(3.215.180.226) 您好!臺灣時間:2021/03/06 16:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:涂培琳
研究生(外文):Pei-lin Tu
論文名稱:磁性固體鹼觸媒之合成及其應用於生質柴油製造
論文名稱(外文):Synthesis of Magnetic Solid Base Catalysts and Their Application for Biodiesel Manufacturing
指導教授:張慶源張慶源引用關係
指導教授(外文):Ching-Yuan Chang
口試日期:2017-07-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:79
中文關鍵詞:生質柴油大豆油痲瘋樹油磁性固體觸媒轉酯化反應氧化鈣氧化鎂
外文關鍵詞:Biodieselsoybean oiljatropha oilmagnetic solid catalyststransesterificationcalcium oxidemagnesium oxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:84
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究應用磁性固態鹼觸媒(CaO-MgO-SiO2-Fe3O4, CM-SM)進行轉酯化反應製備生質柴油。利用新型可回收磁性固態觸媒,可增加觸媒的回收率並能重複使用,減少材料浪費及降低廢液處理成本。藉由磁性固態鹼觸媒對大豆油轉酯化反應找出最適條件,再進行痲瘋樹油兩階段轉酯化反應,並透過分析反應後所得生質柴油性質包括酸價、碘價、動黏度、密度及熱值等性質進行討論。
鈣鎂質量比為9:1之磁性固體鹼觸媒(CM9-SM)為次微米顆粒(100~200 nm),飽和磁化量為7.76 emu/g,具有高比表面積(16.14 m2/g),能和反應物有較大的接觸機會,觸媒表面披覆之鈣含量高(17.69 wt %),具有一定之催化活性。結果顯示對大豆油進行轉酯化反應所得最適條件為甲醇與油莫耳比(M:O)為12:1、轉酯化溫度(TT)為363 K、轉酯化時間(tT)為3 h、觸媒添加量(MC)為3 wt%及觸媒鈣濃度(CCa)為17.9 wt%,其轉酯率(YF)為98.46 %。但觸媒之重複使用性不佳,主要原因為Mg的溶出、觸媒表面活性位置減少等造成催化活性之損失。於上述條件當tT為3小時時,使用第一次時轉酯率為98.3~99.74%,但重複使用第一次之轉酯率僅12.04~12.80%。在對痲瘋樹油轉酯化反應中,轉酯率達97.77%。
大豆油生質柴油及痲瘋樹油生質柴油之含水率高,且皆高於標準規範,可透過硫酸鎂脫水或蒸餾等方式去除水分,其餘性質如酸價及密度已符合法規標準(CNS 15072)。大豆油生質柴油的碘價及痲瘋樹油生質柴油的動黏度皆略高於法規,此可藉由摻配方式改善。
In this study, transesterifications of soybean oil and jatropha oil to biodiesel using magnetic solid alkali catalysts (CaO-MgO-SiO2-Fe3O4, CM-SM) were examined. The use of recyclable magnetic solid catalysts can increase the catalyst recovery efficiency and reusability, also can decrease the waste of materials and reduce the cost of wastewater retreatment. The mesoporous CM-SM catalyst was prepared by impregnant method. The characteristic analyses of biodiesel include acid value, iodine value, kinetic viscosity, density and heating value.
The CM9-SM particles are submicron particles size of 100~200 nm. It posses magnetic susceptibility of 7.76 emu/g and has high specific surface area with BET surface area of 16.14 m2/g and thus can be recovered by magnetic separation and easily contact with the reactant. The Ca concentration (CCa) in CM9-SM catalysts is as high as 17.69wt% which offers promising catalysis acitivity in transesterification process. The results of soybean-oil biodiesel (SOB) show that the proper operating conditions are 12:1 molar ratio of methanol to oil (M:O), 3 wt% of catalyst loading (MC) and 17.9 wt% Ca concentration in catalyst at 363 K (TT) for 3 hours (tT). Under the operating conditions, the yield of fatty acid methyl ester (YF) can reach 98.46 %. However, CM9-SM reusability was not good with yield declined from 98.3 ~ 99.74% to 12.04 ~ 12.80% for the second reuse. The main cause may be due to the dissolution of calcium and magnesium and deposition of organic matter on catalyst surface. Jatropha-oil biodiesel (JOB) with yield of 97.77% was producted by using a two-stage transesterification process.
