(3.236.175.108) 您好!臺灣時間:2021/03/01 12:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:呂浩仰
研究生(外文):Hao-Yang Lu
論文名稱:蒙古地區氣候變遷與發展造成Ugii湖水質之影響
論文名稱(外文):Impacts of the Climate Change and Development on the Water Quality of Ugii Nuur Lake in Mongolia
指導教授:吳先琪
口試日期:2017-07-14
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:116
中文關鍵詞:氣候變遷蒙古地區的發展Ugii湖CE-QUAL-W2模式大氣環流模式總溶解性固體
外文關鍵詞:climate changeriver basin developmentUgii LakeCE-QUAL-W2 modelgeneral circulation models (GCMs)total dissolved solids (TDS)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:92
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
此研究主要的目的是評估氣候變遷和地區性的發展對Ugii湖水水質所造成的影響。從2015及2016兩年現場水質監測資料及歷史資料分析可得結論為(1)Ugii湖在夏天有明顯的分層現象,(2)Ugii湖有明顯的高總溶解性固體濃度的特性。利用CE-QUAL-W2模式模擬未來大氣變遷RCP4.5情境和RCP 8.5情境所得結果之結論為(1)Ugii湖的總溶解性固體濃度在未來將會持續提升,(2)氣候變遷,確實顯著的影響Ugii湖中溶解性固體濃度的惡化程度。此模擬的結果應能提供給蒙古地區水資源管理當局在管理Ugii湖水質時做為參考。
The purpose of this study was to evaluate the impacts of the climate change and development in the vicinity area on the water quality of Ugii Lake in Mongolia. On-site monitoring data in 2015 and in 2016 were adopted to assess the status of Ugii Lake. The results of model simulation by using CE-QUAL-W2 water quality model was adopted to reveal the problems of Ugii Lake that may occur in the future, while forecast of meteorological data was generated by HadGEM2-ES model, one of the general circulation models (GCMs), under RCP 4.5 scenario and under RCP 8.5 scenario, respectively. Based on the on-site monitoring data it is found that there are (a) clear stratification in Ugii Lake in the summer, and (b) increase of total dissolved solids (TDS) concentration in the last decade. Results of simulation by using CE-QUAL-W2 model reveal that (a) Ugii Lake would experience significant increase of TDS in the future, and (b) climate change could accelerate the deterioration of water quality. The results of this study can be provided to the local water resource management authorities as a basis for Ugii Lake management.
誌謝 I
摘要 III
Abstract IV
Table of Contents V
List of Figures X
List of Tables XV
1. Introduction 1
1.1 General Background 1
1.2 Research Purpose 3
2. Background and Theories 5
2.1 Climate Change 5
2.1.1 Impact of Climate Change on Water Quality 11
2.1.2 Climate Change in Mongolia 12
2.2 Impact of Economic Development on Water Resource in Mongolia 14
2.2.1 Urbanization 14
2.2.2 Mining Industry 15
2.2.3 Agriculture 16
2.2.4 Tourism 17
2.3 Thermal Stratification 19
2.3.1 Introduction of the Thermal Stratification 19
2.3.2 Effect of Thermal Stratification on Lake 20
2.4 Eutrophication 21
2.4.1 Trophic State Index (TSI) 22
2.5 Water Quality Model 24
2.5.1 History 24
2.5.2 Selection of the Model 25
2.5.3 CE-QUAL-W2 Model 26
2.6 Inflow Water Temperature Model 27
2.6.1 Deterministic Models 28
2.6.2 Stochastic/Statistical Models 30
3. Materials and Methods 33
3.1 Research Framework 33
3.2 Study Site 33
3.2.1 Lake Overview 34
3.3 Data Collection and Sample Analysis 39
3.3.1 Lake Background Information 41
3.3.2 Lake Meteorological Data 41
3.3.3 Lake Flow Data 41
3.3.4 Lake Water Quality Data 45
3.4 Establishment of Water Quality Model 47
3.4.1 Equations Used in the Model 47
3.4.2 Setting of Input File of Model 53
3.4.3 Setting of Bathymetry File of Model 55
3.5 Generation of the Meteorological Data by GCMs 57
3.6 Establishment of Inflow Water Temperature Data 59
3.7 Conversion of TDS Concentration and Conductivity 60
4. Results and Discussions 61
4.1 Data Analysis of Field Monitoring 61
4.2 Generation of the Forecasting Data of Inflow Water Temperature 63
4.3 Generation of the Data of Daily Inflow Rate 64
4.3.1 Estimation of Daily Evaporation Rate 65
4.3.2 Estimation of Daily Inflow Rate 66
4.4 Calibration and Verification of CE-QUAL-W2 Model 67
4.4.1 Setting of Parameters in CE-QUAL-W2 67
