跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/12 21:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施東甫
研究生(外文):Tung-Fu Shih
論文名稱:利用廢油砂焦碳透過微波化學活化法及傳統化學活化法合成活性碳應用於去除水溶液中的二價汞
論文名稱(外文):Preparation of Activated Carbon from Waste Oil Sands Coke by Microwave and Conventional Chemical Activation for Removal of Mercury (II) from Aqueous Solution
指導教授:席行正
指導教授(外文):Hsing-Cheng Hsi
口試日期:2017-07-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:114
中文關鍵詞:活性碳吸附油砂焦碳微波中央合成設計實驗反應曲面法
外文關鍵詞:mercuryactivated carbonadsorptionoil sands cokemicrowavecentral composite designresponse surface methodology
相關次數:
  • 被引用被引用:0
  • 點閱點閱:832
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  汞為一重金屬,其毒性及生物累積性容易造成人類與其他哺乳類的健康危害。若汞經由人類活動排放至水體中若未經過控制,則會造成地區性的嚴重危害。活性碳吸附為目前控制水溶液中之汞的主要方法之一。同時,經過硫改質的活性碳含有硫官能基於其表面,在水溶液中吸附汞顯示了高效及高選擇性。
  廢油砂焦碳(Waste oil sands coke)為從油砂提煉石油的過程中產生的副產物。2012年末之前已有7700萬噸的廢油砂焦碳因無法有效處置被儲存,已佔了大量土地。同時,由於其含有約90%的碳,可以不必經由碳化步驟,適合作為活性碳的前驅物。並且油砂焦碳含有約5-6%之硫,可以預測其製備之活性碳對汞的吸附效果佳。
  本研究透過反應曲面法(Response surface methodology)結合中央合成設計實驗(Central composite design)作為觀察活性碳性質隨不同條件變化之工具。就產率、硫含量、及比表面積而言。發現微波化學活化的可預測性較差,而傳統化學活化法則相對穩定。
  在吸附動力學方面,在初始濃度為100 mg-Hg2+/L測試條件下,不論透過微波化學活化法或傳統化學活化法,均以擬二階動力學模式適合模擬實驗結果。在等溫吸附的實驗中則以Freundlich equation較符合等溫吸附實驗結果。而在飽和吸附容量的實驗中,在初始濃度為100 mg-Hg2+/L測試條件下,油砂焦碳飽和吸附容量為12.58 mg-Hg2+/g-AC,去除率為14.44%;透過微波化學活化產生之活性碳飽和吸附容量達82.26 mg-Hg2+/g-AC,去除率可高達94.83%;而透過傳統化學活化產生之活性碳飽和吸附容量92.89 mg-Hg2+/g-AC,去除率可高達97.81%。研究結果顯示,不論透過微波化學活化或是傳統化學活化,均可有效將廢油砂焦炭轉化成有效的活性碳吸附劑應用於水相汞污染去除。透過X射線光電子能譜儀之分析可將去除效率之提升歸因於活化過程中COO及C-O-官能基的形成。
  透過反應曲面法結合中央合成設計實驗優化微波活化的操作參數可以獲得,若欲達到94%以上之去除效率,則活化功率為750-1000瓦,活化時間為4-5分鐘。而傳統活化則是活化溫度為700-800℃,活化時間為45-80分鐘。
Mercury is a toxic element existing in nature. After mercury enters the aqueous system, it will be transformed into methylmercury and then go through a biomagnification process. If the release of mercury by human activities was not well controlled, it may result in the regional disaster. Activated carbon is the common sorbent used in removal of different kinds of substances in various phases. It has also been proven that activated carbon impregnated with different forms of sulfur is capable of improving the efficiency on adsorption of mercury in aqueous system.
Oil sands coke is a byproduct in the process of upgrading the crude oil from oil sands. Moreover, it has high carbon content and sulfur content (approximately 5-6 wt%), which results into that oil sands coke is a good precursor of activated carbon used in removal of mercury from aqueous solution.
In this study, activated carbons from oil sands coke were successfully prepared by microwave and conventional chemical activation under a series of activation conditions designed by response surface methodology in combination with central composite design (CCD-RSM). By doing so, the change of physical and chemical characteristics were able to be observed by the CCD-RSM analysis.
Compared with conventional chemical activation, microwave chemical activation can develop the surface area and pore volume of activated carbon in shorter time and with a higher production yield and similar SBET. In contrast, the physical and chemical properties of activated carbon from conventional chemical activation is more predictable than activated carbon from microwave chemical activation, in terms of their variation on the activation parameters.
