跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/08 23:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐子琇
研究生(外文):Tzu-Shiow Hsu
論文名稱:探討土壤中鎘、鉛之健康風險評估−以臺灣桃園農地土壤為例
論文名稱(外文):Health Risk Assessment of Cadmium and Lead in Soils−A Case Study of Contaminated Farmland in Taoyuan, Taiwan
指導教授:席行正
指導教授(外文):Hsing-Cheng Hsi
口試日期:2017-06-29
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:147
中文關鍵詞:重金屬農地健康風險生物可及性
外文關鍵詞:Heavy MetalsFarmlandHealth Risk AssessmentBioaccessibility
相關次數:
  • 被引用被引用:0
  • 點閱點閱:304
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
截至目前為止,臺灣環保署列管土壤污染場址中,以重金屬污染佔比最高。長期引灌含有重金屬的廢水,會導致土壤中重金屬的累積,並經由誤食土壤、吸入揚塵、皮膚接觸或透過食物鏈等暴露途徑影響人體健康,因此土壤重金屬污染問題不容小覷。本研究以桃園蘆竹鄉福興段與德林段的污染農地為例,藉由土壤性質分析、序列萃取法以及體外萃取試驗,探討農地土壤性質、土壤中鎘、鉛化學型態及生物可及性之間的關係。此外,考量農地休耕現況,目標受體(孩童與成人)暴露到鎘、鉛主要經由誤食土壤、皮膚接觸、吸入揚塵以及日常食物攝入,進行健康風險評估。
由土壤性質結果顯示,福興段土壤pH約為4.89、有機質含量3.44%、黏粒含量13.9%,為砂質壤土或壤土;德林段土壤pH約為6.32、有機質含量1.56%、黏粒含量40.2%,為黏質壤土或壤土。此外,在福興段的土壤中,重金屬鎘主要以酸可溶解態存在,其次是殘餘態;德林段中則以酸可溶解態與鐵錳氧化態為主。在兩段土壤中,重金屬鉛則是以鐵錳氧化態與有機質氧化態為主。在不考慮參數分布的情況下,健康風險評估結果顯示,誤食土壤貢獻一定的風險比例(鎘: 13.4−50.2%; 鉛: 61.9−95.2%),因此土壤重金屬的生物可及性有必要被考量,以提高評估的準確度,使模擬結果更符合實際狀況。此外,經蒙地卡羅模擬可知,鎘的機率分布主要受到飲食習慣的影響,而鉛則是與土壤的暴露有較明顯的關係。整體而言,當生物可及性被考量時,經由誤食土壤暴露到重金屬鎘、鉛的風險比例會降低。因此建議在未來的健康風險評估中,應加入生物可及性之概念,提高評估的真實性,而本研究之結果可供為政府與相關單位在未來對污染場址管理與決策的參考依據。
Based on the statistical data of Taiwan Environmental Protection Administration, soil contaminated by heavy metal was severe in a number of control and remediation sites. With long-term irrigation by water containing heavy metals, these metals would accumulate in soil and then cause health injury through the oral soil, dermal contact, inhalation, and other exposure pathways. Therefore, the exposure to metal-contaminated soils is highly needed to be noticed. In this study, soil samples were collected from contaminated farmland in Fuxing and Delin sections of Taoyuan City in Taiwan. Soil property analysis, sequential extraction procedure (SEP), and two in-vitro assays, namely physiologically based extraction test (PBET) and simplified bioaccessibility extraction test (SBET), were used to discuss the relationship between soil properties, metal speciation in soil, and the bioaccessibility of Cd and Pb. Moreover, the target subjects, namely the children and the adults, were evaluated assuming mainly exposing to Cd and Pb through the oral soil, dermal contact, inhalation, and daily food ingestion. The adverse health effects of exposure to soils containing Cd and Pb were then evaluated based on risk assessment approaches.
