跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/19 02:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖秀婷
研究生(外文):Hsiu-Ting Liao
論文名稱:鉻、鎳高濃度土壤中生物可及性、移動性與土壤性質相關性探討
論文名稱(外文):Correlation of Bioaccessibility, Mobility, and Soil Property of High-Concentration Cr and Ni-Containing Soils
指導教授:席行正
口試日期:2017-06-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:54
中文關鍵詞:生物可及性序列萃取法蛇紋岩土壤污染土壤
外文關鍵詞:CrNiBioaccessibilitySequential extractionSerpentine soilsAnthropogenic sources
相關次數:
  • 被引用被引用:0
  • 點閱點閱:274
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
土壤重金屬污染對健康和生態造成不可忽視的影響,兒童因手口行為誤食重金屬污染塵土是值得關切的重要暴露途徑,然而目前風險評估以重金屬總量進行評估時有高估之虞,若以動物實驗模擬重金屬污染物進入人體循環系統之實際吸收劑量過於耗時和耗費,遂發展體外實驗方法評估生物可及性(Bioaccessibility, BA)。本研究採集7個鉻、鎳高濃度表土,污染來源包括地質因素、非法棄置和工業廢水,以生理萃取試驗法(Physiologically Based Extraction Test, PBET)和簡化生物可及性萃取法(Simplified Bioaccessibility Extraction Test, SBET)分析其生物可及性,調查土壤基本性質和鉻、鎳的化學相態,進一步探討生物可及性與土壤基本性質和BCR序列萃取相態(分為F1: 酸可溶及交換態;F2: 可還原結合態;F3: 可氧化結合態;F4: 殘餘態)的相關性。
實驗結果顯示,7個污染場址的表土濃度皆超過管制或監測標準(鉻:205.6‒3095 mg kg-1;鎳:168.7‒2596 mg kg-1);鉻主要為殘餘態,而鎳的移動性較鉻高,依污染來源和污染齡使相態分佈有所差異;生物可及性方面,胃相分別為SBET(鉻:5.164%;鎳:12.01%)和PBET(鉻:2.955%;鎳:10.43%),約比腸相(鉻:0.5159%;鎳:1.057%)高10倍,鎳不論胃相或腸相均比鉻高。以SBET之生物可及性結果做線性迴歸相關性分析,鉻生物可及性與土壤pH值、Clay(%)、Total content(TC)和F1+F2相關,最佳複迴歸模式為Cr-BASBET(%)=-25.214+0.008 TC+0.122 Clay + 1.201 (F1+F2),R2為64.6% (p<0.001);鎳生物可及性與土壤pH值Clay(%)、F2、F1+F2和 F1+F2+F3相關,最佳複迴歸模式為Ni-BASBET(%)=-11.630+0.614Clay+0.312 (F1+F2),R2為69.2%(p<0.001)。本研究所得之生物可及性和土壤特性等資訊,可提供相關主管單位在鉻、鎳污染場址的基線資料。
Heavy metal contaminations are detrimental to both ecosystem and human health. Children are exposed to contaminated soils via hand-to-mouth behavior. Polluted soil ingestion is a risk to health. Most current risk assessment is based on total metal content; however, only a fraction of total content are available for uptake. Performing animal experiments on bioavailability are highly costy and time-consuming. Therefore, in-vitro experiments on bioaccessibility are conducted in preference to in-vivo assays.