Properties of SOB and JOB of acid value and density comply with standards (CNS 15072). However, the water contents are higher than the standard. The water in oil can be removed by distillation or magnesium sulfate. Furthermore, the iodine value of SOB and kimetic viscosity of JOB are slightly higher than the standards and can be improved by blending with other biodiesel.
口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract iv
目錄 vi
圖目錄 ix
表目錄 xi
符號說明及縮寫 xii
第一章 前言 1
1.1 研究背景 1
1.2 研究目的 2
1.3 研究內容 2
第二章 文獻回顧 4
2.1 目標生質物之選用 4
2.1.1 生質柴油之原料來源 4
2.1.2 痲瘋樹油 4
2.2 生質柴油 7
2.2.1 生質柴油簡介 7
2.2.2 生質柴油優缺點 8
2.3 生質柴油性質及相關規範 9
2.4 生質柴油製程原理與機制 13
2.4.1 生質柴油製程介紹 16
2.4.2 轉酯化反應 17
2.4.3 兩階段轉酯化反應 18
2.5 觸媒介紹 21
2.5.1 固體鹼觸媒 21
2.5.2 超順磁顆粒 23
第三章 研究方法 26
3.1 實驗材料及設備 26
3.1.1 實驗油料 26
3.1.2 實驗藥品及溶液 26
3.1.3 實驗設備及分析儀器 27
3.2 實驗架構及研究方法 29
3.2.1 觸媒製備方法 29
3.2.2 觸媒之物理化學特性分析 33
3.2.3 轉酯化反應 35
3.2.4 油品分析方法 37
3.2.5 觸媒回收 46
第四章 結果與討論 48
4.1 原料油性質 48
4.2 觸媒之基本性質 48
4.2.1 SEM-EDX分析 48
4.2.2 比表面積 53
4.2.3 XRD定性繞射分析 53
4.2.4 磁滯曲線 58
4.3 轉酯化反應 59
4.3.1 大豆油之轉酯化反應 59
4.3.2 痲瘋樹油之兩階段轉酯化反應 67
4.3.3 生質柴油之性質 67
第五章 結論與建議 70
5.1 結論 70
5.2 建議 71
參考文獻 73
A. 附錄─實驗數據 a
1.Achten, W. M. J., Verchot, L., Franken, Y. J., Mathijs, E., Singh, V. P., Aerts, R., & Muys, B. (2008). Jatropha bio-diesel production and use. Biomass and Bioenergy, 32(12), 1063-1084.
2.Albuquerque, M. C., Azevedo, D. C., Cavalcante, C. L., Santamaría-González, J., Mérida-Robles, J. M., Moreno-Tost, R., ... & Maireles-Torres, P. (2009). Transesterification of ethyl butyrate with methanol using MgO/CaO catalysts. Journal of Molecular Catalysis A: Chemical, 300(1), 19-24.
3.Aransiola, E. F., et al. "A review of current technology for biodiesel production: State of the art." Biomass and bioenergy 61 (2014): 276-297.
4.Brittaine, R., and N. Lutaladio. "Jatropha: a smallholder bionergy crop." Integrated Crop Management 8 (2010).
5.Dias, A. P. S., Bernardo, J., Felizardo, P., & Correia, M. J. N. (2012). Biodiesel production by soybean oil methanolysis over SrO/MgO catalysts: the relevance of the catalyst granulometry. Fuel Processing Technology, 102, 146-155.
6.Demirbas, A. (2006). Biodiesel production via non-catalytic SCF method and biodiesel fuel characteristics. Energy Conversion and Management, 47(15), 2271-2282.
