跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/09 10:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅偉倫
研究生(外文):Lun-Wei Lo
論文名稱:利用不同過濾材料抑制污水廠出流水中大腸桿菌之效果
論文名稱(外文):Inactivate Escherichia coli from wastewater treatment plant effluent by filtration with different packing media
指導教授:童心欣
口試委員:林伯勳簡義杰何嘉浚
口試日期:2016-10-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:85
中文關鍵詞:生物濾床零價鐵牡犡殼大腸桿菌
外文關鍵詞:Biosand filtrationZero-valent ironPulverized oyster shellEscherichia coli
相關次數:
  • 被引用被引用:0
  • 點閱點閱:387
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
水源是人們生活不可或缺的元素之一,近年來全球人口不斷增加,水資源的需求也跟著增加,有許多地區面臨水資源不足的情況,傳統水資源取得方式可分為水庫給水、河川引水及抽取地下水,這些水資源主要供應日常生活用水、工業用水及農業用水等用途,但面對目前極端氣候的改變及全球人口數增加的情況,傳統水資源取得方式逐漸無法負荷龐大的用水量,加上隨著環境保護的觀念不斷進步,傳統水資源開發方式例如興建水庫已逐漸難以執行,因此該如何開發新興水資源以解決水資源不足仍為一亟待解決的問題,利用工業所排放的污水及人們日常生活所產生之污水進行廢污水回收再利用水,將污水經過污水處理廠後並確保水質的改善後,再進行適當之處理,便可以提供工廠或民眾取用,但由於目前污水中常含有有害物質及致病菌,為確保民眾使用安全,目前經過處理後之在生水用途仍然不應與人體有直接的接觸,而利用過濾或滲濾系統便是再處理工業及民生污水的方法之一,過濾系統具有低耗能,低成本及對環境影響較小的優勢,當水源於過濾及期間,利用過濾材料本身過濾、沈澱、化學吸附及生物處理作等作用改善水質及去除污染物,但是當水源某些致病菌而且無法被過濾及有效去除時,便可能會對將其當作日常生活用水的人們造成健康威脅,因此本研究為探討不同材料間是否有抑制微生物之效果,並以長時間過濾實驗評估將過濾材料結合土壤滲濾式工法用於實場之可能性,本研究所使用的材料為石英砂、培養土、牡蠣殼及零價鐵作為過濾材料,並以污水廠之回收水作為濾床之進流水,並探討去除微生物之效果,實驗中共使用五種過濾管柱,分別為控制組管柱(無添加任何濾料) 、 培養土管柱、石英砂管柱、石英砂-牡蠣殼管柱及石英砂-零價鐵管柱,並額外添加指標性微生物-大腸桿菌,使水中大腸桿菌之菌落數為約(1.4 × 104 CFU/mL),實驗結果顯示經過控制組管柱後,出流水之大腸桿菌數僅些微下降,進出流之平均大腸桿菌數相差約0.1 Log(CFU/mL),於實驗前期經過培養土管柱後之出流水中之大腸桿菌數並未明顯減少,直到實驗後第18天才有其出流水中之大腸桿菌數才大幅下降,經過培養土過濾管柱平均可減少1.18 Log(CFU/mL)之大腸桿菌,石英砂過濾管柱則是呈現穩定的大腸桿菌去除效率,其出流水之大腸桿菌數可減少約可減少2.45 Log(CFU/mL),石英砂-牡蠣殼過濾管柱於實驗期間去除大腸桿菌的表現並不穩定,但是以整體表現來看,經過石英砂-牡蠣殼過濾管柱後,水中的大腸桿菌數可減少約1.31 Log(CFU/mL),石英砂-零價鐵管柱在所有過濾材料中具有良好抑制大腸桿菌之能力,其出流水水中之大腸桿菌可穩定維持小於20 CFU/mL,其去除率可達99.8%,由本研究之所有實驗結果來看,在不同的過濾材料中,零價鐵於所有過濾管柱中去除最多大腸桿菌,具有良好潛力用於抑制水中大腸桿菌之過濾材料。
Water is one of the basic needs of human. With the increase of population, water resource has been over used for agriculture, industry and drinking water in many areas and may lead to environmental problems. It’s important to seek the way to solve the shortage of water resource. Using treated wastewater as new water resource is one of the methods. The treated wastewater effluent from wastewater treatment plants could be a stable and readily available secondary type of water resource. Although the wastewater effluent has been treated in the wastewater treatment plants, it’s still contain a lot of pollutant and microorganism. Filtration system is one of the treatments which commonly used for wastewater reuse. Filtration system has less cost and energy, it also cost less problem and pollution to