跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/01/17 18:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳明茵
研究生(外文):Ming-Yin Chen
論文名稱:使用含銅廢水修飾稻殼氧化矽控制模擬燃煤煙氣中Hg0與NO研究
論文名稱(外文):Rice-Husk-Derived Silica Catalyst Modified with Copper Containing Wastewater for Control of Hg0 and NO from Simulated Coal-Combustion Flue Gases
指導教授:席行正
指導教授(外文):Hsing-Cheng Hsi
口試日期:2017-06-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:93
中文關鍵詞:氮氧化物氧化銅稻殼氧化矽燃煤煙氣
外文關鍵詞:mercuryNOxcopper oxidesrice-husk-derived silicacoal-combustion flue gases
相關次數:
  • 被引用被引用:0
  • 點閱點閱:202
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
空氣污染的問題在近幾年受到相當多關注,燃煤電廠又是重要的固定污染源,因此其所排放的空氣污染物也受到一定程度的重視。其中汞(Hg)的高毒性和生物累積性,以及由NOx所衍生的酸雨、光化學煙霧與PM2.5,也使燃煤電廠所排放的Hg和NOx吸引了更多關注。本研究利用面板業製程之銅離子廢水改質稻殼氧化矽觸媒,嘗試降低合成材料的成本並同時將廢棄物資源化。改質比例為10, 25, 50 wt%的Cu搭配10wt%的Ce,材料則進一步用於模擬燃煤煙氣中Hg與NOx的去除。
研究結果顯示,經過銅離子廢水、CeOx改質後,材料的比表面積(SBET)有明顯的提升;而在所有樣品中,50%Cu-10%Ce/SiO2具有最大的比表面積(SBET= 260 m2 g-1)。XRD結果顯示在所有CuOx/SiO2樣品中,CuOx具有高度分散性或以無定形結構存在。由SEM和TEM圖可以觀察到,在經過金屬氧化物改質後原本均勻的球狀顆粒轉變為板狀顆粒結構,證實了改質後結構的改變。XPS的分析顯示Cu2+以及Ce4+為材料表面主要的金屬價態。H2-TPR與NH3-TPD的結果顯示50%Cu/SiO2與50%Cu-10%Ce/SiO2材料具有較其他材料更好的氧化還原能力以及更多的表面酸位。
測試結果顯示CuOx與CeOx的改質有效的提升了材料去除NOx、Hg的效果。其中50%Cu-10%Ce/SiO2材料具有最好的NOx去除效率,其在寬廣的溫度操作窗口下(150−300°C)展現了70−85%的deNOx效率。50%Cu/SiO2則具有最佳的除汞效率,在150°C時去除效率為88.2%;在250°C時Hg的去除效率幾乎維持不變。以上結果顯示使用含銅廢水改質稻殼氧化矽對於Hg與NOx的去除有高度的潛力。
Air pollution is receiving more and more public concern in recent years. Since coal-fired power plants (CFPPs) is one of the major stationary sources, the air pollutants emitted from CFPPs have attracted many attentions. Mercury (Hg) and NOx emitted from CFPPs have both received special concern owing to the high toxicity and long retention time in the environment of Hg and the formation of acid rain, photocatalytic smog, and secondary PM2.5 from NOx. In this study, a series of CuOx-CeOx/SiO2 catalysts were prepared via rice-husk-derived silica modified with copper-ion containing wastewater from panel industry for control of Hg0 and NO emission from simulated coal-combustion flue gases. Cu of 10, 25, and 50 wt% and Ce of 10 wt% was incorporated with the rice-husk-derived SiO2. The N2 adsorption result showed that the presence of Cu and Ce oxides increased the specific surface area (SBET) of SiO2 as compared to the raw sample. 50%Cu-10%Ce/SiO2 having the largest SBET may lead to its high NO removal efficiency. Surface-treated catalysts were examined with XRD; results showed that significant peaks of CuO were not detected among all the CuOx/SiO2 samples, indicating that CuOx was highly dispersed on the surface. SEM and TEM images showed that the uniform spherical particles have changed into plate-like structure, which can further confirm the occurrence of structural rearrangement after incorporated with metal oxides. XPS results showed that Cu2+ and Ce4+ were the major valence states presenting in the SiO2 catalysts. H2-TPR and NH3-TPD indicated that the 50%Cu/SiO2 and 50%Cu-10%Ce/SiO2 catalysts had greater redox ability and stronger acidity as compared to those containing smaller amounts of CuOx and CeOx.
