跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/19 01:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李佳育
研究生(外文):Chia-Yu Lee
論文名稱:厭氧生物固定技術處理實廠都市污水之應用
論文名稱(外文):Anaerobic Immobilization Biotechnology for Domestic Wastewater Treatment
指導教授:林正芳林正芳引用關係
口試日期:2017-07-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:92
中文關鍵詞:厭氧處理固定生物溶解甲烷低強度都市污水水力停留時間
外文關鍵詞:Anaerobic treatmentimmobilized microorganismdomestic wastewaterdissolved methanehydraulic retention time
相關次數:
  • 被引用被引用:2
  • 點閱點閱:237
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
厭氧生物相較於好氧生物處理污水之優點在於低耗能、低廢棄污泥產量,以及可以生產甲烷作為生質氣體,但其微生物生長緩慢,因此在實際污水處理廠應用上來看,如何在較短水力停留時間(Hydraulic Retention Time, HRT)下避免厭氧微生物的流失成為一項重大的關鍵。薄膜是近年來許多厭氧生物研究使用之方法,但有薄膜積垢、價格較高等問題。故本研究將生物固定化技術(Entrapped Mixed Microbial Cell, EMMC)應用於厭氧生物處理程序,使厭氧污泥以固定平板形式留置於反應槽內,可提升槽內微生物濃度,也大幅提高污泥停留時間,使微生物不容易流失,讓反應所需水力停留時間可以縮短,以期能克服厭氧生物處理低強度都市污水發展上的限制。
單槽連續式厭氧固定生物反應槽(Anaerobic Immobilized Bio-plates Reactor, AnIBPR)在25℃下處理低強度污水,其有效體積為15.6 L,污泥微生物質量為42.4 g/L,在6及8小時水力停留時間下處理化學需氧量(Chemical Oxygen Demand, COD)濃度為200 mg/L的低強度合成及都市污水,探討都市污水對於厭氧固定生物系統的除碳產氣效率以及碳源轉換百分比,並以COD去除率、甲烷產量、甲烷產氣率、甲烷回收率,及溶解甲烷等作為效能評估項目。
結果顯示,AnIBPR反應槽連續操作一年以上沒有顯著污泥流失,整體效能來看,合成污水與都市污水分別可達到86%和70%以上之總化學需氧量(Total COD)去除率以及58%和28%以上之甲烷氣體含量,可產生0.494 kWh/m3及0.128 kWh/m3以上之甲烷產能,轉換為系統單位產電能為0.163 kWh/m3及0.042 kWh/m3以上;而從碳源轉換而言,合成污水之進流碳源有13.8%隨出流流出、21.0%轉換為氣體甲烷、41.9%以過飽和狀態之溶解甲烷形式留在水中,飽和指數為1.49;都市污水之進流碳源有24.9% - 30.6%隨出流流出、6.9% - 10.0%被硫酸鹽所消耗,2% - 3%轉換為氣體甲烷、14.9% - 22.8%以過飽和狀態之溶解甲烷形式留在水中,飽和指數為1.16-1.63。
整體而言,厭氧固定生物與典型厭氧處理系統相比有較佳之處理成效,但產生的甲烷氣卻有大比例以溶解態隨著出流排出,產能減少之餘,也會造成環境衝擊,因此,如何回收或減少溶解甲烷,也是未來應用厭氧生物的重要議題之一。
Compared with aerobic biological processes, anaerobic biological treatment processes (ABTPs) have the advantage of low energy consumption, low waste sludge production, and can produce methane as biogas. However, from the perspective of the application of the actual sewage plant, how to avoid the loss of anaerobic microorganisms under short HRT becomes a significant point because of the slow-growing anaerobic microorganisms. Therefore, this study combined with an immobilization biotechnology of entrapped mixed microbial cell (EMMC) and ABTPs, so that anaerobic sludge in the form of fixed bio-plates in the reactor, can not only enhance biomass concentration, but also greatly improve the sludge residence time (SRT). This way makes the microorganisms not easily to wash out. Thus, the required hydraulic retention time can be shortened in order to overcome the restriction of ABTPs while treating low-strength domestic wastewater.
