. 不同電極材料對於微生物脫鹽電池之性能比較 75
4.4.6. 使用不同電極之MDC驅動電吸附程序之影響 78
第五章 結論與建議 80
5.1 結論 80
5.2 建議 81
第六章 參考文獻 82
Abdel Hakim, A. A., Nassar, M., Emam, A., & Sultan, M. (2011). Preparation and characterization of rigid polyurethane foam prepared from sugar-cane bagasse polyol. Materials Chemistry and Physics, 129(1–2), 301-307.
Aelterman, P., Rabaey, K., Pham, H. T., Boon, N., & Verstraete, W. (2006). Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environmental Science & Technology, 40(10), 3388–3394.
Ahn, Y., & Logan, B. E. (2010). Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesophilic temperatures. Bioresource Technology, 101(2), 469–475.
An, Z., Zhang, H., Wen, Q., Chen, Z., & Du, M. (2014). Desalination combined with copper (II) removal in a novel microbial desalination cell. Desalination, 346, 115–121.
Anderson, M. A., Cudero, A. L., & Palma, J. (2010). Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochimica Acta, 55(12), 3845–3856.
Arechederra, R., & Minteer, S. (2009). Complete oxidation of glycerol in an enzymatic biofuel cell. Fuel Cells, 9(1), 63–69.
Biesheuvel, P., Zhao, R., Porada, S., & Van der Wal, A. (2011). Theory of membrane capacitive deionization including the effect of the electrode pore space. Journal of Colloid and Interface Science, 360(1), 239–248.
Brastad, K. S., & He, Z. (2013). Water softening using microbial desalination cell technology. Desalination, 309, 32-37.
Cao, X., Huang, X., Liang, P., Xiao, K., Zhou, Y., Zhang, X., & Logan, B. E. (2009). A new method for water desalination using microbial desalination cells. Environmental Science & Technology, 43(18), 7148–7152.
Chaudhuri, S. K., & Lovley, D. R. (2003). Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nature Biotechnology, 21(10), 1229–1232.
Chen, S., Liu, G., Zhang, R., Qin, B., & Luo, Y. (2012). Development of the microbial electrolysis desalination and chemical-production cell for desalination as well as acid and alkali productions. Environmental Science & Technology, 46(4), 2467–2472.
Chen, W., Rakhi, R., & Alshareef, H. N. (2012). High energy density supercapacitors using macroporous kitchen sponges. Journal of Materials Chemistry, 22(29), 14394–14402.
Cheng, S., & Logan, B. E. (2011). High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing. Bioresource Technology, 102(3), 3571-3574.
Fan, Y., Sharbrough, E., & Liu, H. (2008). Quantification of the internal resistance distribution of microbial fuel cells. Environmental Science & Technology, 42(21), 8101–8107.
Feng, C., Hou, C.-H., Chen, S., & Yu, C.-P. (2013). A microbial fuel cell driven capacitive deionization technology for removal of low level dissolved ions. Chemosphere, 91(5), 623–628.
Feng, Y., Wang, X., Logan, B. E., & Lee, H. (2008). Brewery wastewater treatment using air-cathode microbial fuel cells. Applied Microbiology and Biotechnology, 78(5), 873–880.
Ghangrekar, M., & Shinde, V. (2007). Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production. Bioresource Technology, 98(15), 2879–2885.
Gui, X., Wei, J., Wang, K., Cao, A., Zhu, H., Jia, Y., Shu, Q., & Wu, D. (2010). Carbon nanotube sponges. Advanced Materials, 22(5), 617–621.
Heijne, A. T., Liu, F., Weijden, R. v. d., Weijma, J., Buisman, C. J., & Hamelers, H. V. (2010). Copper recovery combined with electricity production in a microbial fuel cell. Environmental Science & Technology, 44(11), 4376–4381.
Hong, Y., Call, D. F., Werner, C. M., & Logan, B. E. (2011). Adaptation to high current using low external resistances eliminates power overshoot in microbial fuel cells. Biosensors and Bioelectronics, 28(1), 71–76.
Huang, S.-Y., Fan, C.-S., & Hou, C.-H. (2014). Electro-enhanced removal of copper ions from aqueous solutions by capacitive deionization. Journal of Hazardous Materials, 278, 8–15.
Humplik, T., Lee, J., O’hern, S., Fellman, B., Baig, M., Hassan, S., Atieh, M., Rahman, F., Laoui, T., & Karnik, R. (2011). Nanostructured materials for water desalination. Nanotechnology, 22(29), 292001.
Jacobson, K. S., Drew, D. M., & He, Z. (2011). Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode. Bioresource Technology, 102(1), 376–380.
Jia, J., Tang, Y., Liu, B., Wu, D., Ren, N., & Xing, D. (2013). Electricity generation from food wastes and microbial community structure in microbial fuel cells. Bioresource Technology, 144, 94–99.
Kalathil, S., Lee, J., & Cho, M. H. (2011). Granular activated carbon based microbial fuel cell for simultaneous decolorization of real dye wastewater and electricity generation. New Biotechnology, 29(1), 32–37.