The modification of Cu and Ce was shown to successfully improve the NO removal efficiency. 50%Cu-10%Ce/SiO2 showed the best NO conversion efficiency of 70−85% with a broad temperature window of 150−300°C. 50%Cu/SiO2 catalyst exhibited greatest total Hg removal efficiency of 88.2% among all the tested catalysts under flue gas condition at 150°C and remained almost the same removal efficiency at 250°C. These results indicate that using rice-husk-derived SiO2 incorporated with copper recycled from industrial wastewater can be a feasible way for control of Hg0 and NO emissions.
Content
誌謝 I
中文摘要 III
Abstract V
Content VII
List of figures X
List of tables XII
Chapter 1. Introduction 1
1.1. Motivation 1
1.2. Research objectives 2
Chapter 2. Literature Review 4
2.1. Mercury and nitrogen oxides emission 4
2.1.1. Mercury emissions 4
2.1.2. Mercury emissions controlling technique 7
2.1.3. Emission of NOx 10
2.1.4. NOx emissions controlling technique 12
2.2. Hg0 and NO removal mechanism 14
2.2.1. Hg0 removal mechanism 14
2.2.2. NO removal mechanism 19
2.3. Parameters influencing SCR reaction 24
2.3.1. Effect of temperature 24
2.3.2. Effect of SO2 25
2.3.3. Effect of H2O 26
2.3.4. Effect of copper oxide and cerium oxide 27
2.4. Rice-husk-derived silica 29
2.5. Application of mesoporous silica 30
Chapter 3. Materials and Methods 32
3.1. Research framework 32
3.2. Preparation of metal oxide-incorporated SiO2 catalysts 34
3.3. Physical and chemical characterization of metal oxide-incorporated SiO2 catalysts 36
3.3.1. Surface Area and Pore Volume 36
3.3.2. Scanning Electron Microscopy 37
3.3.3. Transmission Electron Microscopy 37
3.3.4. X-ray Diffraction 37
3.3.5. X-ray Photoelectron Spectroscopy 38
3.3.6. H2-TPR 38
3.3.7. NH3-TPD 38
3.4. Hg0/NO removal tests 40
3.5. Kinetic model simulation for Hg removal 43
Chapter 4. Results and discussion 46
4.1. Physical and chemical characterization of catalysts 46
4.1.1. BET analysis 46
4.1.2. X-ray diffraction analysis 48
4.1.3. SEM analysis 51
4.1.4. TEM analysis 54
4.1.5.XPS analysis 56
4.1.6. H2-TPR 61
4.1.7. NH3-TPD 63
4.2. NO removal test 65
4.2.1. NO removal efficiency of different catalysts 65
4.2.2. Effect of H2O on NO removal 69
4.2.3. Effect of SO2 on NO removal 73
4.3. Hg removal test 77
4.3.1. Hg removal efficiency of different catalysts 77
4.3.2. Effect of different temperatures 81
4.3.3. Effect of different Hg0 inlet concentration 83
4.4. Langmuir-Hinshelwood kinetic analysis 85
Chapter 5. Conclusions and Recommendations 87
5.1. Conclusions 87
5.2. Recommendations 88
References 89
Adam, F., and Thankappan, R. (2010). Oxidation of benzene over bimetallic Cu–Ce incorporated rice husk silica catalysts. Chemical Engineering Journal, 160(1), 249-258.
Adam, F., Appaturi, J. N., and Iqbal, A. (2012). The utilization of rice husk silica as a catalyst: Review and recent progress. Catalysis Today, 190(1), 2-14.
Boxiong, S., Hongqing, M., Chuan, H., and Xiaopeng, Z. (2014). Low temperature NH3–SCR over Zr and Ce pillared clay based catalysts. Fuel Processing Technology, 119, 121-129.
Byrne., J. W., Chen., J. M., and Speronello, B. K. (1992). Selective catalytic reduction of NO, using zeolitic catalyst for high temperature applications. Catalysis Today, 13(1), 33-42.
