跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/25 07:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李宛俞
研究生(外文):Wan-Yu Lee
論文名稱:都市交通運具移轉模式及效益評估—以臺北市自行車與機車為例
論文名稱(外文):Urban Transportation Switching Model and Benefit Assessment-A Case Study for Motorcycle to Bicycle in Taipei
指導教授:馬鴻文馬鴻文引用關係
指導教授(外文):Hwong-Wen Ma
口試日期:2017-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:78
中文關鍵詞:Agent-Based Model (ABM)運具移轉模式運具選擇效益評估
外文關鍵詞:Agent-Based Model (ABM)Switching modelMode choiceBenefit Evaluation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:241
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
世界各國都市化現象導致人口高密度集中,過度使用私人運具,特別是機車和汽車造成擁堵、空氣污染、車禍事故,不僅危害人體健康也同時影響能源耗用、生活型態和環境品質,因此為了都市交通永續發展,在運具類型、道路規劃、基礎建設上必須重新檢視與思考之。
本研究建立運具移轉效益評估方法,由Agent-Based Model (ABM)為建構模式基礎模擬其運具移轉行為;在都市的空間尺度之下,透過移轉成本(switching csot)作為誘因並以旅行成本和旅行時間作為影響參數,以臺北市作為研究邊界,對象為機車移轉至使用自行車。在模擬條件:以100位個體(agents)而言,為臺北市機車、自行車市占率設定初始值,機車83輛、自行車17輛;移轉成本為時間價值乘上騎乘距離,其中時間價值設定上下限並依個體變化。模擬結果有二:其一機車減至80輛,自行車增至20輛,移轉率為3.6%;其二為機車減至79輛,自行車增至21輛,移轉率為4.8%,移轉成本皆為3,348元,其平均時間價值為3.03元/分鐘。
以臺北市機車登記數953,120輛和年平均騎乘距離3,120公里計算,移轉率3.6%,投入移轉成本為664,400,426元,相較可減少之環境污染成本為12,238,701,883元與人體健康損害成本為132,812,342元;移轉率4.8%,投入移轉成本為885,854,315元,相較可減少之環境污染成本為16,318,031,184元與人體健康損害成本為177,080,540元。相較其值,投入移轉成本僅為環境污染成本與人體健康損害成本之不到一半。總結前述,運具移轉由機車至自行車為產生正向效應,未來可提供後續相關研究者使用或政府機關政策之參考。
Nowadays, the phenomenon of urbanization in the world leads to a high concentration of population, and excessive use of private transports, especially congestion and air pollution caused by motorcycles and cars. It’s not only endangering human health, but affecting energy consumption, lifestyles and the environmental quality. Therefore, in order to achieve sustainable development in urban transport, route planning should be rethought.
This study focused on setting up a transport switching model to simulate transport behavior, which is based on an Agent-based model (ABM). Furthermore, evaluated the benefits including human health, air quality, resources and energy consumption with lifecycle thinking.
Under the city scale, through considering the travel time and travel cost as the influencing parameters, and switching cost is for incentive to the transport mechanism, and motorcycles and bicycles as transfer objects.
In the case of 100 agents, the initial occupancy of number between motorcycles and bicycles, which are 83 motorcycles and 17 bicycles in Taipei. The switching cost depends on the value of time(VOT), multiplied by the riding distance.
The simulation results are two: The first one, the switching rate is 3.6%, which means motorcycles is reduced to 80, the number of bicycles is increased to 20.Based on the data of motorcycles'' average riding distance 3,120km we can calculate the switching cost is NTD664,400,426,and compared can be reduced the cost of environmental pollution is NTD12,238,701,883, the cost of human health damage is NTD132,812,342.The second one, the switching rate is 4.8%, which means motorcycles is reduced to 79, the number of bicycles is increased to 21. We also can calculate the switching cost is NTD885,854,315, and compared can be reduced the cost of environmental pollution is NTD16,318,031,184, the cost of human health damage is NTD177,080,540. Apparently, the value of switching cost is only less than half the cost of environmental pollution and human health damage, then slow down the consumption of limited resources,
Overall, there will be positive and effective achievements by using switching cost, which helps shift motorcyclists to bicyclists, and this study can be provided for follow-up researches or government policies.