Kim, N., Choi, Y., Jung, S., & Kim, S. (2000). Effect of initial carbon sources on the performance of microbial fuel cells containing Proteus vulgaris. Biotechnology and Bioengineering, 70(1), 109–114.
Kim, Y., & Logan, B. E. (2011). Series assembly of microbial desalination cells containing stacked electrodialysis cells for partial or complete seawater desalination. Environmental Science & Technology, 45(13), 5840–5845.
Komarneni, S. (1992). Nanocomposites. J. Mater. Chem., 2(12), 1219-1230.
Liang, P., Yuan, L., Yang, X., & Huang, X. (2015). Influence of circuit arrangement on the performance of a microbial fuel cell driven capacitive deionization (MFC-CDI) system. Desalination, 369, 68–74.
Lee, J.-B., Park, K.-K., Eum, H.-M., & Lee, C.-W. (2006). Desalination of a thermal power plant wastewater by membrane capacitive deionization. Desalination, 196(1), 125–134.
Li, H., & Zou, L. (2011). Ion-exchange membrane capacitive deionization: a new strategy for brackish water desalination. Desalination, 275(1), 62–66.
Li, X., Chen, S., Quan, X., & Zhang, Y. (2011). Enhanced adsorption of PFOA and PFOS on multiwalled carbon nanotubes under electrochemical assistance. Environmental Science & Technology, 45(19), 8498–8505.
Liu, H., Grot, S., & Logan, B. E. (2005). Electrochemically assisted microbial production of hydrogen from acetate. Environmental Science & Technology, 39(11), 4317–4320.
Liu, H., & Logan, B. E. (2004). Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environmental Science & Technology, 38(14), 4040–4046.
Liu, Y., Qu, X., Guo, H., Chen, H., Liu, B., & Dong, S. (2006). Facile preparation of amperometric laccase biosensor with multifunction based on the matrix of carbon nanotubes–chitosan composite. Biosensors and Bioelectronics, 21(12), 2195–2201.
Logan, B. E. (2008). Microbial fuel cells: John Wiley & Sons.
Logan, B. E. (2010). Scaling up microbial fuel cells and other bioelectrochemical systems. Applied Microbiology and Biotechnology, 85(6), 1665–1671.
Logan, B. E., Hamelers, B., Rozendal, R., Schröder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., & Rabaey, K. (2006). Microbial fuel cells: methodology and technology. Environmental Science & Technology, 40(17), 5181–5192.
Logan, B. E., & Regan, J. M. (2006). Microbial fuel cells-challenges and applications. Environmental Science & Technology, 40(17), 5172-5180.
Ma, C.-Y., Wu, C.-H., & Lin, C.-W. (2015). A Novel V-Shaped Microbial Fuel Cell for Electricity Generation in Biodegrading Rice Straw Compost. Journal of Advanced Agricultural Technologies Vol, 2(1).
Mehanna, M., Saito, T., Yan, J., Hickner, M., Cao, X., Huang, X., & Logan, B. E. (2010). Using microbial desalination cells to reduce water salinity prior to reverse osmosis. Energy & Environmental Science, 3(8), 1114–1120.
Morel, A., Zuo, K., Xia, X., Wei, J., Luo, X., Liang, P., & Huang, X. (2012). Microbial desalination cells packed with ion-exchange resin to enhance water desalination rate. Bioresource Technology, 118, 43–48.
Pant, D., Singh, A., Van Bogaert, G., Olsen, S. I., Nigam, P. S., Diels, L., & Vanbroekhoven, K. (2012). Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. Rsc Advances, 2(4), 1248–1263.
Park, D. H., & Zeikus, J. G. (2000). Electricity generation in microbial fuel cells using neutral red as an electronophore. Applied and Environmental Microbiology, 66(4), 1292–1297.
Ping, Q., Abu-Reesh, I. M., & He, Z. (2015). Boron removal from saline water by a microbial desalination cell integrated with donnan dialysis. Desalination, 376, 55–61.
Qiao, Y., Li, C. M., Bao, S.-J., & Bao, Q.-L. (2007). Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. Journal of Power Sources, 170(1), 79–84.
Qu, Y., Feng, Y., Wang, X., Liu, J., Lv, J., He, W., & Logan, B. E. (2012). Simultaneous water desalination and electricity generation in a microbial desalination cell with electrolyte recirculation for pH control. Bioresource Technology, 106, 89–94.
Rabaey, K., Lissens, G., Siciliano, S. D., & Verstraete, W. (2003). A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnology letters, 25(18), 1531–1535.
Rabaey, K., & Verstraete, W. (2005). Microbial fuel cells: novel biotechnology for energy generation. TRENDS in Biotechnology, 23(6), 291–298.
Shanmugam, S., & Osaka, T. (2011). Efficient electrocatalytic oxygen reduction over metal free-nitrogen doped carbon nanocapsules. Chemical Communications, 47(15), 4463–4465.
Sharma, T., Mohana Reddy, A. L., Chandra, T. S., & Ramaprabhu, S. (2008). Development of carbon nanotubes and nanofluids based microbial fuel cell. International Journal of Hydrogen Energy, 33(22), 6749–6754.