The results of soil property analysis showed that soil texture of Fuxing section was sandy loam and loam (pH = 4.89, organic content = 3.44%, clay = 13.9%), and that of Delin section was clay loam and loam (pH = 6.32, organic content = 1.56%, clay = 40.2%). In Fuxing section, the main speciation of Cd was residual (55.6%) and acid-exchangeable (44.4%); in Delin section, the major forms of Cd was acid-exchangeable (48.8%), followed by Fe/Mn oxides (35.5%). Both in Fuxing and Delin sections, the major form of Pb was Fe/Mn oxides, followed by residual ones. Without considering the distribution of parameters, the health risk assessment results showed that the risk ratio of oral soil exposure occupied a significant proportion (Cd: 13.4−50.2%; Pb: 61.9−95.2%); so the bioaccessibility of heavy metals in soil should be considered to increase the accuracy of assessment results and make the simulation more realistic. Additionally, according to the Monte Carlo simulation, the probability density distribution of Cd was principally affected by the dietary habits, and Pb was mainly from soil exposure. In general, when the bioaccessibility of heavy metals was applied to the risk assessment, the risk ratio of oral soil would decrease. Consequently, the results of this study could be a reference for government and associated organizers to reasonably manage the contaminated sites based on health risk assessment approaches.
Acknowledgement I
中文摘要 II
Abstract III
Contents V
List of Figures X
List of Tables XIV
Chapter 1. Introduction 1
1.1. Motivation 1
1.2. Research Objectives 3
Chapter 2. Literature Review 4
2.1. Background of Heavy Metal 4
2.1.1. Cadmium, Cd 4
2.1.2. Lead, Pb 6
2.2. Relationship between Soil Characterization and Heavy Metal 8
2.3. Mobility of Soil Heavy Metal, SEP 10
2.4. Bioavailability and bioaccessibility (in-vivo test vs. in-vitro test) 17
2.5. Human Health Risk Assessment 20
2.5.1. Hazard Identification 21
2.5.2. Dose-Response Assessment 23
2.5.3. Exposure Assessment 25
2.5.4. Risk Characterization 26
Chapter 3. Materials and Methods 27
3.1. Experimental Design 27
3.2. Sampling and Pretreatment 29
3.3. Soil Characterization 32
3.3.1. pH 32
3.3.2. Water Content 32
3.3.3. Total Organic Carbon, TOC 33
3.3.4. Soil Texture Analysis 35
3.4. Soil Metal Extraction 37
3.5. Sequential Extraction Procedure, SEP 37
3.6. In-vitro Bioaccessibility Methods 39
3.6.1. Physiologically Based Extraction Test, PBET 40
3.6.2. Simple Bioaccessibility Extraction Test, SBET 42
3.7. Metal Concentration Analysis 42
3.8. Health Risk Assessment 43
3.8.1. Hazard Identification 43
3.8.1.1. Background of sites 43
3.8.1.2. Toxicity information 44
3.8.2. Dose-Response Assessment 46
3.8.3. Exposure Assessment 47
3.8.3.1. Exposure Pathways and Factors 47
3.8.3.2. Exposure Algorithm of Oral Soil 49
3.8.3.3. Exposure Algorithm of Dermal Contact 50
3.8.3.4. Exposure Algorithm of Inhalation 51
3.8.3.5. Exposure Algorithm of Food Ingestion 52
3.8.4. Risk Characterization 53
3.8.4.1. Non-Carcinogenic Risk 53
3.8.4.2. Carcinogenic Risk, CR 55
3.8.5. Uncertainty and Monte Carlo analysis 57
3.8.6. Data Processing and Statistical Analysis 57
Chapter 4. Results and Discussions 58
4.1. Geographical Properties of Soils 58
4.1.1. General soil properties 58
4.1.1. Metal Concentration in the Soils 61
4.2. Health Risk Assessment 67
