|
Adam, F., and Thankappan, R. (2010). Oxidation of benzene over bimetallic Cu–Ce incorporated rice husk silica catalysts. Chemical Engineering Journal, 160(1), 249-258. Adam, F., Appaturi, J. N., and Iqbal, A. (2012). The utilization of rice husk silica as a catalyst: Review and recent progress. Catalysis Today, 190(1), 2-14. Boxiong, S., Hongqing, M., Chuan, H., and Xiaopeng, Z. (2014). Low temperature NH3–SCR over Zr and Ce pillared clay based catalysts. Fuel Processing Technology, 119, 121-129. Byrne., J. W., Chen., J. M., and Speronello, B. K. (1992). Selective catalytic reduction of NO, using zeolitic catalyst for high temperature applications. Catalysis Today, 13(1), 33-42. Chen, Y. H., Chen, L. L. and Shang, N. C. (2009). Photocatalytic degradation of dimethyl phthalate in an aqueous solution with Pt-doped TiO2-coated magnetic PMMA microspheres. Journal of Hazardous Materials, 172(1), 20-29. Chen, L., Si, Z., Wu, X., and Weng, D. (2014). DRIFT study of CuO-CeO2-TiO2 mixed oxides for NOx reduction with NH3 at low temperatures. Applied Materials & Interfaces, 6(11), 8134-8145. Chiu, C. H., Hsi, H. C. and Lin, C. C. (2014). Control of mercury emissions from coal-combustion flue gases using CuCl2-modified zeolite and evaluating the cobenefit effects on SO2 and NO removal. Fuel Processing Technology, 126, 138-144. Chiu, C. H., Hsi, H. C. and Lin, H. P. (2015). Multipollutant control of Hg/SO2/NO from coal-combustion flue gases using transition metal oxide-impregnated SCR catalysts. Catalysis Today, 245, 2-9. Chiu, C.-H., Kuo, T.-H., Chang, T.-C., Lin, S.-F., Lin, H.-P., and Hsi, H.-C. (2017). Multipollutant removal of Hg0/SO2/NO from simulated coal-combustion flue gases using metal oxide/mesoporous SiO2 composites. International Journal of Coal Geology, 170, 60-68. Concha Real, María D. Alcalá, and Criado, J. M. (1996). Preparation of silica from rice husk. Journal of the American Ceramic Society, 79(8), 2012-2016. Deng, M., Zhang, G., Peng, X., Lin, J., Pei, X., and Huang, R. (2016). A facile procedure for the synthesis of δ-Na2Si2O5 using rice husk ash as silicon source. Materials Letters, 163(15), 36-38. Du, X., Gao, X., Cui, L., Fu, Y., Luo, Z., and Cen, K. (2012). Investigation of the effect of Cu addition on the SO2-resistance of a CeTi oxide catalyst for selective catalytic reduction of NO with NH3. Fuel, 92(1), 49-55. Du, X., Gao, X., Cui, L., Zheng, Z., Ji, P., Luo, Z., and Cen, K. (2013). Experimental and theoretical studies on the influence of water vapor on the performance of a Ce-Cu-Ti oxide SCR catalyst. Applied Surface Science, 270, 370-376. Fan, X., Li, C., Zeng, G., Zhang, X., Tao, S., Lu, P., Li, S., and Zhao, Y. (2012). The effects of Cu/HZSM-5 on combined removal of Hg0 and NO from flue gas. Fuel Processing Technology, 104, 325-331. Galbreath, K. C., and Zygarlicke, C. J. (1999). Mercury transformations in coal combustion flue gas. Fuel Processing Technology, 65-66, 289-310. Gao, X., Du, X., Cui, L., Fu, Y., Luo, Z., and Cen, K. (2010). A Ce–Cu–Ti oxide catalyst for the selective catalytic reduction of NO with NH3. Catalysis Communications, 12(4), 255-258. Gao, Y., Zhang, Z., Wu, J., Duan, L., Umar, A., Sun, L., Gou, Z., and Wang, Q. (2013). A critical review on the heterogeneous catalytic oxidation of elemental mercury in flue gases. Environmental Science & Technology, 47(19), 10813-10823. Giraldo, L. F., López, B. L., Pérez, L., Urrego, S., Sierra, L., and Mesa, M. (2007). Mesoporous Silica Applications. Macromolecular Symposia, 258(1), 129-141. He, C., Shen, B., Chi, G., and Li, F. (2016). Elemental mercury removal by CeO2/TiO2-PILCs under simulated