In this study, we collected 7 high-concentration Cr and Ni-containing soils, from geogenic and anthropogenic sources, and investigated the bioaccessibility via PBET and SBET, mobility via BCR sequential extration (F1: Acid-exchangeable fraction; F2: Fe-Mn oxide bounded fraction; F3: Oxidation fraction; F4: Residual fraction), and correlation of bioaccessibility, mobility and soil property. The results indicated that, all aqua regia extractable concentractions of Cr (205.6‒3095 mg kg-1) and Ni (168.7‒2596 mg kg-1) were higher than the guideline values. High percentage of Cr was in residual fractions. The mobility of Ni was higher than Cr and affected by pollutant sources and age. Bioaccessibilities in gastric phase, SBET (Cr: 5.164%;Ni: 12.01%) and PBET (Cr: 2.955%;Ni: 10.43%), were about 10 times than those in intestinal phase (Cr: 0.5159%;Ni: 1.057%). Cr bioaccessibility was lower than Ni. Linear regression analysis was carried out on correlation of SBET bioaccessibility, BCR results, and soil property. Trend in bioaccessible Cr related on soil pH value, clay (%), total content (TC) and F1+F2. The best regression model was Cr-BASBET(%)=-25.214+0.008 TC+0.122 Clay + 1.201 (F1+F2), R2=64.6% (p<0.001). In Ni bioaccessibility, soil pH value, Clay (%), F1+F2 and F1+F2+F3 affected available extractions. The best regression model was Ni-BASBET(%)=-11.630+0.614Clay+0.312 (F1+F2),R2=69.2%(p<0.001). This study provides baseline information for government on management strategies formulated.
目錄
口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 4
2.1 鉻、鎳金屬特性與對人體的危害 4
2.2 鉻、鎳的地質及人為污染來源 5
2.2.1 蛇紋岩化育土壤 5
2.2.2 人為污染來源 7
2.3 生物可及性方法 8
2.4序列萃取 12
第三章 材料與方法 16
3.1 土壤來源 16
3.2 土壤基本性質分析 17
3.2.1 前處理 17
3.2.2 含水量 17
3.2.3 質地分析 18
3.2.4 pH值 19
3.2.5 有機碳 19
3.3 重金屬全量濃度分析 20
3.4 序列萃取 20
3.5 體外消化系統實驗 21
3.5.1 生理萃取試驗法(PBET) 21
3.5.2 簡化生物可及性萃取法(SBET) 22
3.5.3 生物可及性計算 22
3.6 相關性分析 23
3.7 QA/QC 25
3.8 實驗儀器與試劑 26
3.8.1 儀器 26
3.8.2 化學試劑 26
第四章 結果與討論 28
4.1 供試土壤基本性質 28
4.2 鉻、鎳在土壤中的結合型態 30
4.2.1 鉻的序列萃取 30
4.2.2 鎳的序列萃取 31
4.3 於模擬消化液之生物可及性 34
4.3.1 鉻的生物可及性 34
4.3.2 鎳的生物可及性 34
4.4 生物可及性之相關性探討 39
4.4.1 鉻的相關性分析 39
4.4.2 鎳的相關性分析 43
第五章 結論與建議 47
5.1 結論 47
5.2 建議 48
Reference 49
張英琇. (2007). 海岸山脈蛇紋岩土壤金屬元素之生物地質化學性質. 國立屏東科技大學環境工程與科學系碩士論文.
行政院環境保護署環境檢驗所. (2015). 土壤中重金屬檢測方法–王水消化法 (NIEA S321.64B).
陳肇夏. (1998). 台灣的變質岩. 台灣的地質之十一, 經濟部中央地質調查所編印. 第 356 頁

Alexander, E., Adamson, C., Zinke, P., & Graham, R. (1989). Soils and conifer forest productivity on serpentinized peridotite of the Trinity ophiolite, California. Soil Science, 148(6), 412-423.
Alexander, E. B., Ellis, C. C., & Burke, R. (2007). A chronosequence of soils and vegetation on serpentine terraces in the Klamath Mountains, USA. Soil Science, 172(7), 565-576.
Alloway, B. J. (2013). Heavy Metals in Soils, Springer. London. doi. org/10.1007/978-94-007-4470-7.
Bakircioglu, D., Kurtulus, Y. B., & Ibar, H. (2011). Investigation of trace elements in agricultural soils by BCR sequential extraction method and its transfer to wheat plants. Environmental Monitoring and Assessment, 175(1), 303-314.
Basta, N., & Gradwohl, R. (2000). Estimation of Cd, Pb, and Zn bioavailability in smelter-contaminated soils by a sequential extraction procedure. Journal of Soil Contamination, 9(2), 149-164.
Bruce, S., Noller, B., Matanitobua, V., & Ng, J. (2007). In vitro physiologically based extraction test (PBET) and bioaccessibility of arsenic and lead from various mine waste materials. Journal of Toxicology and Environmental Health, Part A, 70(19), 1700-1711.