目錄
致謝 I
摘要 II
ABSTRACT III
目錄 V
圖目錄 VII
表目錄 IX
第一章、 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 5
1.3 研究架構與範圍 6
1.4 主要創新與貢獻 8
第二章、 文獻回顧 10
2.1 運具移轉模式理論 10
2.1.1 個體選擇(Individual Choice Model) 11
2.1.2 有限理性(Bounded Rationality) 13
2.1.3 Agent-Based Model (ABM) 14
2.2 運具移轉模式影響因子 18
2.2.1 都市自行車路網 18
2.2.2 歐洲10國與自行車使用率比較 23
2.2.3 自行車與機車之旅次特性 24
2.2.4 自行車與機車之旅行成本和旅行時間 28
2.3 效益評估 29
2.3.1 生命週期思維(Life cycle thinking, LCT)探討效益評估 29
2.3.2 汽柴油機動車輛產生之空氣污染 33
2.3.3 人體健康 38
2.3.4 能源使用 43
第三章、 研究方法 46
3.1 研究流程 46
3.2 研究步驟 47
3.2.1 建立交通運具移轉模式 47
3.2.2 移轉效益評估之構建 55
3.2.3 案例示範 58
第四章、 結果與討論 61
4.1 運具移轉模式之構建結果 61
4.2 移轉效益評估之建構結果 68
4.3 案例示範結果 69
4.3.1 情境模擬移轉對空氣污染物排放量影響 69
4.3.2 情境模擬移轉成本支出與其移轉效益之衡量 71
第五章、 結論與建議 73
5.1 結論 73
5.2 建議 74
參考資料 75
1.都會區機車行車型態與排放係數研究計畫,1991,環保署
2.都會區機車行車型態與排放係數研究,2001,環保署
3.使用中車輛能源效率評估與提升研究計畫,2003,經濟部
4.都市通勤者運具選擇行為之研究,2004,邱靜淑
5.電動機車推廣之應用—生命週期評估,2004,李育明
6.都市旅次總成本模式構建之研究,2006,郭瑜堅
7.自行車通勤之關鍵影響因素研析—以臺北都會區為例,2009,鍾易良
8.我國燃料燃燒CO2排放統計與分析,2011,經濟部
9.行車成本調查分析與交通建設經濟效益評估之推廣應用,2011,交通部
10.市區自行車道規劃設計模式及效益評估機制之研究,2011,內政部營建署
11.捷運運量及空污減量效益分析-以高雄市捷運補助政策為例,2011,張哲瑞
12.我國自行車政策之研究,2011,行政院研究發展考核委員會
13.產品類別規則供使用於準備「自行車(Bicycle)」產品環境宣告(EPD),2011,美利達工業股份有限公司
14.產品類別規則供使用於準備「機器腳踏車(Motorcycles)」產品環境宣告(EPD),2011,光陽工業股份有限公司
15.通勤運具選擇行為異質性之研析:混合羅吉特模式之應用,2012,陳韋穎
16.臺北公共自行車使用行爲特性分析與友善環境建構之研究,2013,白詩滎
17.「機車調查摘要分析」,2014年,交通部
18.現有道路系統下通勤型自行車道初步路網設置之研究,2014,顏上堯
19.98年至104年「民眾日常使用運具狀況調查」摘要分析,2009-2015,交通部統計處
20.105年中華民國空氣品質監測報告105年報,2017,環保署
21.臺灣空氣污染排放量[TEDS9]線源─排放量推估手冊,2017,環保署
22.105 年薪資中位數及分布統計結果,2017,行政院主計總處
23.Individual Choice Behavior. New York, NY: John Wiley & Sons, Inc., 1959, Luce, R. D.