An anaerobic immobilized bio-plates reactor (AnIBPR) was used to treat low-strength synthetic and domestic wastewater at 25℃. The effective volume was 15.6 L, the sludge biomass was 42.4 g/L, and the influent COD concentration was 200 mg/L at a hydraulic retention time (HRT) of 6 and 8 hours. Then we discuss the COD removal rate, methane production rate, methane yield, methane recovery rate and dissolved methane as a performance evaluation project.
The results showed that there was no significant sludge loss in the AnIBPR reactor for more than one year. The synthetic and domestic wastewater could each reach 86% and 70% COD removal rate, and 56% and 28% methane content which can produce energy of 0.494 kWh/m3 and 0.128 kWh/m3. The energy also can be converted to the electricity energy of 0.163 kWh/m3 and 0.042 kWh/m3 or more. Considering the carbon source conversion, the synthetic wastewater have 13.8% went out with the outflow, 21.0% converted to gaseous methane, and 41.9% transformed to dissolved methane which stayed in the water as an oversaturated state, and the measured concentration of dissolved methane was 1.49 larger than the concentration of dissolved methane at thermodynamic equilibrium with the measured CH_4 partial pressure. On the other hand, the domestic wastewater have 24.9% - 30.6% went out with the outflow, 2% - 3% converted to gaseous methane, 6.9% - 10.0% was used by sulphate, and 14.9% - 22.8% transformed to dissolved methane which stayed in the water as an oversaturated state, and the measured concentration of dissolved methane was 1.16-1.63 larger than the concentration of dissolved methane at thermodynamic equilibrium with the measured CH_4 partial pressure.
In general, anaerobic immobilized organisms have a better treatment effect than a typical anaerobic treatment system, but a large proportion of methane discharged with the effluent in dissolved phase, not only wasted energy, but impacted the environment. Therefore, how to recover or reduce dissolved methane, is also one of the important issues of future application of anaerobic organisms.
目錄
致謝 I
摘要 II
ABSTRACT IV
圖目錄 VIII
表目錄 IX
第1章 前言 1
1.1 研究緣起 1
1.2 研究目的與項目 3
第2章 文獻回顧 6
2.1 台北市污水處理現況 6
2.1.1 台北市污水處理廠水質 6
2.1.2 污水處理廠能量消耗 12
2.2 厭氧生物處理 13
2.2.1 厭氧生物處理基本原理 13
2.2.2 厭氧生物處理程序 20
2.2.3 厭氧生物處理都市污水 23
2.2.4 厭氧生物處理之溶解甲烷 27
2.3 固定生物技術 29
2.3.1 固定生物技術簡介 29
2.3.2 厭氧固定生物技術 30
第3章 實驗方法與設備材料 31
3.1 實驗架構 31
3.2 實驗材料與設備 33
3.2.1 厭氧固定生物系統建置 33
3.2.2 固定生物平板之製備 35
3.2.3 合成污水組成 36
3.3 實驗方法 37
3.4 分析項目及方法 39
3.4.1 水質分析 39
3.4.2 VFA分析 42
3.4.3 氣相分析 43
3.4.4 效能評估 44
第4章 結果與討論 48
4.1 固定生物平板基本特性分析 48
4.2 厭氧固定生物馴養階段 51
4.3 厭氧固定生物處理實廠污水 53
4.3.1 實廠污水水質分析 53
4.3.2 系統監測數值 54
4.3.3 水質分析結果 55
4.3.4 系統氣相分析與甲烷分布 60
4.3.5 COD質量平衡 72
4.3.6 系統產能效益 76
4.4 厭氧固定生物系統處理合成及實廠污水之比較 78
第5章 結論與建議 81
5.1 結論 81
5.2 建議 83
參考文獻 85
Agency, U. S. E. P. A, 2013. Inventory of US Greenhouse Gas Emissions and Sinks: 1990e2012. USEPA, Washington, DC.
Bae, J., Shin, C., Lee, E., Kim, J., McCarty, P.L., 2014. Anaerobic treatment of low-strength wastewater: a comparison between single and staged anaerobic fluidized bed membrane bioreactors. Bioresource Technology. 165, 75-80.