4.2.1. Non-Carcinogenic Health Risk Assessment 67
4.2.2. Carcinogenic Health Risk Assessment 70
4.3. Bioaccessibility and Health Risk Assessment 74
4.3.1. Bioaccessibility of Cd and Pb 74
4.3.2. Health Risk Assessment with Soil Bioaccessibility 81
4.4. Uncertainty and Monte Carlo analysis 87
4.4.1. Non-Carcinogenic Health Risk Assessment 87
4.4.2. Carcinogenic Health Risk Assessment 94
4.5. Regression Analysis 105
Chapter 5. Conclusions and Recommendations 108
5.1. Conclusions 108
5.1.1. Soil properties 108
5.1.2. Health Risk Assessment 109
5.1.3. Health Risk Assessment with Bioaccessibility 109
5.1.4. Uncertainty and Monte Carlo analysis 110
5.1.5. Regression Analysis 110
5.2. Contributions 111
5.3. Recommendations 111
Chapter 6. References 113
Appendix 1. The parameters of health risk assessment. 128
Appendix 2. The parameters of uncertainty and Monte Carlo analysis. 136
Appendix 3. The results of Regression Analysis. 144
申雍。2000。台灣地區氣候與氣象環境之變遷與因應對策。國立臺灣大學農藝系、中華農學會、中華農藝學會。
Adriano, D. C. (2001). Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals. New York: Springer-Verlag.
Alloway, B. J. (1995). Heavy Metals in Soils (2nd ed.). Netherlands: Springer Netherlands.
Andersen, M., Raulund-Rasmussen, K., Strobel, B. W., and Hansen, H. C. (2004). The effects of tree species and site on the solubility of Cd, Cu, Ni, Pb and Zn in soils. Water, Air, and Soil Pollution, 154(1), 357-370.
Anon. (1981). Swan deaths: report names guilty men. New Scientist.
Asante-Duah, K. (2002). Public Health Risk Assessment for Human Exposure to Chemicals. Netherlands: Springer Netherlands.
ASTM. (1995). Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites. ASTM-E1739-95.
ASTM. (2000). Standard Practice for Description and Identification of Soils (Visual-Manual Procedure).
Benbrahim‐Tallaa, L., Liu, J., Webber, M. M., and Waalkes, M. P. (2007). Estrogen signaling and disruption of androgen metabolism in acquired androgen‐independence during cadmium carcinogenesis in human prostate epithelial cells. The Prostate, 67(2), 135-145.
Bowen, H. J. M. (1966). Trace Elements in Biochemistry. New York: Academic Press.
Bremner, I., and Webb, M. (1979). The Chemistry, Biochemistry and Biology of Cadmium.
Canady, R. A., Hanley, J. E., and Susten, A. S. (1997). ATSDR science panel on the bioavailability of mercury in soils: lessons learned. Risk Analysis, 17(5), 527-532.
Cao, X., Ma, L. Q., Chen, M., Hardison, D. W., and Harris, W. G. (2003). Weathering of lead bullets and their environmental effects at outdoor shooting ranges. Journal of Environmental Quality, 32(2), 526-534.
Caussy, D. (2003). Case studies of the impact of understanding bioavailability: arsenic. Ecotoxicology and Environmental Safety, 56(1), 164-173.
Chhonkar, P., Datta, S., Joshi, H., and Pathak, H. (2000a). Impact of industrial effluents on soil health and agriculture-Indian experience: Part I-Distillery and paper mill effluents. Journal of Scientific and Industrial Research, 59(5), 350-361.
Chhonkar, P., Datta, S., Joshi, H., and Pathak, H. (2000b). Impact of industrial effluents on soil health and agriculture-Indian experience: Part II-Tannery and textile industrial effluents. Journal of Scientific and Industrial Research, 59, 446-454.
Connor, J. A., Nevin, J. P., Malander, M., Stanley, C., and DeVaull, G. (1995). Tier 2 guidance manual for risk-Based corrective action, groundwater services.