24.”ModelsofMan:SocialandRational,”Wiley,NewYork, 1957, Simon, H.A.
25.Theories of Bounded Rationality, 1972, Herbert A. Simon
26.”On Boundedly-Rational User Equilibrium in Transportation Systems,”TransportationScience,21(2),p.8-89, 1987, Mahmasani,H.S and Chang,G.L.,

27.Intelligent agents: theory and practice, 1995, Wooldridge, M. J., & Jennings, N. R.
28.ILUTE: an operational prototype of a comprehensive microsimulation model of urban systems. Networks and Spatial Economics, 5,217e234., 2005, Salvini, P., & Miller, E. J.
29.Simulation for the social scientist. Maidenhead,England: Open University Press.
30.Microsimulating urban systems, Computers, 2005, Gilbert, G. N., & Troitzsch, K. G.
31.Methodological guidance on the economic appraisal of health effects related to walking and cycling, 2007, WHO
32.Copenhagen Center for Prospective Population studies, 2000, Andersen et al.
33.Agent-based models. Los Angeles, CA, USA: Sage Publications., 2008 , Gilbert, N.
34.Health economic assessment tool for cycling, 2008, WHO
35.Urban Transportation and Human Health, 2011, J Mindell
36.Integrated agent-based and system dynamics modelling for simulation of sustainable mobility. Transport Reviews, 33(1), 44e70., 2013, Shafiei, E., Stefansson, H., Asgeirsson, E. I., Davidsdottir, B., & Raberto, M.
37.Health economic assessment tools(HEAT) for walking and for cycling, 2014, WHO
38.Catalysts and magnets: Built environment and bicycle commuting, 2015, Jessica E. Schoner et al.
39.Catalysts and magnets: Built environment and bicycle commuting, 2015, Jessica E. Schoner et al.
40.A Self Instructing Course in Mode Choice Modeling multinomial and nested logot models, 2006, Koppelman and Bhat
41.TRANSIMS: transportation analysis and simulation system, 1995, Smith et al.
42.STREETS: An agent-based pedestrian model (working paper No. 9). London: Centre for Advanced Spatial Analysis, 1999, Schelhorn
43.Cost–benefit analyses of walking and cycling track networks taking into account insecurity, health effects and external costs of motorized traffic, 2004, Kjartan S.lensminde
44.ILUTE: an operational prototype of a comprehensive microsimulation model of urban systems, 2005, Salvini & Miller
45.Using PLASC data to identify patterns of commuting to school, residential migration and movement between schools in Leeds, 2007, Harland & Stillwell
46.PARKAGENT: an agent-based model of parking in the city, 2008, Benenson et al.
47.Exploring the influence of urban form on work travel behavior with agent-based modelling, 2008, Lu et al.
48.Hybrid agent based simulation with adaptive learning of travel mode choices for university commuters, 2013, Shukla et al.
49.Environmental costs in the energy and transport sectors, 2013, Umweltbundesamt
50.The Complete Impact of Bicycle Use, 2014, Rebecca Johnson et al.
51.Encouraging sustainable transport choices in American households: results from an empirically grounded agent-based model, 2014, Natalini & Bravo
52.The Complete Impact of Bicycle Use, 2014, Rebecca Johnson
53.Incorporating Bounded Rationality in a Model of Endogenous Dynamics of Activity-Travel Behaviour chap.9 ,2015, Soora Rasouli & Harry Timmermans
54.Pricing local emission exposure of road traffic: An agent-based approach, 2015, Benjamin Kickhöfer & Julia Kern
55.An agent-based choice model for travel mode and departure Time and its case study in Beijing, 2015, Mingqiao Zou
56.Understanding urban mobility and the impact of public policies: The role of the agent-based models, 2016, Elena Maggi
57.DES 40A, 2016
58.GAMA documentation
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top