coal-fired flue gas. Chemical Engineering Journal, 300, 1-8. He, J., Reddy, G. K., Thiel, S. W., Smirniotis, P. G., and Pinto, N. G. (2013). Simultaneous removal of rlemental Mercury and NO from Flue Gas using CeO2 modified MnOx/TiO2 materials. Energy & Fuels, 27(8), 4832-4839. He, S., Zhou, G. W., Zhu, Y., Luo, Z., Ni, M. and Cen, K. (2009). Mercury oxidation over a vanadia-based selective catalytic reduction catalyst. Energy and Fuels, 23, 253-259. Hoekman, S. K., and Robbins, C. (2012). Review of the effects of biodiesel on NOx emissions. Fuel Processing Technology, 96, 237-249. Hsi, H. C. and Chen, C. T. (2012). Influences of acidic/oxidizing gases on elemental mercury adsorption equilibrium and kinetics of sulfur-impregnated activated carbon. Fuel, 98, 229-235. Janssens, T. V. W., Falsig, H., Lundegaard, L. F., Vennestrøm, P. N. R., Rasmussen, S. B., Moses, P. G., Giordanino, F., Borfecchia, E., Lomachenko, K. A., Lamberti, C., Bordiga, S., Godiksen, A., Mossin, S and Beato, P. (2015). A Consistent Reaction Scheme for the Selective Catalytic Reduction of Nitrogen Oxides with Ammonia. Catalysis, 5(5), 2832-2845. Kumar, K. V., Porkodi, K., and Rocha, F. (2008). Langmuir–Hinshelwood kinetics – A theoretical study. Catalysis Communications, 9(1), 82-84. Li, H., Li, Y., Wu, C., and Zhang, J. (2011). Oxidation and capture of elemental mercury over SiO2–TiO2–V2O5 catalysts in simulated low-rank coal combustion flue gas. Chemical Engineering Journal, 169(1-3), 186-193. Li, H., Wu, C. Y., Li, Y., and Zhang, J. (2011). CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas. Environmental Science & Technology, 45(17), 7394-7400. Li, H., Wu, S., Li, L., Wang, J., Ma, W., and Shih, K. (2015). CuO–CeO2/TiO2catalyst for simultaneous NO reduction and Hg0 oxidation at low temperatures. Catalysis. Science & Technology., 5(12), 5129-5138. Li, Y. and Wu, C. Y. (2011). Kinetic study for photocatalytic oxidation of elemental mercury on a SiO2–TiO2 nanocomposite. Enviromental Engineering Science, 24, 3-12. Li, J., Chang, H., Ma, L., Hao, J., and Yang, R. T. (2011). Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts – A review. Catalysis Today, 175(1), 147-156. Liu, C., Chen, L., Li, J., Ma, L., Arandiyan, H., Du, Y., Xu, J., and Hao, J. (2012). Enhancement of activity and sulfur resistance of CeO2 supported on TiO2-SiO2 for the selective catalytic reduction of NO by NH3. Environmental Science & Technology, 46(11), 6182-6189. Ma, Z., Yang, H., Li, B., Liu, F., and Zhang, X. (2013). Temperature-dependent effects of SO2 on selective catalytic reduction of NO over Fe–Cu–Ox/CNTs–TiO2 catalysts. Industrial & Engineering Chemistry Research, 52(10), 3708-3713. Ma, Z., Yang, H., Li, Q., Zheng, J., and Zhang, X. (2012). Catalytic reduction of NO by NH3 over Fe–Cu–Ox/CNTs-TiO2 composites at low temperature. Applied Catalysis A: General, 427-428, 43–48. Ministry of Environmental Protection (MEP) of China, 2011. Emission Standard of Air Pollutants for Thermal Power Plants, GB 13223-2011. MEP of China, Beijing, China. Niu, C., Shi, X., Liu, F., Liu, K., Xie, L., You, Y., and He, H. (2016). High hydrothermal stability of Cu–SAPO-34 catalysts for the NH3-SCR of NOx. Chemical Engineering Journal, 294, 254-263. Nevers, N. (2010). Air Pollution Control Engineering. Illinois: Waveland Press, Inc. Sjövall, H., Olsson, L., Fridell, E., and Blint, R. J. (2006). Selective catalytic reduction of NOx with NH3 over Cu-ZSM-5–The effect of changing the gas composition. Applied Catalysis B: Environmental, 64(3-4), 180-188. Strivastava, R. (2010). Control of Mercury Emissions from Coal Fired Electric Utility Boilers: An Update (EPA/600/R-10/006). Retrieved from U.S. Environmental Protection Agency: Cincinnati, Ohio 45268 Sullivan, J. A., and Doherty, J. A. (2005). NH3 and urea in the selective catalytic reduction of NOx over oxide-supported copper catalysts. Applied Catalysis B: Environmental, 55(3), 185-194. Taiwan Environmental Protection Administration, 2017. http://ivy5.epa.gov.tw/epalaw/index.aspx (accessed Jan. 2017). Tan, Z., Su, S., Qiu, J., Kong, F., Wang, Z., Hao, F., and Xiang, J. (2012). Preparation and characterization of Fe2O3–SiO2 composite and its effect on elemental mercury removal. Chemical Engineering Journal, 195-196, 218-225. UNEP. (2017) Emissions and pathways mercury. Retrieved from http://www.arcrisk.eu/results/emissions-pathways/emissions-and-pathways-mercury (accessed Jan. 2017) UNEP. (2013). Mercury: Time to act report. Retrieved from http://www.unep.org/publications/contents/pub_details_search.asp?ID=6281 (accessed Jan. 2017) USEPA. (2017). Basic Information about Mercury. Retrieved from https://www.epa.gov/mercury/basic-information-about-mercury#airemissions (accessed January 2017). USEPA. (2013). 2012 SO2 and NOx emissions, compliance, and markets analyses report. Retrieved from https://www.epa.gov/sites/production/files/2015-08/documents/arpcair12_01.pdf (accessed January 2017). USEPA. (2017). Air Pollutant Emissions Trends Data. Retrieved from https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data (accessed January 2017). Van Der Grift, C. J. G., Elberse, P. A., Mulder, A. and Geus, J. W (1990). Preparation of silica-supported copper catalysts by means of deposition-precipitation. Applied Catalysis A: General, 59(1), 275-289. Wang, P. Y., Su, S., Xiang, J., Cao, F., Sun, L. S., Hu, S. and Lei, S. Y. (2013). Catalytic oxidation of Hg0 by CuO–MnO2–Fe2O3/γ-Al2O3 catalyst. Chemical Engineering Journal, 225, 68-75. Wiinning, J. A., and Wiinning, J. G. (1997). Flameless oxidation to reduce thermal NO-formation. Progress in Energy and Combustion Science, 23(1), 81-94. Wu, S., Li, H., Li, L., Wu, C., Zhang, J., and Shih, K. (2015). Effects of flue-gas parameters on low temperature NO reduction over a Cu-promoted CeO2–TiO2 catalyst. Fuel, 159, 876-882. Xie, G., Liu, Z., Zhu, Z., Liu, Q., Ge, J., and Huang, Z. (2004). Simultaneous removal of SO2 and NOx from flue gas using a CuO/Al2O3 catalyst sorbent I. Deactivation of SCR activity by SO2 at low temperatures. Journal of Catalysis, 224(1), 36-41. Xie, G., Liu, Z., Zhu, Z., Liu, Q., Ge, J., and Huang, Z. (2004). Simultaneous removal of SO2 and NOx from flue gas using a CuO/Al2O3 catalyst sorbent II. Promotion of SCR activity by SO2 at high temperatures. Journal of Catalysis, 224(1), 42-49. Xu, W., Wang, H., Zhou, X., and Zhu, T. (2014). CuO/TiO2 catalysts for gas-phase Hg0 catalytic oxidation. Chemical Engineering Journal, 243, 380-385. YalcËin, N., and SevincË, V. (2001). Studies on silica obtained from rice husk. Ceramics International, 27(2), 219-224. Zhang, L., Qu, H., Du, T., Ma, W., and Zhong, Q. (2016). H2O and SO2 tolerance, activity and reaction mechanism of sulfated Ni–Ce–La composite oxide nanocrystals in NH3-SCR. Chemical Engineering Journal, 296, 122-131. Zhao, B., Yi, H., Tang, X., Li, Q., Liu, D., and Gao, F. (2016). Copper modified activated coke for mercury removal from coal-fired flue gas. Chemical Engineering Journal, 286, 585-593. Zhao, S. J., Ma, Y. P., Qu, Z., Yan, N. Q., Li, Z., Xie, J. K. and Chen, W. M. (2014). The performance of Ag doped V2O5–TiO2catalyst on the catalytic oxidation of gaseous elemental mercury. Catalyst Science and Technology, 4(11), 4036-4044. 賀泓,「環境催化:原理及應用」,科學出版社,中國北京,2008。
|