Chrastný, V., Komárek, M., Procházka, J., Pechar, L., Vaněk, A., Penížek, V., and Farkaš, J. (2012). 50 years of different landscape management influencing retention of metals in soils. Journal of Geochemical Exploration, 115, 59-68.
Das, P., Samantaray, S., and Rout, G. (1997). Studies on cadmium toxicity in plants: a review. Environmental Pollution, 98(1), 29-36.
David, O., and Hoffman, S. (1977). Blood-lead and mental retardation. The Lancet, 309(8017), 906.
David, O. J. (1974). Association between lower level lead concentrations and hyperactivity in children. Environmental Health Perspectives, 7, 17.
Demidova, O., and Cherp, A. (2005). Risk assessment for improved treatment of health considerations in EIA. Environmental Impact Assessment Review, 25(4), 411-429.
Denys, S., Caboche, J., Tack, K., Rychen, G., Wragg, J., Cave, M., Jondreville, C., and Feidt, C. (2012). In vivo validation of the unified BARGE method to assess the bioaccessibility of arsenic, antimony, cadmium, and lead in soils. Environmental Science and Technology, 46(11), 6252-6260.
enHealth Council. (2002). Environmental health risk assessment: guidelines for assessing human health risks from environmental hazards.
Faroon, O., Ashizawa, A., Wright, S., Tucker, P., Jenkins, K., Ingerman, L., and Rudisill, C. (2012). Toxicological Profile for Cadmium.
Farrah, H., and Pickering, W. (1977). Influence of clay-solute interactions on aqueous heavy metal ion levels. Water, Air, and Soil Pollution, 8(2), 189-197.
Foy, C., Chaney, R. t., and White, M. (1978). The physiology of metal toxicity in plants. Annual Review of Plant Physiology, 29(1), 511-566.
Friberg., L., and Horton, R. J. M. (1976). Toxicology of Metals. EPA-600/1-76-018 EPA-68-02-1287.
Gardner, W. H. (1986). Water Content. Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods, 493-544. America: Soil Science Society of America American Society of Agronomy.
Gee, G. W., and Bauder, J. W. (1986). Particle-size Analysis. Methods of Soil Analysis: Part 1—Physical and Mineralogical Methods, 383-411. America: Soil Science Society of America American Society of Agronomy.
Grissom, R., Abernathy, C. O., Susten, A., and Donohue, J. (1999). Estimating total arsenic exposure in the United States. Arsenic Exposure and Health Effects, 51-60.
Hardison Jr, D. W., Ma, L. Q., Luongo, T., and Harris, W. G. (2004). Lead contamination in shooting range soils from abrasion of lead bullets and subsequent weathering. Science of the Total Environment, 328(1-3), 175-183.
Hart, B. T. (1974). A compilation of Australian water quality criteria. Australian Water Resources Council, Technical Paper No. 7.
Hu, X., Zhang, Y., Luo, J., Wang, T., Lian, H., and Ding, Z. (2011). Bioaccessibility and health risk of arsenic, mercury and other metals in urban street dusts from a mega-city, Nanjing, China. Environmental Pollution, 159(5), 1215-1221.
Jin, C. W., Zheng, S. J., He, Y. F., Zhou, G. D., and Zhou, Z. X. (2005). Lead contamination in tea garden soils and factors affecting its bioavailability. Chemosphere, 59(8), 1151-1159.
Juhasz, A. L., Smith, E., Nelson, C., Thomas, D. J., and Bradham, K. (2014). Variability associated with As in vivo–in vitro correlations when using different bioaccessibility methodologies. Environmental Science and Technology, 48(19), 11646-11653.
Juhasz, A. L., Weber, J., Naidu, R., Gancarz, D., Rofe, A., Todor, D., and Smith, E. (2010). Determination of cadmium relative bioavailability in contaminated soils and its prediction using in vitro methodologies. Environmental Science and Technology, 44(13), 5240-5247.
