張英琇. (2007). 海岸山脈蛇紋岩土壤金屬元素之生物地質化學性質. 國立屏東科技大學環境工程與科學系碩士論文.行政院環境保護署環境檢驗所. (2015). 土壤中重金屬檢測方法–王水消化法 (NIEA S321.64B).
陳肇夏. (1998). 台灣的變質岩. 台灣的地質之十一, 經濟部中央地質調查所編印. 第 356 頁
Alexander, E., Adamson, C., Zinke, P., & Graham, R. (1989). Soils and conifer forest productivity on serpentinized peridotite of the Trinity ophiolite, California. Soil Science, 148(6), 412-423.
Alexander, E. B., Ellis, C. C., & Burke, R. (2007). A chronosequence of soils and vegetation on serpentine terraces in the Klamath Mountains, USA. Soil Science, 172(7), 565-576.
Alloway, B. J. (2013). Heavy Metals in Soils, Springer. London. doi. org/10.1007/978-94-007-4470-7.
Bakircioglu, D., Kurtulus, Y. B., & Ibar, H. (2011). Investigation of trace elements in agricultural soils by BCR sequential extraction method and its transfer to wheat plants. Environmental Monitoring and Assessment, 175(1), 303-314.
Basta, N., & Gradwohl, R. (2000). Estimation of Cd, Pb, and Zn bioavailability in smelter-contaminated soils by a sequential extraction procedure. Journal of Soil Contamination, 9(2), 149-164.
Bruce, S., Noller, B., Matanitobua, V., & Ng, J. (2007). In vitro physiologically based extraction test (PBET) and bioaccessibility of arsenic and lead from various mine waste materials. Journal of Toxicology and Environmental Health, Part A, 70(19), 1700-1711.
Casteel, S. W., Cowart, R. P., Weis, C. P., Henningsen, G. M., Hoffman, E., Brattin, W. J., Guzman, R. E., Starost, M. F., Payne, J. T., & Stockham, S. L. (1997). Bioavailability of lead to juvenile swine dosed with soil from the Smuggler Mountain NPL site of Aspen, Colorado. Toxicological Sciences, 36(2), 177-187.
Cheng, C.-H., Jien, S.-H., Iizuka, Y., Tsai, H., Chang, Y.-H., & Hseu, Z.-Y. (2011). Pedogenic chromium and nickel partitioning in serpentine soils along a toposequence. Soil Science Society of America Journal, 75(2), 659-668.
Cheng, C.-H., Jien, S.-H., Tsai, H., Chang, Y.-H., Chen, Y.-C., & Hseu, Z.-Y. (2009). Geochemical element differentiation in serpentine soils from the ophiolite complexes, eastern Taiwan. Soil Science, 174(5), 283-291.
Coleman, R. G. (1977). Ophiolites: ancient oceanic lithosphere? (Vol. 12): Springer Science & Business Media.
Costa, M., & Klein, C. B. (2006). Toxicity and carcinogenicity of chromium compounds in humans. Critical Reviews in Toxicology, 36(2), 155-163.
Davis, A., Ruby, M. V., & Bergstrom, P. D. (1992). Bioavailability of arsenic and lead in soils from the Butte, Montana, mining district. Environmental Science & Technology, 26(3), 461-468.
De Miguel, E., Mingot, J., Chacón, E., & Charlesworth, S. (2012). The relationship between soil geochemistry and the bioaccessibility of trace elements in playground soil. Environmental Geochemistry and Health, 34(6), 677-687.
Denkhaus, E., & Salnikow, K. (2002). Nickel essentiality, toxicity, and carcinogenicity. Critical Reviews in Oncology/hematology, 42(1), 35-56.
Dhal, B., Thatoi, H., Das, N., & Pandey, B. (2013). Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review. Journal of Hazardous Materials, 250, 272-291.
DIN, Deutsches Institut fur Normung e. V. (2000). Soil Quality-Absorption availability of organic and inorganic pollutants from contaminated soil material. DIN E, 19738.
Dodds, W., & Hsu, C. (1982). Introduction-Strengths and Limitations of the Pig as an Animal-Model. Paper presented at the Federation Proceedings.
Ellickson, K., Meeker, R., Gallo, M., Buckley, B., & Lioy, P. (2001). Oral Bioavailability of Lead and Arsenic from a NIST Standard Reference Soil Material. Archives of Environmental Contamination and Toxicology, 40(1), 128-135.
Fay, M. (2005). Toxicological profile for nickel: Agency for Toxic Substances and Disease Registry.
Fendorf, S., La Force, M. J., & Li, G. (2004). Temporal changes in soil partitioning and bioaccessibility of arsenic, chromium, and lead. Journal of Environmental Quality, 33(6), 2049-2055.