4.4.2 Simulation of Water Surface Elevation 69
4.4.3 Simulation of Water Quality 70
4.5 Meteorological Forecasting GCMs 75
4.5.1 Evaluation of GCMs 75
4.5.2 Data Analysis of Meteorological Forecasting GCMs 76
4.6 Establishment of Predictable Water Quality Model 80
4.6.1 Forecast of Water Surface Elevation 80
4.6.2 Application of the Water Quality Model 82
5. Conclusions 86
5.1 Findings 86
5.2 Recommendations for the Future Research 88
Reference 90
Appendix A- Governing Equation 95
Appendix B- Material Transport Equation 97
Appendix C- Hydraulic Diffusion Equation 98
Appendix D- Equation of Heat Exchange 99
Appendix E- Rate Equation for Phosphorus 101
Appendix F- Rate Equation for Ammonium 103
Appendix G- Rate Equation for Nitrate-Nitrite 105
Appendix H- Rate Equation for Each Algal Group 106
Appendix I- Rate Equation for Dissolved Oxygen 107
Appendix J- Values of Model Parameters 109
1.Batbayar, Z., Baldandorj, T., Dolgorsuren, G., Gerelchuluun, J., Puntsagsuren, C. and Wim van der Linden (2012) Orkhon River Basin Integrated Water Management Plan, Ministry of Environment and Green Development, Mongolia.
2.Bates, B. C., Kundzewicz, Z. W., Wu, S. and Palutikof, J. P. (2008) Climate change and water. Technical paper of the intergovernmental panel on climate change, IPCC Secretariat, Geneva.
3.Batimaa, P., Myagmarjav, B., Batnasan, N., Jadambaa, N. and Khishigsuren, P. (2011) Urban water vulnerability to climate change in Mongolia, Water Authority, Mongolia.
4.Batsaikhan, B., Kwon, J. S., Kim, K. H., Lee, Y. J., Lee, J. H., Badarch, M. and Yun, S. T. (2017) Hydrochemical evaluation of the influences of mining activities on river water chemistry in central northern Mongolia. Environ Sci Pollut Res Int 24(2), 2019-2034.
5.Brylinsky, M. (2004) User’s manual for prediction of phosphorus concentration in nova scotia lakes: A tool for decision making, The Nova Scotia Water Quality Objectives and Model Development Steering Committee, Nova Scotia, Canada.
6.Caissie, D., El-Jabi, N. and St-Hilaire, A. (1998) Stochastic modelling of water temperatures in a small stream using air to water relations. Canadian Journal of Civil Engineering 25(2), 250-260.
7.Caissie, D., Satish, M. G. and El-Jabi, N. (2007) Predicting water temperatures using a deterministic model: Application on Miramichi River catchments (New Brunswick, Canada). Journal of Hydrology 336(3), 303-315.
8.Carlson, R. E. (1977) A trophic state index for lakes. Limnology and oceanography 22(2), 361-369.
9.Carlson, R. E. and Simpson, J. (1996) A coordinator’s guide to volunteer lake monitoring methods. North American Lake Management Society 96, 305.
10.Chen, Y. J. (2004) The effects of hydrological processes, biogeochemistry and human activities in the watershed on phosphorus mass balance and the subsequent growth of predominant algal species: A case study on the subtropical and deep reservoirs in TaiwanNational Taiwan University, ROC.
11.Cheng, G. Y. (2008) A brief discussion of mongolia’s tourism development: from the book where Khan’s falcon flies. Bi-monthly Journal on Mongolian and Tibetan Current Situation 17.
12.Chuluunkhuyag, S. (2007) The impact of climate change and human activity on mongolian water resources, The Third WEPA International Forum on Water Environmental Governance, Putrajaya, Malaysia.
13.Cole, T. M. and Well, S. A. (2016) CE-QUAL-W2: A two-dimensional, laterally averaged, hydrodynamic and water quality model, User Manual, version 4.0, US Army Corps of engineers Waterways Experiment Station, Vicksburgh, Mississippi.
14.Collins, W., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran, P., Hinton, T., Hughes, J., Jones, C., Joshi, M. and Liddicoat, S. (2011) Development and evaluation of an Earth-System model-HadGEM2. Geoscientific Model Development 4(4), 1051.