environment. During the filtration, some chemical, physical and biological reactions such as adsorption, filtration, interception, oxidation and biodegradation may happen and reduce the pollutant. This study explores the pathogen inactivation abilities of three different materials (zero-valent iron(ZVI), sand and pulverized oyster shell) when used as the padding materials in soil percolation. Columns filled with these three materials were fed with recovery water from the wastewater treatment plant within fresh Escherichia coli (1 × 104 to 2.7 × 104 CFU/mL). Since the bacteria in wastewater would compete against E. coli and caused inactivation, the influent of following inactivation experiment are autoclaved before E. coli addition. Five different columns are utilized to evaluate the inactivation efficiencies of a control (C, without padding materials), a sand column (S), a zero-valent iron-sand column, and a pulverized oyster shell-sand column (OS). Inactivation efficiencies were obtained from the E. coli life counts form the influents and effluents. The changes of viable E. coli between influent and effluent in control column are less than 1 log unit. The sand column and pulverized oyster shell-sand column resulted in 2 and 1 log unit reduction, respectively. The zero-valent iron-sand column reduced more than 3 log unit in the inactivation experiment. Among three different materials, the column filled of zero-valent iron-sand has the highest E. coli inactivation efficiencies than sand filtration alone or pulverized oyster shell-sand filtration.
致謝 I
摘要 III
Abstract V
目錄 VII
圖目錄 X
表目錄 XII
Chapter 1 前言 1
Chapter 2 文獻回顧 3
2.1 水資源再利用 3
2.1.1 污水再利用 3
2.1.2 過濾系統去除污水中微生物 4
2.2 指標微生物介紹 5
2.3 牡蠣殼於水處理之應用及發展 6
2.3.1 牡蠣殼於水處理之應用 6
2.4 零價鐵於水處理之應用及發展 8
2.4.1 零價鐵於水處理之應用 8
2.4.2 零價鐵於水中之反應途徑 8
2.4.3 零價鐵去除污染物之機制 9
2.4.4 零價鐵抑制微生物之機制 11
Chapter 3 研究材料及方法 13
3.1實驗架構 13
3.2原水採集及地點介紹 15
3.3原水水質分析 15
3.3.1 氨氮分析 15
3.3.2 硝酸鹽氮分析 16
3.3.3 亞硝酸鹽氮分析 16
3.3.4 原水總磷酸鹽分析 17
3.3.5 原水餘氯分析 17
3.4濁度檢測方法 18
3.5大腸桿菌保存及培養 18
3.6大腸桿菌檢測方法 19
3.7原水及大腸桿菌之菌相關係 20
3.8實驗管柱設計 21
3.9連續流過濾試驗 25
Chapter 4 結果與討論 26
4.1原水水質分析 26
4.1.1. 總有機碳 26
4.1.2. 硝酸鹽、亞硝酸鹽 27
4.1.3. 氨氮 28
4.1.4. 總磷 29
4.2大腸桿菌及原水中之微生物相對關係 32
4.3連續流過濾試驗 35
4.3.1 濁度 35
4.3.2 大腸桿菌 46
Chapter 5 結論與建議 70
5.1結論 70
5.2 建議 72
參考文獻 73
附錄 79
Almeelbi, T., & Bezbaruah, A. (2012). Aqueous phosphate removal using nanoscale zero-valent iron. Journal of Nanoparticle Research, 14(7), 1-14
Aslan, S., & Cakici, H. (2007). Biological denitrification of drinking water in a slow sand filter. J Hazard Mater, 148(1-2), 253-258.