Bandara, W.M.K.R.T.W., et al., 2011. Removal of residual dissolved methane gas in an upflow anaerobic sludge blanket reactor treating low-strength wastewater at low temperature with degassing membrane. Water Res. 45 (11), 3533-3540.
Brown, J. L., 1998. The application of the anaerobic technology for the treatment of domestic wastewater in Jamaica. UNEP, Caribbean Environment Programme Technical Report. 43, 1-19.
Chang, C.T., Chen, B.Y., Shiu, I.S., Jeng, F.T., 2004. Biofiltration of trimethylamine-containing waste gas by entrapped mixed microbial cells. Chemosphere. 55(5), 751-75.
Coulter, J.B., Soneda, S., Ettinger, M.B., 1957. Anaerobic contact process for sewage disposal. Sewage and Industrial Wastes. 29(4), 468-477.
Cookney, J., et al. (2012) Recovery of methane from anaerobic process effluent using poly-di-methyl-siloxane membrane contactors. Water Sci. Technol. 65 (4), 604-610.
Cookney, J., et al. (2016) Dissolved methane recovery from anaerobic effluents using hollow fibre membrane contactors. J. Membr. Sci. 502, 141-150.
Demirel, B., Yenigun, O., Onay, T.T., 2005. Anaerobic treatment of dairy wastewaters: A review. Process Biochemistry. 40, 2583-2595.
El-Fadel, M., Massoud, M., 2001. Methane emissions from wastewater management. Environ. Pollut. 114 (2), 177-185.
EPRI (Electric Power Research Institute), 1999. Energy Audit Manual for Water/Wastewater Facilities. CEC Report CR-104300. EPRI Community Environmental Center. St. Louis, Mo.
Fang, H.H.P., 2010. Environmental anaerobic technology: Applications and new developments, London: Imperial College Press.
Flato, G., et al., 2013. Evaluation of climate models. in: climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Clim. Change 2013 (5), 741-866.
Foresti, E., 2002. Anaerobic treatment of domestic sewage : Established technologies and perspectives. Water Science and Technology. 45(10), 181-186.
Foresti, E., Zaiat, M. and Vallero, M., 2006. Anaerobic processes as the core technology for sustainable domestic wastewater treatment: Consolidated applications, new trends, perspectives, and challenges. Reviews in Environmental Science and Bio/Technology. 5(1), 3-19.
Franklin, R.J., 2001. Full Scale Experience with Anaerobic Treatment of Industrial Wastewater. Water Science and Technology. 44(8), 1-6.
Grady, C.P.L. and Lim, H.C., 1980. Biological wastewater treatment: Theory and applications, Baker & Taylor Books, New York, 834-881
H.D. Klüber, R. Conrad (1998) Effects of nitrate, nitrite, NO and N2O on methanogenesis and other redox processes in anoxic rice field soil FEMS Microbiol Ecol, 25, pp. 301-318
Hickey, R.F., Wu, W.M., Veiga, M.C. and Jones, R., 1991. Start-up, operation, monitoring and control of high-rate anaerobic treatment systems. Water Science and Technology. 24(8), 207-255.
Ho, J. and Sung, S., 2010. Methanogenic activities in anaerobic membrane bioreactors (AnMBR) treating synthetic municipal wastewater. Bioresource Technology. 101(7), 2191-2196.
Huang, Z., Ong, S.L., Ng, H.Y., 2011. Submerged anaerobic membrane bioreactor for low-strength wastewater treatment: Effect of HRT and SRT on treatment performance and membrane fouling. Water Research. 45(2), 705-713.
Huang, Z., Ong, S.L., Ng, H.Y., 2013. Performance of submerged anaerobic membrane bioreactor at different SRTs for domestic wastewater treatment. Journal of Biotechnology. 164(1), 82-90.
Jha, P. and S. Schmidt (2017). "Reappraisal of chemical interference in anaerobic digestion processes." Renewable and Sustainable Energy Reviews 75: 954-971.
Kato, M. T., Field, J. A., Kleerebezem, R., Lettinga, G., 1994. Treatment of low strength soluble wastewater in UASB reactors. Journal of Fermentation and Bioengineering. 77(6), 679-686.