Kang, Y., Pan, W., Liang, S., Li, N., Zeng, L., Zhang, Q., and Luo, J. (2016). Assessment of relative bioavailability of heavy metals in soil using in vivo mouse model and its implication for risk assessment compared with bioaccessibility using in vitro assay. Environmental Geochemistry and Health, 38(5), 1183-1191.
Kelley, M. E., Brauning, S. E., Schoof, R. A., and Ruby, M. V. (2002). Assessing Oral Bioavailability of Metals in Soil.
Lamb, D. T., Ming, H., Megharaj, M., and Naidu, R. (2009). Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils. Journal of Hazardous Materials, 171(1), 1150-1158.
Li, J., Li, K., Cave, M., Li, H. B., and Ma, L. Q. (2015). Lead bioaccessibility in 12 contaminated soils from China: Correlation to lead relative bioavailability and lead in different fractions. Journal of Hazardous Materials, 295, 55-62.
Li, S. W., Sun, H. J., Li, H. B., Luo, J., and Ma, L. Q. (2016). Assessment of cadmium bioaccessibility to predict its bioavailability in contaminated soils. Environment International, 94, 600-606.
Li, Y., and Zhang, M. K. (2013). A comparison of physiologically based extraction test (PBET) and single-extraction methods for release of Cu, Zn, and Pb from mildly acidic and alkali soils. Environmental Science and Pollution Research, 20(5), 3140-3148.
Ljung, K., Oomen, A., Duits, M., Selinus, O., and Berglund, M. (2007). Bioaccessibility of metals in urban playground soils. Journal of Environmental Science and Health Part A, 42(9), 1241-1250.
Lockwood, A. P. M. (1976). Effects of Pollutants on Aquatic Organisms.
Luo, X. S., Ding, J., Xu, B., Wang, Y. J., Li, H. B., and Yu, S. (2012). Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils. Science of the Total Environment, 424, 88-96.
Ma, L. Q., and Rao, G. N. (1997). Chemical fractionation of cadmium, copper, nickel, and zinc in contaminated soils. Journal of Environmental Quality, 26(1), 259-264.
Mahaffery, K. R., and Michaelson, A. I. (1980). The interaction between lead and nutrition. Message posted to http://www.fao.org/home/en/.
Miller, W. R. (1996). Estrogen and Breast Cancer (Medical Intelligence Unit).
Moore, M., Meredith, P., and Goldberg, A. (1977). A retrospective analysis of blood-lead in mentally retarded children. The Lancet, 309(8014), 717-719.
NAS/NAE. (1973). Water Quality Criteria 1972. America: National Service Center for Environmental Publication. EPA-R3-73-033.
Nelson, D. W., and Sommers, L. E. (1996). Total Carbon, Organic Carbon, and Organic Matter. Methods of Soil Analysis Part 3—Chemical Methods. America: Soil Science Society of America American Society of Agronomy.
NRC. (1983). Risk assessment in the Federal Government: managing the process.
NRC. (1993). Soil survey manual.
NSCEP. (2007). Guidance for evaluating the oral bioavailability of metals in soils for use in human health risk assessment.
Ono, F. B., Penido, E. S., Tappero, R., Sparks, D., and Guilherme, L. R. G. (2016). Bioaccessibility of Cd and Pb in tailings from a zinc smelting in Brazil: implications for human health. Environmental Geochemistry and Health, 38(5), 1083-1096.
Paustenbach, D. J. (2000). The practice of exposure assessment: a state-of-the-art review. Journal of Toxicology and Environmental Health Part B: Critical Reviews, 3(3), 179-291.
Peech, M. (1965). Hydrogen-Ion Activity. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties. America: American Society of Agronomy Soil Science Society of America.