Chen, Y. H., Chen, L. L. and Shang, N. C. (2009). Photocatalytic degradation of dimethyl phthalate in an aqueous solution with Pt-doped TiO2-coated magnetic PMMA microspheres. Journal of Hazardous Materials, 172(1), 20-29.
Chen, L., Si, Z., Wu, X., and Weng, D. (2014). DRIFT study of CuO-CeO2-TiO2 mixed oxides for NOx reduction with NH3 at low temperatures. Applied Materials & Interfaces, 6(11), 8134-8145.
Chiu, C. H., Hsi, H. C. and Lin, C. C. (2014). Control of mercury emissions from coal-combustion flue gases using CuCl2-modified zeolite and evaluating the cobenefit effects on SO2 and NO removal. Fuel Processing Technology, 126, 138-144.
Chiu, C. H., Hsi, H. C. and Lin, H. P. (2015). Multipollutant control of Hg/SO2/NO from coal-combustion flue gases using transition metal oxide-impregnated SCR catalysts. Catalysis Today, 245, 2-9.
Chiu, C.-H., Kuo, T.-H., Chang, T.-C., Lin, S.-F., Lin, H.-P., and Hsi, H.-C. (2017). Multipollutant removal of Hg0/SO2/NO from simulated coal-combustion flue gases using metal oxide/mesoporous SiO2 composites. International Journal of Coal Geology, 170, 60-68.
Concha Real, María D. Alcalá, and Criado, J. M. (1996). Preparation of silica from rice husk. Journal of the American Ceramic Society, 79(8), 2012-2016.
Deng, M., Zhang, G., Peng, X., Lin, J., Pei, X., and Huang, R. (2016). A facile procedure for the synthesis of δ-Na2Si2O5 using rice husk ash as silicon source. Materials Letters, 163(15), 36-38.
Du, X., Gao, X., Cui, L., Fu, Y., Luo, Z., and Cen, K. (2012). Investigation of the effect of Cu addition on the SO2-resistance of a CeTi oxide catalyst for selective catalytic reduction of NO with NH3. Fuel, 92(1), 49-55.
Du, X., Gao, X., Cui, L., Zheng, Z., Ji, P., Luo, Z., and Cen, K. (2013). Experimental and theoretical studies on the influence of water vapor on the performance of a Ce-Cu-Ti oxide SCR catalyst. Applied Surface Science, 270, 370-376.
Fan, X., Li, C., Zeng, G., Zhang, X., Tao, S., Lu, P., Li, S., and Zhao, Y. (2012). The effects of Cu/HZSM-5 on combined removal of Hg0 and NO from flue gas. Fuel Processing Technology, 104, 325-331.
Galbreath, K. C., and Zygarlicke, C. J. (1999). Mercury transformations in coal combustion flue gas. Fuel Processing Technology, 65-66, 289-310.
Gao, X., Du, X., Cui, L., Fu, Y., Luo, Z., and Cen, K. (2010). A Ce–Cu–Ti oxide catalyst for the selective catalytic reduction of NO with NH3. Catalysis Communications, 12(4), 255-258.
Gao, Y., Zhang, Z., Wu, J., Duan, L., Umar, A., Sun, L., Gou, Z., and Wang, Q. (2013). A critical review on the heterogeneous catalytic oxidation of elemental mercury in flue gases. Environmental Science & Technology, 47(19), 10813-10823.
Giraldo, L. F., López, B. L., Pérez, L., Urrego, S., Sierra, L., and Mesa, M. (2007). Mesoporous Silica Applications. Macromolecular Symposia, 258(1), 129-141.
He, C., Shen, B., Chi, G., and Li, F. (2016). Elemental mercury removal by CeO2/TiO2-PILCs under simulated coal-fired flue gas. Chemical Engineering Journal, 300, 1-8.
He, J., Reddy, G. K., Thiel, S. W., Smirniotis, P. G., and Pinto, N. G. (2013). Simultaneous removal of rlemental Mercury and NO from Flue Gas using CeO2 modified MnOx/TiO2 materials. Energy & Fuels, 27(8), 4832-4839.
He, S., Zhou, G. W., Zhu, Y., Luo, Z., Ni, M. and Cen, K. (2009). Mercury oxidation over a vanadia-based selective catalytic reduction catalyst. Energy and Fuels, 23, 253-259.