Khan, A. A., Gaur, R. Z., Tyagi, V. K., Khursheed, A., Lew, B., Mehrotra, I., Kazmi, A. A., 2011. Sustainable options of post treatment of UASB effluent treating sewage: A review. Resources, Conservation and Recycling. 55(12), 1232-1251.
Khanal, S.K., 2008. Anaerobic biotechnology for bioenergy production : Principles and applications. Ames, Iowa : Wiley-Blackwell.
Kim, J., Kim, K., Ye, H., Lee, E., Shin, C., McCarty, P.L. and Bae, J. (2011) Anaerobic Fluidized Bed Membrane Bioreactor for Wastewater Treatment. Environmental Science & Technology 45(2), 576-581.
Kumar, G., Sivagurunathan, P., Park, J.H. and Kim, S.H. (2015) Improved Hydrogen Production from Galactose Via Immobilized Mixed Consortia. Arabian Journal for Science and Engineering 40(8), 2117-2122.
Landenhoff,A.A.M. and Stuckey, D.C., 2000. Treatment of dilute wastewater using an anaerobic baffled reator:Effect of low temperature. Water Research. 34(15), 3867-3875.
Leião, R.C., van Haandel, A.C., Zeeman, G., Lettinga, G., 2006. The effects of operational and environmental variations on anaerobic wastewater treatment systems: A review. Bioresource Technology. 97(9), 1105-1118
Lettiinga, G., van Nelsen, A. F. M., Hobma, S. W., de Zeeuw, W., Klapwijk, A., 1980. Use of the upflow sludge blanket (USB) reactor concept for biological wastewater treatment, especially for anaerobic treatment. Biotechnology and Bioengineering. 22(4), 699-734.
Lew, B., Tarre, S., Beliavski, M., Dosoretz, C., Green, M., 2009. Anaerobic membrane bioreactor (AnMBR) for domestic wastewater treatment. Desalination. 243 (1-3), 251-257.
Lin, C.Y., Noike, T., Sato, K., Matsumoto, J., 1986. Temperature characteristics of the methanogenesis process in anaerobic digestion. Water Science and Technology. 19(1-2), 299-310.
Liu C.C., Ng K.K., Wu C.J., Lin C.F., Hong, PKA, Yang, P.Y. (2013) Organics and nitrogen removal from wastewater across a plate of entrapped mixed microbial cells. J Environ. Sci. Manage. 16. 29-35.
McCarty, P.L. and Smith, D.P., 1986. Anaerobic wastewater treatment. Enviromental Science and Technology. 20(12), 1200-1206.
McCarty, P.L. (1964). Anaerobic Waste Treatment Fundamentals, Part Three, Toxic Materials and Their Control. Public Works, 91-94.
McCarty, P.L., Bae, J. and Kim, J.(2011) Domestic Wastewater Treatment as a Net Energy Producer-Can This be Achieved? Environmental Science and Technology. 45(17), 7100-7106.
Mendonça, N.M., Niciura, C.L., Gianotti, E.P., Campos, J.R., 2004. Full scale fluidized bed anaerobic reactor for domestic wastewater treatment: performance, sludge production and biofilm. Water Science and Technology. 49(11-12), 319-325.
Pretorius, W. A., 1971. Anaerobic digestion of raw sewage. Water Research. 5(9), 681-687.
Seghezzo, L., Zeeman, G., van Lier, J. B., Hamelers, H. V. M., Lettinga, G., 1998. A review: The anaerobic treatment of sewage in UASB and EGSB reactors. Bioresource Technology. 65, 175-190.
Shin, C., et al., 2014. Pilot-scale temperate-climate treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR). Bioresour. Technol. 159, 95-103.
Smith, A.L., et al., 2013. Psychrophilic anaerobic membrane bioreactor treatment of domestic wastewater. Water Res. 47 (4), 1655-1665.
Smith, A.L., et al., 2014. Navigating wastewater energy recovery strategies: a life cycle comparison of anaerobic membrane bioreactor and conventional treatment systems with anaerobic digestion. Environ. Sci. Technol. 48 (10), 5972-5981.
Show, K. Y. and D. J. Lee (2017). 8 - Anaerobic Treatment Versus Aerobic Treatment. Current Developments in Biotechnology and Bioengineering, Elsevier: 205-230
Souza, C.L., et al., 2011. Quantification of dissolved methane in UASB reactors treating domestic wastewater under different operating conditions. Water Sci. Technol. 64 (11), 2259-2264.