Casteel, S. W., Cowart, R. P., Weis, C. P., Henningsen, G. M., Hoffman, E., Brattin, W. J., Guzman, R. E., Starost, M. F., Payne, J. T., & Stockham, S. L. (1997). Bioavailability of lead to juvenile swine dosed with soil from the Smuggler Mountain NPL site of Aspen, Colorado. Toxicological Sciences, 36(2), 177-187.
Cheng, C.-H., Jien, S.-H., Iizuka, Y., Tsai, H., Chang, Y.-H., & Hseu, Z.-Y. (2011). Pedogenic chromium and nickel partitioning in serpentine soils along a toposequence. Soil Science Society of America Journal, 75(2), 659-668.
Cheng, C.-H., Jien, S.-H., Tsai, H., Chang, Y.-H., Chen, Y.-C., & Hseu, Z.-Y. (2009). Geochemical element differentiation in serpentine soils from the ophiolite complexes, eastern Taiwan. Soil Science, 174(5), 283-291.
Coleman, R. G. (1977). Ophiolites: ancient oceanic lithosphere? (Vol. 12): Springer Science & Business Media.
Costa, M., & Klein, C. B. (2006). Toxicity and carcinogenicity of chromium compounds in humans. Critical Reviews in Toxicology, 36(2), 155-163.
Davis, A., Ruby, M. V., & Bergstrom, P. D. (1992). Bioavailability of arsenic and lead in soils from the Butte, Montana, mining district. Environmental Science & Technology, 26(3), 461-468.
De Miguel, E., Mingot, J., Chacón, E., & Charlesworth, S. (2012). The relationship between soil geochemistry and the bioaccessibility of trace elements in playground soil. Environmental Geochemistry and Health, 34(6), 677-687.
Denkhaus, E., & Salnikow, K. (2002). Nickel essentiality, toxicity, and carcinogenicity. Critical Reviews in Oncology/hematology, 42(1), 35-56.
Dhal, B., Thatoi, H., Das, N., & Pandey, B. (2013). Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review. Journal of Hazardous Materials, 250, 272-291.
DIN, Deutsches Institut fur Normung e. V. (2000). Soil Quality-Absorption availability of organic and inorganic pollutants from contaminated soil material. DIN E, 19738.
Dodds, W., & Hsu, C. (1982). Introduction-Strengths and Limitations of the Pig as an Animal-Model. Paper presented at the Federation Proceedings.
Ellickson, K., Meeker, R., Gallo, M., Buckley, B., & Lioy, P. (2001). Oral Bioavailability of Lead and Arsenic from a NIST Standard Reference Soil Material. Archives of Environmental Contamination and Toxicology, 40(1), 128-135.
Fay, M. (2005). Toxicological profile for nickel: Agency for Toxic Substances and Disease Registry.
Fendorf, S., La Force, M. J., & Li, G. (2004). Temporal changes in soil partitioning and bioaccessibility of arsenic, chromium, and lead. Journal of Environmental Quality, 33(6), 2049-2055.
Freeman, G., Dill, J., Johnson, J., Kurtz, P., Parham, F., & Matthews, H. (1996). Comparative absorption of lead from contaminated soil and lead salts by weanling Fischer 344 rats. Toxicological Sciences, 33(1), 109-119.
Freeman, G., Johnson, J., KJLLINGER, J., Liao, S., Davis, A., Ruby, M., Chaney, R., Lovre, S., & Bergstrom, P. (1993). Bioavailability of arsenic in soil impacted by smelter activities following oral administration in rabbits. Toxicological Sciences, 21(1), 83-88.
Freeman, G., Johnson, J., Liao, S., Feder, P., Davis, A., Ruby, M., Schoof, R., Chaney, R., & Bergstrom, P. (1994). Absolute bioavailability of lead acetate and mining waste lead in rats. Toxicology, 91(2), 151-163.