15.Crisp, D. and Howson, G. (1982) Effect of air temperature upon mean water temperature in streams in the north Pennines and English Lake District. Freshwater Biology 12(4), 359-367.
16.Dagvadorj, D., Batjargal, Z. and Natsagdorj, L. (2014) Mongolia second assessment report on climate change 2014, Ministry of Environment and Green Development of Mongolia, Ulaanbaatar, Mongolia.
17.Dagvadorj, D., Natsagadorj, L., Dorjpurev, J. and Namkhainyam, B. (2009) Mongolia: assessment report on climate change 2009, Ministry of Environment and Green Development of Mongolia, Ulaanbaatar, Mongolia.
18.Devi Prasad, A. G. (2012) Carlson''s Trophic State Index for the assessment of trophic status of two lakes in Mandya district. Advances in Applied Science Research 3(5, Cop), 2992-2996.
19.Dickerson, B. R. and Vinyard, G. L. (1999) Effects of high levels of total dissolved solids in Walker Lake, Nevada, on survival and growth of Lahontan cutthroat trout. Transactions of the American Fisheries Society 128(3), 507-515.
20.Dodgson, J. S., Spackman, M., Pearman, A. and Phillips, L. D. (2009) Multi-criteria analysis: a manual, Department for Communities and Local Government, London.
21.Dokulil, M. T. (2014) Environmental impacts of tourism on lakes, Eutrophication: causes, consequences and control, pp. 81-88, Springer.
22.Dye, C. (2008) Health and urban living. Science 319(5864), 766-769.
23.Edinger, J. E., Brady, D. K. and Geyer, J. C. (1974) Heat exchange and transport in the environment. Report No. 14, Dept. of Geography and Environmental Engineering, Johns Hopkins Univ., Baltimore, MD (USA).
24.Elçi, Ş. (2008) Effects of thermal stratification and mixing on reservoir water quality. Limnology 9(2), 135-142.
25.ESGF-LLNL (2017) The earth system grid federation, Lawrence Livermore National Laboratory, Retrieved from https://esgf-node.llnl.gov/ (May 3, 2017).
26.Gombobaatar, S., Myagmarsuren, S., Conaboy, N. and Мunkhjargal, M. (2014) Convention on Biological Diversity,The 5TH National Report of Mongolia, Ministry of environment and green development, Ulaanbaatar, Mongolia.
27.Grey, D. and Sadoff, C. W. (2007) Sink or Swim? Water security for growth and development. Water Policy 9(6), 545-571.
28.Hall, C. J. and Burns, C. W. (2002) Mortality and growth responses of Daphnia carinata to increases in temperature and salinity. Freshwater Biology 47(3), 451-458.
29.Harding, R., Warnaars, T., Weedon, G., Wiberg, D., Hagemann, S., Tallaksen, L., Henny van Lanen, Blyth, E., Ludwig, F. and Kabat, P. (2011) Executive summary of the completed WATCH project (No. 56), European Commission.
30.Istvánovics, V. (2010) Eutrophication of lakes and reservoirs, Lake ecosystem ecology: a global perspective, pp. 47-55, Elsevier, San Diego, CA.
31.Jourdonnais, J., Walsh, R., Pickett, F. and Goodman, D. (1992) Structure and calibration strategy for a water temperature model of the lower Madison River, Montana. Rivers 3(3), 153-169.
32.Karydis, M. and Tsirtsis, G. (1996) Ecological indices: a biometric approach for assessing eutrophication levels in the marine environment. Science of the Total Environment 186(3), 209-219.
33.Kreft, S. and Eckstein, D. (2013) Global climate risk index 2014, who suffers most from extreme weather events? weather-related loss events in 2012 and 1993 to 2012, Germanwatch e.V., Bonn, Germany.
34.Kumagai, M., Ishikawa, K. and Chunmeng, J. (2002) Dynamics and biogeochemical significance of the physical environment in Lake Biwa. Lakes & Reservoirs: Research & Management 7(4), 345-348.
35.Lewin, W. C., Arlinghaus, R. and Mehner, T. (2006) Documented and potential biological impacts of recreational fishing: insights for management and conservation. Reviews in Fisheries Science 14(4), 305-367.
36.Liu, W. C. (2011) Water quality Simulation and prediction of pollutant abatement in stream and estuary—Pozi Creek as a study case. Journal of Taiwan Water Conservancy 59.