Auffan, M., Achouak, W., Rose, J., Roncato, M. A., Chanéac, C., Waite, D. T., Bottero, J. Y. (2008). Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environmental Science and Technology, 42(17), 6730-6735.
Beal, C. D., Gardner, E. A., Kirchhof, G., & Menzies, N. W. (2006). Long-term flow rates and biomat zone hydrology in soil columns receiving septic tank effluent. Water Res, 40(12), 2327-2338.
Bradley, I., Straub, A., Maraccini, P., Markazi, S., & Nguyen, T. H. (2011). Iron oxide amended biosand filters for virus removal. Water Res, 45(15), 4501-4510.
Diao, M., & Yao, M. (2009). Use of zero-valent iron nanoparticles in inactivating microbes. Water Res, 43(20), 5243-5251.
Eljamal, O., Sasaki, K., Tsuruyama, S., & Hirajima, T. (2010). Kinetic Model of Arsenic Sorption onto Zero-Valent Iron (ZVI). Water Quality, Exposure and Health, 2(3-4), 125-132.
Elliott, M. A., Stauber, C. E., Koksal, F., DiGiano, F. A., & Sobsey, M. D. (2008). Reductions of E. coli, echovirus type 12 and bacteriophages in an intermittently operated household-scale slow sand filter. Water Res, 42(10-11), 2662-2670.
Elliott, M., Stauber, C., E.DiGiano, F. A., de Aceituno, A. F.& Sobsey, M. D. (2015). Investigation of E. coli and virus reductions using replicate, bench-scale biosand filter columns and two filter media. International Journal of Environmental Research and Public Health, 12(9), 10276-10299.Fu, F., Dionysiou, D. D., & Liu, H. (2014). The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater, 267, 194-205.
Heijnen, L. and G. Medema (2006). Quantitative detection of E-coli, E-coli O157 and other shiga toxin producing E-coli in water samples using a culture method combined with real-time PCR. Journal of Water and Health 4(4), 487-498.
Hodgkinson, R. B. K. G. T. O. C. (1958). Movement of Coliform Bacteria through Porous Media. Water Environment Federation, 30, 1-13.
Huang, Y. H., Zhang, T. C., Shea, P. J., & Comfort, S. D. (2003). Effects of oxide coating and selected cations on nitrate reduction by iron metal. Journal of Environmental Quality, 32(4), 1306-1315.
Huisman, L., & Wood, W. E. (1974). Slow Sand Filtration. World Health Organization. Geneva, Switzerland, 1-89.
Ingram, D. T., Callahan, M. T., Ferguson, S., Hoover, D. G., Chiu, P. C., Shelton, D. R., . . . Sharma, M. (2012). Use of zero-valent iron biosand filters to reduce Escherichia coli O157:H12 in irrigation water applied to spinach plants in a field setting. J Appl Microbiol, 112(3), 551-560.
Jenkins, M. W., Tiwari, S. K., & Darby, J. (2011). Bacterial, viral and turbidity removal by intermittent slow sand filtration for household use in developing countries: experimental investigation and modeling. Water Res, 45(18), 6227-6239.
Keenan†, C. R., Goth-Goldstein‡, R., Lucas§, D., & Sedlak*†, D. L. (2009). Oxidative stress induced by zero-valent iron nanoparticles and Fe(II) in human bronchial epithelial cells. Environ. Sci. Technol., 43(12), 4555–4560.
Kubo, M., Ohshima, Y., Irie, F., Kikuchi, M., & Sawai, J. (2013). Disinfection Treatment of Heated Scallop-Shell Powder on Biofilm of Escherichia coli ATCC 25922 Surrogated for E. coli O157:H7. Journal of Biomaterials and Nanobiotechnology, 04(04), 10-19.
Lee, C., Jee, Y. K., Won, I. L., Nelson, K. L., Yoon, J., & Sedlak, D. L. (2008). Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environmental Science and Technology, 42(13), 4927-4933.