Freeman, G., Dill, J., Johnson, J., Kurtz, P., Parham, F., & Matthews, H. (1996). Comparative absorption of lead from contaminated soil and lead salts by weanling Fischer 344 rats. Toxicological Sciences, 33(1), 109-119.
Freeman, G., Johnson, J., KJLLINGER, J., Liao, S., Davis, A., Ruby, M., Chaney, R., Lovre, S., & Bergstrom, P. (1993). Bioavailability of arsenic in soil impacted by smelter activities following oral administration in rabbits. Toxicological Sciences, 21(1), 83-88.
Freeman, G., Johnson, J., Liao, S., Feder, P., Davis, A., Ruby, M., Schoof, R., Chaney, R., & Bergstrom, P. (1994). Absolute bioavailability of lead acetate and mining waste lead in rats. Toxicology, 91(2), 151-163.
Freeman, G., Schoof, R., Ruby, M., Davis, A., Dill, J., Liao, S., Lapin, C., & Bergstrom, P. (1995). Bioavailability of arsenic in soil and house dust impacted by smelter activities following oral administration in cynomolgus monkeys. Toxicological Sciences, 28(2), 215-222.
Gardner, W. H. (1986). Water content. Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods, 493-544.
Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods, 383-411.
Grevatt, P. C. (1998a). Toxicological review of hexavalent chromium. Support of Summary Information on the Integrated Risk Information System (IRIS), US Environmental Protection Agency Washington DC, US.
Grevatt, P. C. (1998b). Toxicological review of trivalent chromium. Support of Summary Information on the Integrated Risk Information System (IRIS), US Environmental Protection Agency Washington DC, US.
Hamel, S. C., Buckley, B., & Lioy, P. J. (1998). Bioaccessibility of metals in soils for different liquid to solid ratios in synthetic gastric fluid. Environmental Science & Technology, 32(3), 358-362.
Hamel, S. C., Ellickson, K. M., & Lioy, P. J. (1999). The estimation of the bioaccessibility of heavy metals in soils using artificial biofluids by two novel methods: mass-balance and soil recapture. Science of the Total Environment, 243, 273-283.
Hong, J., Wang, Y., McDermott, S., Cai, B., Aelion, C. M., & Lead, J. (2016). The use of a physiologically-based extraction test to assess relationships between bioaccessible metals in urban soil and neurodevelopmental conditions in children. Environmental Pollution, 212, 9-17.
Horwitz, W. (2000). Official methods of analysis of the AOAC International (Vol. 18): The Association.
Hseu, Z.-Y. (2006). Concentration and distribution of chromium and nickel fractions along a serpentinitic toposequence. Soil science, 171(4), 341-353.
Jien, S.-H., Tsai, C.-C., Hseu, Z.-Y., & Chen, Z.-S. (2011). Baseline concentrations of toxic elements in metropolitan park soils of Taiwan. Terrestrial and Aquatic Environmental Toxicology, 5(1), 1-7.
Kelepertzis, E., & Stathopoulou, E. (2013). Availability of geogenic heavy metals in soils of Thiva town (central Greece). Environmental Monitoring and Assessment, 185(11), 9603-9618.
Kierczak, J., Neel, C., Aleksander-Kwaterczak, U., Helios-Rybicka, E., Bril, H., & Puziewicz, J. (2008). Solid speciation and mobility of potentially toxic elements from natural and contaminated soils: A combined approach. Chemosphere, 73(5), 776-784.
Kuck, P. (2007). Minerals Yearbook: Nickel [Advance Release]. US Geological Survey. http://minerals. usgs. gov/minerals/pubs/commodity/nickel/myb1-2007-nicke. pdf.
Li, S.-W., Li, J., Li, H.-B., Naidu, R., & Ma, L. (2015). Arsenic bioaccessibility in contaminated soils: coupling in vitro assays with sequential and HNO3 extraction. Journal of Hazardous Materials, 295, 145-152.
Luo, X.-s., Yu, S., & Li, X.-d. (2012). The mobility, bioavailability, and human bioaccessibility of trace metals in urban soils of Hong Kong. Applied Geochemistry, 27(5), 995-1004.
McLean, E. (1982). Soil pH and lime requirement. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, 199-224.
Medlin, E. A. (1997). An in vitro method for estimating the relative bioavailability of lead in humans. Master''s Thesis, Department of Geological Sciences, University of Colorado at Boulder.
Minekus, M., Marteau, P., & Havenaar, R. (1995). Multicompartmental dynamic computer-controlled model simulating the stomach and small intestine. Alternatives to laboratory animals: ATLA.