Freeman, G., Schoof, R., Ruby, M., Davis, A., Dill, J., Liao, S., Lapin, C., & Bergstrom, P. (1995). Bioavailability of arsenic in soil and house dust impacted by smelter activities following oral administration in cynomolgus monkeys. Toxicological Sciences, 28(2), 215-222.
Gardner, W. H. (1986). Water content. Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods, 493-544.
Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods, 383-411.
Grevatt, P. C. (1998a). Toxicological review of hexavalent chromium. Support of Summary Information on the Integrated Risk Information System (IRIS), US Environmental Protection Agency Washington DC, US.
Grevatt, P. C. (1998b). Toxicological review of trivalent chromium. Support of Summary Information on the Integrated Risk Information System (IRIS), US Environmental Protection Agency Washington DC, US.
Hamel, S. C., Buckley, B., & Lioy, P. J. (1998). Bioaccessibility of metals in soils for different liquid to solid ratios in synthetic gastric fluid. Environmental Science & Technology, 32(3), 358-362.
Hamel, S. C., Ellickson, K. M., & Lioy, P. J. (1999). The estimation of the bioaccessibility of heavy metals in soils using artificial biofluids by two novel methods: mass-balance and soil recapture. Science of the Total Environment, 243, 273-283.
Hong, J., Wang, Y., McDermott, S., Cai, B., Aelion, C. M., & Lead, J. (2016). The use of a physiologically-based extraction test to assess relationships between bioaccessible metals in urban soil and neurodevelopmental conditions in children. Environmental Pollution, 212, 9-17.
Horwitz, W. (2000). Official methods of analysis of the AOAC International (Vol. 18): The Association.
Hseu, Z.-Y. (2006). Concentration and distribution of chromium and nickel fractions along a serpentinitic toposequence. Soil science, 171(4), 341-353.
Jien, S.-H., Tsai, C.-C., Hseu, Z.-Y., & Chen, Z.-S. (2011). Baseline concentrations of toxic elements in metropolitan park soils of Taiwan. Terrestrial and Aquatic Environmental Toxicology, 5(1), 1-7.
Kelepertzis, E., & Stathopoulou, E. (2013). Availability of geogenic heavy metals in soils of Thiva town (central Greece). Environmental Monitoring and Assessment, 185(11), 9603-9618.
Kierczak, J., Neel, C., Aleksander-Kwaterczak, U., Helios-Rybicka, E., Bril, H., & Puziewicz, J. (2008). Solid speciation and mobility of potentially toxic elements from natural and contaminated soils: A combined approach. Chemosphere, 73(5), 776-784.
Kuck, P. (2007). Minerals Yearbook: Nickel [Advance Release]. US Geological Survey. http://minerals. usgs. gov/minerals/pubs/commodity/nickel/myb1-2007-nicke. pdf.
Li, S.-W., Li, J., Li, H.-B., Naidu, R., & Ma, L. (2015). Arsenic bioaccessibility in contaminated soils: coupling in vitro assays with sequential and HNO3 extraction. Journal of Hazardous Materials, 295, 145-152.
Luo, X.-s., Yu, S., & Li, X.-d. (2012). The mobility, bioavailability, and human bioaccessibility of trace metals in urban soils of Hong Kong. Applied Geochemistry, 27(5), 995-1004.
McLean, E. (1982). Soil pH and lime requirement. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, 199-224.
Medlin, E. A. (1997). An in vitro method for estimating the relative bioavailability of lead in humans. Master''s Thesis, Department of Geological Sciences, University of Colorado at Boulder.
Minekus, M., Marteau, P., & Havenaar, R. (1995). Multicompartmental dynamic computer-controlled model simulating the stomach and small intestine. Alternatives to laboratory animals: ATLA.
Molly, K., Woestyne, M., & Verstraete, W. (1993). Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Applied Microbiology and Biotechnology, 39(2), 254-258.
Nelson, D., & Sommer, L. (1982). Total Carbon, Organic Carbon and Organic Matter In: Pager, AL, RH Hiller and DR Keenay,(ed.) Method of Soil Analysis, Part II. Paper Presented at the Am. Soc. of Agron.