7.Deng, X., Fang, Z., & Liu, Y. H. (2010). Ultrasonic transesterification of Jatrophacurcas L. oil to biodiesel by a two-step process. Energy Conversion and Management, 51(12), 2802-2807.
8.Fukuda, H., Kondo, A., & Noda, H. (2001). Biodiesel fuel production by transesterification of oils. Journal of Bioscience and Bioengineering, 92(5), 405-416.
9.Goering, C. E., Camppion, R. N., Schwab, A. W., & Pryde, E. H. (1982). In vegetable oil fuels, proceedings of the international conference on plant and vegetable oils as fuels, Fargo, North Dakota. American Society of Agricultural Engineers, St Joseph, MI, 4, 279-286.
10.Kiss, A. A. (2009). Novel process for biodiesel by reactive absorption. Separation and Purification Technology, 69(3), 280-287.
11.Knothe, G. (2000). Monitoring a progressing transesterification reaction by fiber-optic near infrared spectroscopy with correlation to 1 H nuclear magnetic resonance spectroscopy. Journal of the American Oil Chemists'' Society, 77(5), 489-493.
12.Kouzu, M., Yamanaka, S. Y., Hidaka, J. S., & Tsunomori, M. (2009). Heterogeneous catalysis of calcium oxide used for transesterification of soybean oil with refluxing methanol. Applied Catalysis A: General, 355(1), 94-99.
13.Kouzu, M., & Hidaka, J. S. (2012). Transesterification of vegetable oil into biodiesel catalyzed by CaO: a review. Fuel, 93, 1-12.
14.Lee, D. W., & Lee, K. Y. (2014). Heterogeneous solid acid catalysts for esterification of free fatty acids. Catalysis Surveys from Asia, 18(2-3), 55-74.
15.Leung, D. Y., Wu, X., & Leung, M. K. H. (2010). A review on biodiesel production using catalyzed transesterification. Applied Energy, 87(4), 1083-1095.
16.Lotero, E., Liu, Y., Lopez, D. E., Suwannakarn, K., Bruce, D. A., & Goodwin, J. G. (2005). Synthesis of biodiesel via acid catalysis. Industrial & Engineering Chemistry Research, 44(14), 5353-5363.
17.Ma, F., & Hanna, M. A. (1999). Biodiesel production: a review. Bioresource technology, 70(1), 1-15.
18.Naz, S., Sheikh, H., Siddiqi, R., & Sayeed, S. A. (2004). Oxidative stability of olive, corn and soybean oil under different conditions. Food Chemistry, 88(2), 253-259.
19.Ngamcharussrivichai, C., Nunthasanti, P., Tanachai, S., & Bunyakiat, K. (2010). Biodiesel production through transesterification over natural calciums. Fuel Processing Technology, 91(11), 1409-1415.
20.Patil, P. D., & Deng, S. (2009). Optimization of biodiesel production from edible and non-edible vegetable oils. Fuel, 88(7), 1302-1306.
21.Piker, A., Tabah, B., Perkas, N., & Gedanken, A. (2016). A green and low-cost room temperature biodiesel production method from waste oil using egg shells as catalyst. Fuel, 182, 34-41.
22.Santra, S., Tapec, R., Theodoropoulou, N., Dobson, J., Hebard, A., & Tan, W. (2001). Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants. Langmuir, 17(10), 2900-2906.
23.Schwab, A. W., Bagby, M. O., & Freedman, B. (1987). Preparation and properties of diesel fuels from vegetable oils. Fuel, 66(10), 1372-1378.
24.Silitonga, A. S., Masjuki, H. H., Mahlia, T. M. I., Ong, H. C., Chong, W. T., & Boosroh, M. H. (2013). Overview properties of biodiesel diesel blends from edible and non-edible feedstock. Renewable and Sustainable Energy Reviews, 22, 346-360.
25.Singh, S. P., & Singh, D. (2010). Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: a review. Renewable and Sustainable energy Reviews, 14(1), 200-216.