Speece, R.E., 1983. Anaerobic Biotechnology for Industrial Wastewater-Treatment. Environmental Science and Technology. 17(9), A416-A427.
Stocker, T., et al., 2014. Climate Change 2013: the Physical Science Basis. Cambridge University Press Cambridge, UK, and New York.
Switzenbaum, M. S. and Jewell, W. J., 1980. Anaerobic attached-film expanded-bed reactor treatment. Journal - Water Pollution Control Federation. 52(7), 1953-1965.
Tseng, S.K. and Lin, M.R., 1994. Treatmentof organic wastewater by anaerobic biological fluidized bed reactor. Water Science and Technology. 29(12), 157-166.
R.H. Yoo, J.H. Kim, P.L. McCarty, J.H. Bae, Effect of temperature on the treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor, Water Sci. Technol. 69 (2014) 1145-1150.
Wu, P.H., et al. (2017). "Treatment of low-strength wastewater at mesophilic and psychrophilic conditions using immobilized anaerobic biomass." Chemical Engineering Journal 311: 46-54.
X. Qian, P.Y. Yang, T. Maekawa, Evaluation of direct removal of nitrate with entrapped mixed microbial cell technology using ethanol as the carbon source, Water Environ. Res. 73 (2001) 584–589.
Yang, P.Y., Cai, T., Want, M.L., 1988. Immobilized mixed microbial cells for wastewater treatment. Biological Wastes. 23(4), 295-312.
Yang, P.Y. and Wang, M.L., 1990. Packed-entrapped-mixed microbial cells for small wastewater treatment. Water Science and Technology. 22(3-4), 343-350.
Yang P.Y., Zhang Z.Q., Jeong B.G. (1997) Simultaneous removal of carbon and nitrogen from dilute swine wastewater for agricultural reuse. Water Environment Federation. 18, 585-602.
Yang, P.Y. and Chen, H.J., 2000. Integrating EMMC process for biological removal of carbon and nitrogen from dilute swine wastewater for agricultural reuse. Water Environment Federation. 18, 585-602.
Yang, P.Y., Shimabukuro, M., Kim, S.J., 2002b. A pilot scale bioreactor using EMMC for carbon and nitrogen removal. Clean Technology Environment Policy. 3(4), 407–412.
Yang, P.Y., Chen, H.J., Kim, S.J., 2003b. Integrating entrapped mixed microbial cell (EMMC) process for biological removal of carbon and nitrogen from dilute swine wastewater. Bioresource Technology. 86(3), 245–252.
Yang, P.Y. and Myint, T.T., 2003c. Integrating entrapped mixed microbial cell (EMMC) technology for treatment of wastewater containing dimethyl sulfoxide (dmso) for reuse in semiconductor industry. Clean Technology Environment Policy. 6(1), 43-50.
Yeo, H., Lee, H.S., 2013. The effect of solids retention time on dissolved methane concentration in anaerobic membrane bioreactors. Environ. Technol. (United Kingdom) 34 (13-14), 2105-2112.
Yoo, R., Kim, J., McCarty, P.L., Bae, J. 2012. Anaerobic treatment of municipal wastewater with a staged anaerobic fluidized membrane bioreactor (SAF-MBR) system. Bioresour. Technol. 120, 133-139.
Yoo, R.H., Kim, J.H., McCarty, P.L., Bae, J.H., 2014. Effect of temperature on the treatment of domestic wastewater with a staged anaerobic fluidized membrane bioreactor. Water Science and Technology. 69(6), 1145-1150.
內政部營建署,2011,污水處理廠節能計畫
謝仁捷,2014,厭氧生物固定化程序處理都市污水,國立臺灣大學環境工程學研究所碩士論文。
田俊彥,2016,厭氧固定生物技術處理低強度合成污水:水力停留時間與進流濃度之影響,國立臺灣大學環境工程學研究所碩士論文。
陳昶瑞,2017,都市污水中醣類、蛋白質與脂質定量定性分析研究,國立臺灣大學環境工程學研究所碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top