Pueyo, M., Rauret, G., Lück, D., Yli-Halla, M., Muntau, H., Quevauviller, P., and López-Sánchez, J. (2001). Certification of the extractable contents of Cd, Cr, Cu, Ni, Pb and Zn in a freshwater sediment following a collaboratively tested and optimised three-step sequential extraction procedure. Journal of Environmental Monitoring, 3(2), 243-250.
Quenea, K., Lamy, I., Winterton, P., Bermond, A., and Dumat, C. (2009). Interactions between metals and soil organic matter in various particle size fractions of soil contaminated with waste water. Geoderma, 149(3), 217-223.
Rattan, R. K., Datta, S. P., Chhonkar, P. K., Suribabu, K., and Singh, A. K. (2005). Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater—a case study. Agriculture, Ecosystems and Environment, 109(3), 310-322.
Rieuwerts, J., Thornton, I., Farago, M., and Ashmore, M. (1998). Factors influencing metal bioavailability in soils: preliminary investigations for the development of a critical loads approach for metals. Chemical Speciation and Bioavailability, 10(2), 61-75.
Rooney, C. P., McLaren, R. G., and Condron, L. M. (2007). Control of lead solubility in soil contaminated with lead shot: effect of soil pH. Environmental Pollution, 149(2), 149-157.
Ruby, M. V., Davis, A., Schoof, R., Eberle, S., and Sellstone, C. M. (1996). Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environmental Science and Technology, 30(2), 422-430.
Ruby, M. V., Schoof, R., Brattin, W., Goldade, M., Post, G., Harnois, M., Mosby, D. E., Casteel,S. W., Berti, W., Carpenter, M., Edwards, D., Cragin, D., and Chappell, W. (1999). Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environmental Science and Technology, 33(21), 3697-3705.
Satarug, S., Baker, J. R., Urbenjapol, S., Haswell-Elkins, M., Reilly, P. E., Williams, D. J., and Moore, M. R. (2003). A global perspective on cadmium pollution and toxicity in non-occupationally exposed population. Toxicology Letters, 137(1), 65-83.
Sauvé, S., Hendershot, W., and Allen, H. E. (2000). Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environmental Science and Technology, 34(7), 1125-1131.
Schilderman, P., Moonen, E., Kempkers, P., and Kleinjans, J. (1997). Bioavailability of soil-adsorbed cadmium in orally exposed male rats. Environmental Health Perspectives, 105(2), 234.
Schroder, J. L., Basta, N. T., Si, J., Casteel, S. W., Evans, T., and Payton, M. (2003). In vitro gastrointestinal method to estimate relative bioavailable cadmium in contaminated soil. Environmental Science and Technology, 37(7), 1365-1370.
Shacklette, H. T., Hamilton, J., Boerngen, J. G., and Bowles, J. M. (1971). Elemental composition of surface materials in the conterminous United States.
Shen, Z. G., Li, X. D., Wang, C. C., Chen, H. M., and Chua, H. (2002). Lead phytoextraction from contaminated soil with high-biomass plant species. Journal of Environmental Quality, 31(6), 1893-1900.
Smith, E., Weber, J., Naidu, R., McLaren, R. G., and Juhasz, A. L. (2011). Assessment of lead bioaccessibility in peri-urban contaminated soils. Journal of Hazardous Materials, 186(1), 300-305.
Strobel, B. W., Borggaard, O. K., Hansen, H. C. B., Andersen, M., and Raulund‐Rasmussen, K. (2005). Dissolved organic carbon and decreasing pH mobilize cadmium and copper in soil. European Journal of Soil Science, 56(2), 189-196.
Strobel, B. W., Hansen, H., Borggaard, O. K., Andersen, M. K., and Raulund-Rasmussen, K. (2001). Composition and reactivity of DOC in forest floor soil solutions in relation to tree species and soil type. Biogeochemistry, 56(1), 1-26.