37.Ministry of the Environment of Japan (2015) Climate change in Mongolia, output from GCM.
38.MNE and JICA (2006) River basin management model project for the conservation of wetland ecosystem and its sustainable use in Mongolia, Ministry of Nature and Environment of Mongolia and Japan International Cooperation Agency, Mongolia.
39.Mohseni, O., Stefan, H. G. and Erickson, T. R. (1998) A nonlinear regression model for weekly stream temperatures. Water Resources Research 34(10), 2685-2692.
40.Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q. and Dasgupta, P. (2014) Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change, IPCC, Geneva, Switzerland.
41.Porland State Unversity (2017) Water quality research group: CE-QUAL-W2 hydrodynamic and water quality model, Retrieved from http://www.ce.pdx.edu/w2/ (June 1, 2017).
42.Radácsi, L. C. A. (2005) Overutilization of pastures by livestock. Acta pascuorum (Grassland studies) 3, 29-36.
43.Scannell, P. W. and Jacobs, L. L. (2001) Technical report: Effects of total dissolved solids on aquatic organisms, Department of Fish and Game, Alaska, USA.
44.Schulz, L. (1981) Nährstoffeintrag in Seen durch Badegäste. Zentralblatt Für Bakteriologie. B 1, 6.
45.Schwanghart, W. (2009) Climate and landscape evolution of the Ugii Nuur basin, Mongolia, Doctoral dissertation, Freie Universität Berlin, Germany.
46.Schwanghart, W. and Heckmann, T. (2012) Fuzzy delineation of drainage basins through probabilistic interpretation of diverging flow algorithms. Environmental Modelling & Software 33, 106-113.
47.Shagdar, E. (2002) The Mongolian livestock sector: Vital for the economy and people, but vulnerable to natural phenomena. Erina Report 08/2002 47, 4-26.
48.Shamsudin, S., Harun, S. and Rahman, A. A. (2009) Uncertainty of phosphorus loadings estimation using vollenweider model for reservoir euthrophication control.
49.Solomon, S. (2007) Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC, Cambridge University Press, United Kingdom and New York, USA.
50.Steele, J. (1966) Notes on some theoeetical problems in production ecology. Primary productivity in aquatic environments 18, 383.
51.Stefan, H. G. and Preud''homme, E. B. (1993) Stream temperature estimation from air temperature. Journal of the American Water Resources Association JAWRA 29(1), 27-45.
52.Streeter, H. W. and Phelps, E. B. (1925) A study of the pollution and natural purification of the Ohio River. U.S. Department of Health, Education, & Welfare.
53.Sundev, G. and Erdenetuya, C. (2013) Information Sheet on EAA Flyway Network Sites, East Asian-Australasian Flyway Partnership, Beijing, China.
54.Taylor, K. E., Stouffer, R. J. and Meehl, G. A. (2012) An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society 93(4), 485-498.
55.Vollenweider, R. A. (1976) Advances in defining critical loading levels for phosphorus in lake eutrophication. Memorie dell''Istituto Italiano di Idrobiologia, Dott. Marco de Marchi Verbania Pallanza.
56.Wang, Q. and Batkhishig, O. (2014) Impact of overgrazing on semiarid ecosystem soil properties: A Case study of the Eastern Hovsgol Lake Area, Mongolia. Journal of Ecosystem & Ecography 4(1), 1.
57.Wang, W., Ma, Y., Feng, Z., Narantsetseg, T., Liu, K.-B. and Zhai, X. (2011) A prolonged dry mid-Holocene climate revealed by pollen and diatom records from Lake Ugii Nuur in central Mongolia. Quaternary International 229(1-2), 74-83.
58.Wetzel, R. G. (2001) Limnology: lake and river ecosystems, Gulf Professional Publishing.
59.Weyant, J., Azar, C., Kainuma, M., Kejun, J., Nakicenovic, N., Shukla, P., La Rovere, E. and Yohe, G. (2009) Report of 2.6 versus 2.9 Watts/m2 RCPP evaluation panel, IPCC, Geneva, Switzerland.
60.Wu, S. C., Ulaanbaatar, T., Tumenjargal, D., Munkhbaatar, P., Tung, H. H., Chou, C. L., Han, M. C., Lo, H. Y. and Lu, H. Y. (2016) Ugii Lake, Terkhiin Tsagaan Lake and Huvsgul Lake site investigation report-Water quality, algae and pathogenic bacteria project report.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