Hoekman, S. K., and Robbins, C. (2012). Review of the effects of biodiesel on NOx emissions. Fuel Processing Technology, 96, 237-249.
Hsi, H. C. and Chen, C. T. (2012). Influences of acidic/oxidizing gases on elemental mercury adsorption equilibrium and kinetics of sulfur-impregnated activated carbon. Fuel, 98, 229-235.
Janssens, T. V. W., Falsig, H., Lundegaard, L. F., Vennestrøm, P. N. R., Rasmussen, S. B., Moses, P. G., Giordanino, F., Borfecchia, E., Lomachenko, K. A., Lamberti, C., Bordiga, S., Godiksen, A., Mossin, S and Beato, P. (2015). A Consistent Reaction Scheme for the Selective Catalytic Reduction of Nitrogen Oxides with Ammonia. Catalysis, 5(5), 2832-2845.
Kumar, K. V., Porkodi, K., and Rocha, F. (2008). Langmuir–Hinshelwood kinetics – A theoretical study. Catalysis Communications, 9(1), 82-84.
Li, H., Li, Y., Wu, C., and Zhang, J. (2011). Oxidation and capture of elemental mercury over SiO2–TiO2–V2O5 catalysts in simulated low-rank coal combustion flue gas. Chemical Engineering Journal, 169(1-3), 186-193.
Li, H., Wu, C. Y., Li, Y., and Zhang, J. (2011). CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas. Environmental Science & Technology, 45(17), 7394-7400.
Li, H., Wu, S., Li, L., Wang, J., Ma, W., and Shih, K. (2015). CuO–CeO2/TiO2catalyst for simultaneous NO reduction and Hg0 oxidation at low temperatures. Catalysis. Science & Technology., 5(12), 5129-5138.
Li, Y. and Wu, C. Y. (2011). Kinetic study for photocatalytic oxidation of elemental mercury on a SiO2–TiO2 nanocomposite. Enviromental Engineering Science, 24, 3-12.
Li, J., Chang, H., Ma, L., Hao, J., and Yang, R. T. (2011). Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts – A review. Catalysis Today, 175(1), 147-156.
Liu, C., Chen, L., Li, J., Ma, L., Arandiyan, H., Du, Y., Xu, J., and Hao, J. (2012). Enhancement of activity and sulfur resistance of CeO2 supported on TiO2-SiO2 for the selective catalytic reduction of NO by NH3. Environmental Science & Technology, 46(11), 6182-6189.
Ma, Z., Yang, H., Li, B., Liu, F., and Zhang, X. (2013). Temperature-dependent effects of SO2 on selective catalytic reduction of NO over Fe–Cu–Ox/CNTs–TiO2 catalysts. Industrial & Engineering Chemistry Research, 52(10), 3708-3713.
Ma, Z., Yang, H., Li, Q., Zheng, J., and Zhang, X. (2012). Catalytic reduction of NO by NH3 over Fe–Cu–Ox/CNTs-TiO2 composites at low temperature. Applied Catalysis A: General, 427-428, 43–48.
Ministry of Environmental Protection (MEP) of China, 2011. Emission Standard of Air Pollutants for Thermal Power Plants, GB 13223-2011. MEP of China, Beijing, China.
Niu, C., Shi, X., Liu, F., Liu, K., Xie, L., You, Y., and He, H. (2016). High hydrothermal stability of Cu–SAPO-34 catalysts for the NH3-SCR of NOx. Chemical Engineering Journal, 294, 254-263.
Nevers, N. (2010). Air Pollution Control Engineering. Illinois: Waveland Press, Inc.
Sjövall, H., Olsson, L., Fridell, E., and Blint, R. J. (2006). Selective catalytic reduction of NOx with NH3 over Cu-ZSM-5–The effect of changing the gas composition. Applied Catalysis B: Environmental, 64(3-4), 180-188.
Strivastava, R. (2010). Control of Mercury Emissions from Coal Fired Electric Utility Boilers: An Update (EPA/600/R-10/006). Retrieved from U.S. Environmental Protection Agency: Cincinnati, Ohio 45268
Sullivan, J. A., and Doherty, J. A. (2005). NH3 and urea in the selective catalytic reduction of NOx over oxide-supported copper catalysts. Applied Catalysis B: Environmental, 55(3), 185-194.
