|
Almeelbi, T., & Bezbaruah, A. (2012). Aqueous phosphate removal using nanoscale zero-valent iron. Journal of Nanoparticle Research, 14(7), 1-14 Aslan, S., & Cakici, H. (2007). Biological denitrification of drinking water in a slow sand filter. J Hazard Mater, 148(1-2), 253-258. Auffan, M., Achouak, W., Rose, J., Roncato, M. A., Chanéac, C., Waite, D. T., Bottero, J. Y. (2008). Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environmental Science and Technology, 42(17), 6730-6735. Beal, C. D., Gardner, E. A., Kirchhof, G., & Menzies, N. W. (2006). Long-term flow rates and biomat zone hydrology in soil columns receiving septic tank effluent. Water Res, 40(12), 2327-2338. Bradley, I., Straub, A., Maraccini, P., Markazi, S., & Nguyen, T. H. (2011). Iron oxide amended biosand filters for virus removal. Water Res, 45(15), 4501-4510. Diao, M., & Yao, M. (2009). Use of zero-valent iron nanoparticles in inactivating microbes. Water Res, 43(20), 5243-5251. Eljamal, O., Sasaki, K., Tsuruyama, S., & Hirajima, T. (2010). Kinetic Model of Arsenic Sorption onto Zero-Valent Iron (ZVI). Water Quality, Exposure and Health, 2(3-4), 125-132. Elliott, M. A., Stauber, C. E., Koksal, F., DiGiano, F. A., & Sobsey, M. D. (2008). Reductions of E. coli, echovirus type 12 and bacteriophages in an intermittently operated household-scale slow sand filter. Water Res, 42(10-11), 2662-2670. Elliott, M., Stauber, C., E.DiGiano, F. A., de Aceituno, A. F.& Sobsey, M. D. (2015). Investigation of E. coli and virus reductions using replicate, bench-scale biosand filter columns and two filter media. International Journal of Environmental Research and Public Health, 12(9), 10276-10299.Fu, F., Dionysiou, D. D., & Liu, H. (2014). The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater, 267, 194-205. Heijnen, L. and G. Medema (2006). Quantitative detection of E-coli, E-coli O157 and other shiga toxin producing E-coli in water samples using a culture method combined with real-time PCR. Journal of Water and Health 4(4), 487-498. Hodgkinson, R. B. K. G. T. O. C. (1958). Movement of Coliform Bacteria through Porous Media. Water Environment Federation, 30, 1-13. Huang, Y. H., Zhang, T. C., Shea, P. J., & Comfort, S. D. (2003). Effects of oxide coating and selected cations on nitrate reduction by iron metal. Journal of Environmental Quality, 32(4), 1306-1315. Huisman, L., & Wood, W. E. (1974). Slow Sand Filtration. World Health Organization. Geneva, Switzerland, 1-89. Ingram, D. T., Callahan, M. T., Ferguson, S., Hoover, D. G., Chiu, P. C., Shelton, D. R., . . . Sharma, M. (2012). Use of zero-valent iron biosand filters to reduce Escherichia coli O157:H12 in irrigation water applied to spinach plants in a field setting. J Appl Microbiol, 112(3), 551-560. Jenkins, M. W., Tiwari, S. K., & Darby, J. (2011). Bacterial, viral and turbidity removal by intermittent slow sand filtration for household use in developing countries: experimental investigation and modeling. Water Res, 45(18), 6227-6239. Keenan†, C. R., Goth-Goldstein‡, R., Lucas§, D., & Sedlak*†, D. L. (2009). Oxidative stress induced by zero-valent iron nanoparticles and Fe(II) in human bronchial epithelial cells. Environ. Sci. Technol., 43(12), 4555–4560. Kubo, M., Ohshima, Y., Irie, F., Kikuchi, M., & Sawai, J. (2013). Disinfection Treatment of Heated Scallop-Shell Powder on Biofilm of Escherichia coli ATCC 25922 Surrogated for E. coli O157:H7. Journal of Biomaterials and Nanobiotechnology, 04(04), 10-19. Lee, C., Jee, Y. K., Won, I. L., Nelson, K. L., Yoon, J., & Sedlak, D. L. (2008). Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environmental Science and Technology, 42(13), 4927-4933. Liang, W., Dai, C., Zhou, X., & Zhang, Y. (2014). Application of zero-valent iron nanoparticles for the removal of aqueous zinc ions under various experimental conditions. PLoS ONE, 9(1), e85686. Mahmoudi, D. H., Merzouk, D. N. K., Spahis, D. N., Boukemara, L., & Boukhalfa, C. (2012). Phosphate Removal from Aqueous Solution by Hydrous Iron Oxide Freshly Prepared Effects of pH, Iron Concentration and Competitive Ions. Procedia Engineering, 33, 163-167. Matheson, L. J., & Tratnyek, P. G. (1994). Reductive dehalogenation of chlorinated methanes by iron metal. Environmental Science and Technology, 28, 2045-2053. Morales, I., Atoyan, J., Amador, J., & Boving, T. (2014). Transport of Pathogen Surrogates in Soil Treatment Units: Numerical Modeling. Water, 6(4), 818-838. Namasivayam, C.Sakoda, A.Suzuki, M. (2005). Removal of phosphate by adsorption onto oyster shell powder-kinetic studies Journal of Chemical Technology & Biotechnology, 80(3), 356-358. Nicholas J. Ashbolt, Grabow, W. O. K., & Snozzi, M. (2001). Indicators of microbial water quality. IWA Publishing, 1-28. Sawai, J., Shiga, H., & Kojima, H. (2001). Kinetic analysis of the bactericidal action of heated scallop-shell powder. International Journal of Food Microbiology, 71(2-3), 211-218. Sawai, J., Shiga, S., & Kojima, H. (2001). Kinetic analysis of death of bacteria in CaO powder slurry. International Biodeterioration & Biodegradation, 47(1), 23-26. Shi, C., Wei, J., Jin, Y., Kniel, K. E., & Chiu, P. C. (2012). Removal of viruses and bacteriophages from drinking water using zero-valent iron. Separation and Purification Technology, 84, 72-78. Su, C., Puls, R. W., Krug, T. A., Watling, M. T., O''Hara, S. K., Quinn, J. W., & Ruiz, N. E. (2012). A two and half-year-performance evaluation of a field test on treatment of source zone tetrachloroethene and its chlorinated daughter products using emulsified zero valent iron nanoparticles. Water Research, 46(16), 5071-5084. Sun, Y. P., Li, X. q., Cao, J., Zhang, W. x., & Wang, H. P. (2006). Characterization of zero-valent iron nanoparticles. Advances in Colloid and Interface Science, 120(1-3), 47-56. Suzuki, T., Moribe, M., Oyama, Y., & Niinae, M. (2012). Mechanism of nitrate reduction by zero-valent iron: Equilibrium and kinetics studies. Chemical Engineering Journal, 183, 271-277. Weber-Shirk, L., M., & Dick, R. I. (1997(a)). Biological mechanisms in slow sand filters Journal of American Water Works Associations, 89(2), 72-83. Weber-Shirk, L., M., & Dick, R. I. (1997(b)). Physical-Chemical mechanism in slow sand filters. Journal of American Water Works Associations, 89(1), 87-100. Weber-Shirk, L., M., & Dick, R. I. (1999). Bacterivory by a chrysophyte in slow sand filters. Water Research, 33(3), 631-638. Yoshino, H., & Kawase, Y. (2013). Kinetic Modeling and Simulation of Zero-Valent Iron Wastewater Treatment Process: Simultaneous Reduction of Nitrate, Hydrogen Peroxide, and Phosphate in Semiconductor Acidic Wastewater. Industrial & Engineering Chemistry Research, 52(50), 17829-17840. You, Y., Han, J., Chiu, P. C., & Jin, Y. (2005). Removal and inactivation of waterborne viruses using zerovalent iron. Environmental Science and Technology, 39(23), 9263-9269. Zeng, L., Li, X., & Liu, J. (2004). Adsorptive removal of phosphate from aqueous solutions using iron oxide tailings. Water Research, 38(5), 1318-1326.
|