Sutherland, R. A., and Tack, F. M. (2003). Fractionation of Cu, Pb and Zn in certified reference soils SRM 2710 and SRM 2711 using the optimized BCR sequential extraction procedure. Advances in Environmental Research, 8(1), 37-50.
Swedlund, P. J., Webster, J. G., and Miskelly, G. M. (2003). The effect of SO4 on the ferrihydrite adsorption of Co, Pb and Cd: ternary complexes and site heterogeneity. Applied Geochemistry, 18(11), 1671-1689.
Taiwan, BFDA (2000). Survey of Lead and Copper in Fresh Egg and Pidan. 18th Annual Report of Bureau of Food and Drug Administration, 180-186.
Taiwan, EPA (2000). 土壤污染評估技術規範之研究計畫報告。EPA-89-U1E1-03-1001.
Taiwan, EPA (2008). Compilation of exposure factors. EPA-97-DOH96-HP-1801.
Taiwan, EPA (2005). 土壤與地下水污染場址健康風險評估評析原則參數使用指引。
Taiwan, EPA (2015a). Soil metals analysis-microwave assisted aqua regia digestion.
Taiwan, EPA (2015b). Special report on completion and validation child-specific exposure factor in Taiwan.. EPA-104-GA01-03-A138.
Taiwan, FDR (2013). Survey of Heavy Metals in Marketed Seafood from Taiwan. 4th Annual Report of Taiwan Food and Drug Administration, 70-76.
Taiwan, FDR (2015). Investigation on Heavy Metals (Cadmium, Mercury and Lead) in Rice. 6th Annual Report of Taiwan Food and Drug Administration, 59-66.
Taiwan, FDR (2016). Survey on the Contents of Cadmium and Lead in Fruits and Vegetables in Taiwan. 7th Annual Report of Taiwan Food and Drug Administration, 53-59.
Tang, X., Li, Q., Wu, M., Lin, L., and Scholz, M. (2016). Review of remediation practices regarding cadmium-enriched farmland soil with particular reference to China. Journal of Environmental Management, 181, 646-662.
Tang, X. Y., Zhu, Y. G., Cui, Y. S., Duan, J., and Tang, L. (2006). The effect of ageing on the bioaccessibility and fractionation of cadmium in some typical soils of China. Environment International, 32(5), 682-689.
Tessier, A., Campbell, P. G., and Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844-851.
U.S.EPA (1989). Risk assessment guidance for superfund: human health evaluation manual (Part A).
U.S.EPA (1997). Exposure factors handbook.
U.S.EPA (2000). Risk characterization handbook.
U.S.EPA (2004a). Preliminary remediation goal PRG intercalc tables: physical chemical data.
U.S.EPA (2004b). Risk assessment guidance for superfund: Part E, supplemental guidance for dermal risk assessment.
U.S.EPA (2007a). Guidance for evaluating the oral bioavailability of metals in Soils for use in human health risk assessment.
U.S.EPA (2007b). Toxicity and exposure assessment for children''s health (TEACH).
Wali, A., Colinet, G., and Ksibi, M. (2015). Speciation of heavy metals by modified BCR sequential extraction in soils contaminated by phosphogypsum in Sfax, Tunisia. Environmental Research, Engineering and Management, 70(4), 14-25.
Wragg, J., Cave, M., Basta, N., Brandon, E., Casteel, S., Denys, S., and Tack, K. (2011). An inter-laboratory trial of the unified BARGE bioaccessibility method for arsenic, cadmium and lead in soil. Science of the Total Environment, 409(19), 4016-4030.
Zheng, K. Z. (2007). Evaluation of Different Single and Sequential Extraction Procedures of Soils Contaminated by Heavy Metals. Published master’s thesis, National Chung Hsing University, Taiwan.
Zhu, X., Yang, F., and Wei, C. (2015). Factors influencing the heavy metal bioaccessibility in soils were site dependent from different geographical locations. Environmental Science and Pollution Research, 22(18), 13939-13949.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