Liang, W., Dai, C., Zhou, X., & Zhang, Y. (2014). Application of zero-valent iron nanoparticles for the removal of aqueous zinc ions under various experimental conditions. PLoS ONE, 9(1), e85686.
Mahmoudi, D. H., Merzouk, D. N. K., Spahis, D. N., Boukemara, L., & Boukhalfa, C. (2012). Phosphate Removal from Aqueous Solution by Hydrous Iron Oxide Freshly Prepared Effects of pH, Iron Concentration and Competitive Ions. Procedia Engineering, 33, 163-167.
Matheson, L. J., & Tratnyek, P. G. (1994). Reductive dehalogenation of chlorinated methanes by iron metal. Environmental Science and Technology, 28, 2045-2053.
Morales, I., Atoyan, J., Amador, J., & Boving, T. (2014). Transport of Pathogen Surrogates in Soil Treatment Units: Numerical Modeling. Water, 6(4), 818-838.
Namasivayam, C.Sakoda, A.Suzuki, M. (2005). Removal of phosphate by adsorption onto oyster shell powder-kinetic studies Journal of Chemical Technology & Biotechnology, 80(3), 356-358.
Nicholas J. Ashbolt, Grabow, W. O. K., & Snozzi, M. (2001). Indicators of microbial water quality. IWA Publishing, 1-28.
Sawai, J., Shiga, H., & Kojima, H. (2001). Kinetic analysis of the bactericidal action of heated scallop-shell powder. International Journal of Food Microbiology, 71(2-3), 211-218.
Sawai, J., Shiga, S., & Kojima, H. (2001). Kinetic analysis of death of bacteria in CaO powder slurry. International Biodeterioration & Biodegradation, 47(1), 23-26.
Shi, C., Wei, J., Jin, Y., Kniel, K. E., & Chiu, P. C. (2012). Removal of viruses and bacteriophages from drinking water using zero-valent iron. Separation and Purification Technology, 84, 72-78.
Su, C., Puls, R. W., Krug, T. A., Watling, M. T., O''Hara, S. K., Quinn, J. W., & Ruiz, N. E. (2012). A two and half-year-performance evaluation of a field test on treatment of source zone tetrachloroethene and its chlorinated daughter products using emulsified zero valent iron nanoparticles. Water Research, 46(16), 5071-5084.
Sun, Y. P., Li, X. q., Cao, J., Zhang, W. x., & Wang, H. P. (2006). Characterization of zero-valent iron nanoparticles. Advances in Colloid and Interface Science, 120(1-3), 47-56.
Suzuki, T., Moribe, M., Oyama, Y., & Niinae, M. (2012). Mechanism of nitrate reduction by zero-valent iron: Equilibrium and kinetics studies. Chemical Engineering Journal, 183, 271-277.
Weber-Shirk, L., M., & Dick, R. I. (1997(a)). Biological mechanisms in slow sand filters Journal of American Water Works Associations, 89(2), 72-83.
Weber-Shirk, L., M., & Dick, R. I. (1997(b)). Physical-Chemical mechanism in slow sand filters. Journal of American Water Works Associations, 89(1), 87-100.
Weber-Shirk, L., M., & Dick, R. I. (1999). Bacterivory by a chrysophyte in slow sand filters. Water Research, 33(3), 631-638.
Yoshino, H., & Kawase, Y. (2013). Kinetic Modeling and Simulation of Zero-Valent Iron Wastewater Treatment Process: Simultaneous Reduction of Nitrate, Hydrogen Peroxide, and Phosphate in Semiconductor Acidic Wastewater. Industrial & Engineering Chemistry Research, 52(50), 17829-17840.
You, Y., Han, J., Chiu, P. C., & Jin, Y. (2005). Removal and inactivation of waterborne viruses using zerovalent iron. Environmental Science and Technology, 39(23), 9263-9269.
Zeng, L., Li, X., & Liu, J. (2004). Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings. Water Research, 38(5), 1318-1326.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top