Oomen, A. G., Hack, A., Minekus, M., Zeijdner, E., Cornelis, C., Schoeters, G., Verstraete, W., Van de Wiele, T., Wragg, J., & Rompelberg, C. J. (2002). Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environmental Science & Technology, 36(15), 3326-3334.
Oze, C., Fendorf, S., Bird, D. K., & Coleman, R. G. (2004). Chromium geochemistry of serpentine soils. International Geology Review, 46(2), 97-126.
Paustenbach, D. J. (2000). The practice of exposure assessment: a state-of-the-art review. Journal of Toxicology and Environmental Health Part B: Critical Reviews, 3(3), 179-291.
Poggio, L., Vrščaj, B., Schulin, R., Hepperle, E., & Marsan, F. A. (2009). Metals pollution and human bioaccessibility of topsoils in Grugliasco (Italy). Environmental Pollution, 157(2), 680-689.
Rodrigues, S., Henriques, B., da Silva, E. F., Pereira, M., Duarte, A., & Römkens, P. (2010). Evaluation of an approach for the characterization of reactive and available pools of twenty potentially toxic elements in soils: Part I–The role of key soil properties in the variation of contaminants’ reactivity. Chemosphere, 81(11), 1549-1559.
Rodriguez, R. R., Basta, N. T., Casteel, S. W., & Pace, L. W. (1999). An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media. Environmental Science & Technology, 33(4), 642-649.
Ruby, M. V., Davis, A., Link, T. E., Schoof, R., Chaney, R. L., Freeman, G. B., & Bergstrom, P. (1993). Development of an in vitro screening test to evaluate the in vivo bioaccessibility of ingested mine-waste lead. Environmental Science & Technology, 27(13), 2870-2877.
Ruby, M. V., Davis, A., Schoof, R., Eberle, S., & Sellstone, C. M. (1996). Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environmental Science & Technology, 30(2), 422-430.
Ruby, M. V., Schoof, R., Brattin, W., Goldade, M., Post, G., Harnois, M., Mosby, D. E., Casteel, S. W., Berti, W., & Carpenter, M. (1999). Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environmental Science & Technology, 33(21), 3697-3705.
Semple, K. T., Doick, K. J., Jones, K. C., Burauel, P., Craven, A., & Harms, H. (2004). Peer reviewed: defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated: ACS Publications.
Sialelli, J., Urquhart, G. J., Davidson, C. M., & Hursthouse, A. S. (2010). Use of a physiologically based extraction test to estimate the human bioaccessibility of potentially toxic elements in urban soils from the city of Glasgow, UK. Environmental Geochemistry and Health, 32(6), 517-527.
Sutherland, R. A., & Tack, F. M. (2003). Fractionation of Cu, Pb and Zn in certified reference soils SRM 2710 and SRM 2711 using the optimized BCR sequential extraction procedure. Advances in Environmental Research, 8(1), 37-50.
Tessier, A., Campbell, P. G., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844-851.
Unda-Calvo, J., Martínez-Santos, M., & Ruiz-Romera, E. (2017). Chemical and physiological metal bioaccessibility assessment in surface bottom sediments from the Deba River urban catchment: Harmonization of PBET, TCLP and BCR sequential extraction methods. Ecotoxicology and Environmental Safety, 138, 260-270.
Ure, A. (1990). Methods of analysis of heavy metals in soils. Heavy Metals in Soils., 40-80.
USEPA. (2004). National Priorities List(NPL)Sites with fiscal year1982–2003, Records of Decision (RODs). USEPA-June 2003, Office of Emergency and Remedial Response, OERCLIS.
USEPA. (2012). Standard Operating Procedure for an In Vitro Bioaccessibility Assays for Lead in Soil. Washinton, DC: U.S. Environmental Protection Agency. EPA 9200.2-86.
Wragg, J., & Cave, M. (2003). In-vitro methods for the measurement of the oral bioaccessibility of selected metals and metalloids in soils: a critical review: R&D Technical Report, 5-62.
Zhu, X., Yang, F., & Wei, C. (2015). Factors influencing the heavy metal bioaccessibility in soils were site dependent from different geographical locations. Environmental Science and Pollution Research, 22(18), 13939-13949.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