Taiwan Environmental Protection Administration, 2017. http://ivy5.epa.gov.tw/epalaw/index.aspx (accessed Jan. 2017).
Tan, Z., Su, S., Qiu, J., Kong, F., Wang, Z., Hao, F., and Xiang, J. (2012). Preparation and characterization of Fe2O3–SiO2 composite and its effect on elemental mercury removal. Chemical Engineering Journal, 195-196, 218-225.
UNEP. (2017) Emissions and pathways mercury. Retrieved from http://www.arcrisk.eu/results/emissions-pathways/emissions-and-pathways-mercury (accessed Jan. 2017)
UNEP. (2013). Mercury: Time to act report. Retrieved from http://www.unep.org/publications/contents/pub_details_search.asp?ID=6281 (accessed Jan. 2017)
USEPA. (2017). Basic Information about Mercury. Retrieved from https://www.epa.gov/mercury/basic-information-about-mercury#airemissions (accessed January 2017).
USEPA. (2013). 2012 SO2 and NOx emissions, compliance, and markets analyses report. Retrieved from https://www.epa.gov/sites/production/files/2015-08/documents/arpcair12_01.pdf (accessed January 2017).
USEPA. (2017). Air Pollutant Emissions Trends Data. Retrieved from https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data (accessed January 2017).
Van Der Grift, C. J. G., Elberse, P. A., Mulder, A. and Geus, J. W (1990). Preparation of silica-supported copper catalysts by means of deposition-precipitation. Applied Catalysis A: General, 59(1), 275-289.
Wang, P. Y., Su, S., Xiang, J., Cao, F., Sun, L. S., Hu, S. and Lei, S. Y. (2013). Catalytic oxidation of Hg0 by CuO–MnO2–Fe2O3/γ-Al2O3 catalyst. Chemical Engineering Journal, 225, 68-75.
Wiinning, J. A., and Wiinning, J. G. (1997). Flameless oxidation to reduce thermal NO-formation. Progress in Energy and Combustion Science, 23(1), 81-94.
Wu, S., Li, H., Li, L., Wu, C., Zhang, J., and Shih, K. (2015). Effects of flue-gas parameters on low temperature NO reduction over a Cu-promoted CeO2–TiO2 catalyst. Fuel, 159, 876-882.
Xie, G., Liu, Z., Zhu, Z., Liu, Q., Ge, J., and Huang, Z. (2004). Simultaneous removal of SO2 and NOx from flue gas using a CuO/Al2O3 catalyst sorbent I. Deactivation of SCR activity by SO2 at low temperatures. Journal of Catalysis, 224(1), 36-41.
Xie, G., Liu, Z., Zhu, Z., Liu, Q., Ge, J., and Huang, Z. (2004). Simultaneous removal of SO2 and NOx from flue gas using a CuO/Al2O3 catalyst sorbent II. Promotion of SCR activity by SO2 at high temperatures. Journal of Catalysis, 224(1), 42-49.
Xu, W., Wang, H., Zhou, X., and Zhu, T. (2014). CuO/TiO2 catalysts for gas-phase Hg0 catalytic oxidation. Chemical Engineering Journal, 243, 380-385.
YalcËin, N., and SevincË, V. (2001). Studies on silica obtained from rice husk. Ceramics International, 27(2), 219-224.
Zhang, L., Qu, H., Du, T., Ma, W., and Zhong, Q. (2016). H2O and SO2 tolerance, activity and reaction mechanism of sulfated Ni–Ce–La composite oxide nanocrystals in NH3-SCR. Chemical Engineering Journal, 296, 122-131.
Zhao, B., Yi, H., Tang, X., Li, Q., Liu, D., and Gao, F. (2016). Copper modified activated coke for mercury removal from coal-fired flue gas. Chemical Engineering Journal, 286, 585-593.
Zhao, S. J., Ma, Y. P., Qu, Z., Yan, N. Q., Li, Z., Xie, J. K. and Chen, W. M. (2014). The performance of Ag doped V2O5–TiO2catalyst on the catalytic oxidation of gaseous elemental mercury. Catalyst Science and Technology, 4(11), 4036-4044.
賀泓,「環境催化:原理及應用」,科學出版社,中國北京,2008。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top