Molly, K., Woestyne, M., & Verstraete, W. (1993). Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. Applied Microbiology and Biotechnology, 39(2), 254-258.
Nelson, D., & Sommer, L. (1982). Total Carbon, Organic Carbon and Organic Matter In: Pager, AL, RH Hiller and DR Keenay,(ed.) Method of Soil Analysis, Part II. Paper Presented at the Am. Soc. of Agron.
Oomen, A. G., Hack, A., Minekus, M., Zeijdner, E., Cornelis, C., Schoeters, G., Verstraete, W., Van de Wiele, T., Wragg, J., & Rompelberg, C. J. (2002). Comparison of five in vitro digestion models to study the bioaccessibility of soil contaminants. Environmental Science & Technology, 36(15), 3326-3334.
Oze, C., Fendorf, S., Bird, D. K., & Coleman, R. G. (2004). Chromium geochemistry of serpentine soils. International Geology Review, 46(2), 97-126.
Paustenbach, D. J. (2000). The practice of exposure assessment: a state-of-the-art review. Journal of Toxicology and Environmental Health Part B: Critical Reviews, 3(3), 179-291.
Poggio, L., Vrščaj, B., Schulin, R., Hepperle, E., & Marsan, F. A. (2009). Metals pollution and human bioaccessibility of topsoils in Grugliasco (Italy). Environmental Pollution, 157(2), 680-689.
Rodrigues, S., Henriques, B., da Silva, E. F., Pereira, M., Duarte, A., & Römkens, P. (2010). Evaluation of an approach for the characterization of reactive and available pools of twenty potentially toxic elements in soils: Part I–The role of key soil properties in the variation of contaminants’ reactivity. Chemosphere, 81(11), 1549-1559.
Rodriguez, R. R., Basta, N. T., Casteel, S. W., & Pace, L. W. (1999). An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media. Environmental Science & Technology, 33(4), 642-649.
Ruby, M. V., Davis, A., Link, T. E., Schoof, R., Chaney, R. L., Freeman, G. B., & Bergstrom, P. (1993). Development of an in vitro screening test to evaluate the in vivo bioaccessibility of ingested mine-waste lead. Environmental Science & Technology, 27(13), 2870-2877.
Ruby, M. V., Davis, A., Schoof, R., Eberle, S., & Sellstone, C. M. (1996). Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environmental Science & Technology, 30(2), 422-430.
Ruby, M. V., Schoof, R., Brattin, W., Goldade, M., Post, G., Harnois, M., Mosby, D. E., Casteel, S. W., Berti, W., & Carpenter, M. (1999). Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environmental Science & Technology, 33(21), 3697-3705.
Semple, K. T., Doick, K. J., Jones, K. C., Burauel, P., Craven, A., & Harms, H. (2004). Peer reviewed: defining bioavailability and bioaccessibility of contaminated soil and sediment is complicated: ACS Publications.
Sialelli, J., Urquhart, G. J., Davidson, C. M., & Hursthouse, A. S. (2010). Use of a physiologically based extraction test to estimate the human bioaccessibility of potentially toxic elements in urban soils from the city of Glasgow, UK. Environmental Geochemistry and Health, 32(6), 517-527.
Sutherland, R. A., & Tack, F. M. (2003). Fractionation of Cu, Pb and Zn in certified reference soils SRM 2710 and SRM 2711 using the optimized BCR sequential extraction procedure. Advances in Environmental Research, 8(1), 37-50.
Tessier, A., Campbell, P. G., & Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844-851.
Unda-Calvo, J., Martínez-Santos, M., & Ruiz-Romera, E. (2017). Chemical and physiological metal bioaccessibility assessment in surface bottom sediments from the Deba River urban catchment: Harmonization of PBET, TCLP and BCR sequential extraction methods. Ecotoxicology and Environmental Safety, 138, 260-270.
Ure, A. (1990). Methods of analysis of heavy metals in soils. Heavy Metals in Soils., 40-80.
USEPA. (2004). National Priorities List(NPL)Sites with fiscal year1982–2003, Records of Decision (RODs). USEPA-June 2003, Office of Emergency and Remedial Response, OERCLIS.
USEPA. (2012). Standard Operating Procedure for an In Vitro Bioaccessibility Assays for Lead in Soil. Washinton, DC: U.S. Environmental Protection Agency. EPA 9200.2-86.
Wragg, J., & Cave, M. (2003). In-vitro methods for the measurement of the oral bioaccessibility of selected metals and metalloids in soils: a critical review: R&D Technical Report, 5-62.
Zhu, X., Yang, F., & Wei, C. (2015). Factors influencing the heavy metal bioaccessibility in soils were site dependent from different geographical locations. Environmental Science and Pollution Research, 22(18), 13939-13949.