Tandukar, M., Huber, S. J., Onodera, T., & Pavlostathis, S. G. (2009). Biological chromium (VI) reduction in the cathode of a microbial fuel cell. Environmental Science & Technology, 43(21), 8159–8165.
Tsai, H.-Y., Wu, C.-C., Lee, C.-Y., & Shih, E. P. (2009). Microbial fuel cell performance of multiwall carbon nanotubes on carbon cloth as electrodes. Journal of Power Sources, 194(1), 199–205.
Wang, B., & Han, J.-I. (2009). A single chamber stackable microbial fuel cell with air cathode. Biotechnology letters, 31(3), 387–393.
Wang, S.-F., Shen, L., Zhang, W.-D., & Tong, Y.-J. (2005). Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules, 6(6), 3067–3072.
Welgemoed, T., & Schutte, C. (2005). Capacitive deionization technology™: an alternative desalination solution. Desalination, 183(1), 327–340.
Wen, Q., Zhang, H., Yang, H., Chen, Z., Nan, J., & Feng, Y. (2014). Improving desalination by coupling membrane capacitive deionization with microbial desalination cell. Desalination, 354, 23–29.
Woan, K., Pyrgiotakis, G., & Sigmund, W. (2009). Photocatalytic Carbon‐Nanotube–TiO2 Composites. Advanced Materials, 21(21), 2233–2239.
Wolska, A., Goździkiewicz, M., & Ryszkowska, J. (2012). Thermal and mechanical behaviour of flexible polyurethane foams modified with graphite and phosphorous fillers. Journal of Materials Science, 47(15), 5627–5634.
Yang, J., Zhou, M., Hu, Y., & Yang, W. (2016). Cost-effective copper removal by electrosorption powered by microbial fuel cells. Bioprocess and Biosystems Engineering, 39(3), 511–519.
Yang, J., Zhou, M., Zhao, Y., Zhang, C., & Hu, Y. (2013). Electrosorption driven by microbial fuel cells to remove phenol without external power supply. Bioresource Technology, 150, 271–277.
Yang, W., Han, H., Zhou, M., & Yang, J. (2015). Simultaneous electricity generation and tetracycline removal in continuous flow electrosorption driven by microbial fuel cells. RSC Advances, 5(61), 49513–49520.
Yu, L., Zhang, G., Yuan, C., & Lou, X. W. D. (2013). Hierarchical NiCo2O4@MnO2 core–shell heterostructured nanowire arrays on Ni foam as high-performance supercapacitor electrodes. Chemical Communications, 49(2), 137–139.
Yuan, H., Abu-Reesh, I. M., & He, Z. (2015). Enhancing desalination and wastewater treatment by coupling microbial desalination cells with forward osmosis. Chemical Engineering Journal, 270, 437–443.
Yuan, L., Yang, X., Liang, P., Wang, L., Huang, Z.-H., Wei, J., & Huang, X. (2012). Capacitive deionization coupled with microbial fuel cells to desalinate low-concentration salt water. Bioresource Technology, 110, 735–738.
Zhai, T., Wang, F., Yu, M., Xie, S., Liang, C., Li, C., Xiao, F., Tang, R., Wu, Q., Lu, X. (2013). 3D MnO2–graphene composites with large areal capacitance for high-performance asymmetric supercapacitors. Nanoscale, 5(15), 6790–6796.
Zhan, Y., Pan, L., Nie, C., Li, H., & Sun, Z. (2011). Carbon nanotube–chitosan composite electrodes for electrochemical removal of Cu(II) ions. Journal of Alloys and Compounds, 509(18), 5667–5671.
Zhang, B., Feng, C., Ni, J., Zhang, J., & Huang, W. (2012). Simultaneous reduction of vanadium (V) and chromium (VI) with enhanced energy recovery based on microbial fuel cell technology. Journal of Power Sources, 204, 34–39.
Zhang, B., & He, Z. (2013). Improving water desalination by hydraulically coupling an osmotic microbial fuel cell with a microbial desalination cell. Journal of Membrane science, 441, 18–24.
Zhao, R., Biesheuvel, P., Miedema, H., Bruning, H., & Van der Wal, A. (2009). Charge efficiency: a functional tool to probe the double-layer structure inside of porous electrodes and application in the modeling of capacitive deionization. The Journal of Physical Chemistry Letters, 1(1), 205–210.
Zhao, R., Biesheuvel, P., & Van der Wal, A. (2012). Energy consumption and constant current operation in membrane capacitive deionization. Energy & Environmental Science, 5(11), 9520–9527.
Zhou, M., Chi, M., Luo, J., He, H., & Jin, T. (2011). An overview of electrode materials in microbial fuel cells. Journal of Power Sources, 196(10), 4427–4435.
黃承業(2012)。以電容去離子技術去除無機鹽類之電吸附行為研究(碩士論文)。東海大學環境科學與工程學系,台中市。
黃詩晴(2014)。製備多壁奈米碳管/幾丁聚醣複合式電極以電吸附方式移除苯胺之研究(碩士論文)。東海大學環境科學與工程學系,台中市。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top