26.Sonntag, N.O.V. (1979b). Reactions of fats and fatty acids. Bailey''s industrial oil and fat products, vol. 1, 4th edition, ed. Swern, D., John Wiley & Sons, New York, p. 99
27.Tantirungrotechai, J., Thepwatee, S., & Yoosuk, B. (2013). Biodiesel synthesis over Sr/MgO solid base catalyst. Fuel, 106, 279-284.
28.US EPA (US Environmental Protection Agency), 2002. A comprehensive analysis of biodiesel impacts on exhaust emissions-draft technical report. Washington DC. EPA420-P-02-001.
29.Vyas, A. P., Verma, J. L., & Subrahmanyam, N. (2010). A review on FAME production processes. Fuel, 89(1), 1-9.
30.Wang, Y. D., Al-Shemmeri, T., Eames, P., McMullan, J., Hewitt, N., Huang, Y., & Rezvani, S. (2006). An experimental investigation of the performance and gaseous exhaust emissions of a diesel engine using blends of a vegetable oil. Applied Thermal Engineering, 26(14), 1684-1691.
31.Weisz, P. B., Haag, W. O., & Rodewald, P. G. (1979). Catalytic production of high-grade fuel (gasoline) from biomass compounds by shape-selective catalysis. Science, 206(4414), 57-58.
32.Yan, S., Lu, H., & Liang, B. (2007). Supported CaO catalysts used in the transesterification of rapeseed oil for the purpose of biodiesel production. Energy & Fuels, 22(1), 646-651.
33.Yan, S., DiMaggio, C., Mohan, S., Kim, M., Salley, S. O., & Ng, K. S. (2010). Advancements in heterogeneous catalysis for biodiesel synthesis. Topics in Catalysis, 53(11-12), 721-736.
34.Zou, H., & Lei, M. (2012). Optimum process and kinetic study of Jatropha curcas oil pre-esterification in ultrasonical field. Journal of the Taiwan Institute of Chemical Engineers, 43(5), 730-735.
35.田偲穎,2015,「以超音波輔助半連續式痲瘋油轉酯化程序產製生質柴油」,國立臺灣大學環境工程研究所碩士論文。
36.行政院環保署,汽柴油引擎車輛排放硝基多環芳香烴之調查研究,2007。
37.行政院環境保護署─空氣品質監測網,資料擷取於2017年6月,http://taqm.epa.gov.tw/taqm/tw/b0205.aspx。
38.吳耿東、李宏台,2004,「生質能源」,科學發展期刊,第383期,pp. 20-27。
39.吳億伶,2009,「磁性觸媒應用於催化濕式氧化程序處理水中溶解性汙染物之研究」,國立臺灣大學環境工程研究所碩士論文。
40.林忠亮、方炳勳、黃冬梨、李政誠和吳奇生.,2006,「生質柴油之製程發展與應用」,石油季刊,42卷1期,pp. 49-59。
41.林祐生、李文乾,2009,「生質酒精」,科學發展期刊,第433期,pp. 20-25。
42.經濟部能源局油價資訊管理與分析系統,2017,https://www2.moeaboe.gov.tw/oil102/。
43.經濟部標準檢驗局(Taiwan Bureau of Standards, Metrology & Inspection, TBSMI),2011,生質柴油-脂肪酸甲酯。Standards of Biodiesel of CNS (Chinese National Standard) (CNS 15072) in Biodiesel-Fatty acid methyl ester, Taipei, Taiwan: Bureau of Standards, Metrology & Inspection, 2011.
44.蔡幸娟,2012,「以蛋殼、水泥為催化劑轉酯大豆油為生質柴油之反應條件研究,國立台中教育大學科學應用與推廣學系科學教育碩士學位碩士論文。
45.蔡民鎰,2016,「磁性固體觸媒之合成及其應用於生質柴油製造」,國立臺灣大學環境工程研究所碩士論文。
46.謝志誠,2007,「生質柴油之品質與檢驗」 http://www.taiwan921.lib.ntu.edu.tw/mypdf/bd09.html
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