The mercury (II) adsorption data for activated carbons from both microwave chemical activation and conventional chemical activation were best fitted with the pseudo-second order model in adsorption kinetics and Freundlich model in adsorption isotherm. The mercury (II) adsorption capacity and removal efficiency of original fluid coke were 12.58 mg-Hg2+/g-AC and 14.44% respectively. The mercury (II) adsorption capacity and removal efficiency of activated carbon from microwave activation were 82.26 mg-Hg2+/g-AC and 94.83% respectively. The mercury (II) adsorption capacity and removal efficiency of activated carbon from conventional activation were 92.89 mg-Hg2+/g-AC and 97.81% respectively. These results suggest that both conventional activation and microwave activation are able to transform the fluid coke into a suitable sorbent for mercury removal from aqueous phase. Pearson correlation analysis shows that the oxygen content and hydrogen content may be the main factors of determining mercury adsorption capacity of the resulting activated carbon. Through XPS analysis, the improvement of mercury (II) adsorption capacities can be attributed to that the formation of the phenolic, alcoholic, etheric functional groups (C-O-) and Carboxyl or ester functional groups (COO).
The optimized operating condition of microwave chemical activation can be observed at the power level of 750-1000 W and time of 4-5 min and the removal efficiency would achieve 94%. The optimized operating condition of conventional chemical activation can be observed at the temperature of 700-800℃ and time of 45-85 min and the removal efficiency would achieve 94%.
口試委員會審定書 i
致謝 ii
中文摘要 iii
Abstract v
Contents vii
List of Figures x
List of Tables xiii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Research Objectives 2
Chapter 2 Literature Review 3
2.1 Mercury 4
2.1.1 Global mercury cycle 4
2.1.2 Inorganic mercury 7
2.1.3 Organic mercury 8
2.1.4 Mercury removal from water 9
2.2 Activated Carbon 11
2.2.1 Introduction 11
2.2.2 Preparation of activated carbon 11
2.2.3 Types of activated carbon 13
2.2.4 Physical and chemical characterization of activated carbon 14
2.3 Mercury (II) Adsorption by Activated Carbon 16
2.3.1 Adsorption condition 16
2.3.2 Characteristics of activated carbon 18
2.3.3 Adsorption kinetic model 20
2.3.4 Adsorption isotherm model 23
2.4 Waste Oil sands coke 25
2.4.1 Oil sands 25
2.4.2 Oil sands coke 25
2.5 Response Surface Methodology 29
Chapter 3 Materials and Methods 32
3.1 Research Framework 32
3.2 Design of Experiment 34
3.2.1 Preparation of activated carbon 34
3.3 Preparation of Activated Carbon 36
3.3.1 Materials and instruments 36
3.3.2 Impregnation 37
3.3.3 Microwave chemical activation 37
3.3.4 Conventional chemical activation 40
3.3.5 After activation 41
3.4 Physical and Chemical Characterization of Activated Carbon 42
3.4.1 Surface area, pore volume and pore size distribution 42
3.4.2 Scanning electron microscope (SEM) 43
3.4.3 Elemental analysis (EA) 43
3.4.4 X-ray photoelectron spectroscope (XPS) 44
3.5 Mercury (II) Adsorption Experiment 45
3.5.1 Materials and instruments 45
3.5.2 Adsorption kinetic experiment 47
3.5.3 Adsorption isotherm experiment 47
3.5.4 Adsorption capacity experiment 48
3.5.5 Cold vapor atomic absorption spectroscopy (CVAAS) 49
3.5.6 Correlation analysis of mercury (II) adsorption capacity and characteristics of activated carbon 52
Chapter 4 Results and Discussion 53
4.1 Physical and Chemical Characterization of Activated Carbon 53
4.1.1 Morphology of activated carbon 54
4.1.2 Production yield 57
4.1.3 Surface area and pore volume 62
4.1.4 Pore size distribution (PSD) 67
4.1.5 Elemental analysis (EA) 71
4.1.6 X-ray photoelectron spectroscope (XPS) 74
4.1.7 Comparison of different impregnation ratios (IR) 77
4.1.8 Comparison of activation methods 80
4.2 Mercury (II) Adsorption Experiment 83
4.2.1 Adsorption kinetic experiment 83
4.2.2 Adsorption isotherm experiment 89
4.2.3 Adsorption capacity experiment 92
4.2.4 Correlation analysis of mercury (II) adsorption capacity and characteristics of activated carbon 100
Chapter 5 Conclusions and Recommendations 102
5.1 Conclusions 102
5.2 Recommendations 105
Reference 106
Abdelouahab-Reddam, Z., Wahby, A., Mail, R. E., Silvestre-Albero, J., Rodríguez-Reinoso, F., and Sepúlveda-Escribano, A. (2014). Activated carbons impregnated with Na2S and H2SO4: Texture, surface chemistry and application to mercury removal from aqueous solutions. Adsorption Science and Technology, 32(2-3), 101-115.
Ahmad, A. A., and Hameed, B. H. (2010). Effect of preparation conditions of activated carbon from bamboo waste for real textile wastewater. Journal of Hazardous Materials, 173(1), 487-493.
Ahmed, M. J., and Theydan, S. K. (2014). Optimization of microwave preparation conditions for activated carbon from Albizia lebbeck seed pods for methylene blue dye adsorption. Journal of Analytical and Applied Pyrolysis, 105, 199-208.
Allen, J. A., and Scaife, P. H. (1966). The Elovich equation and chemisorption kinetics. Australian Journal of Chemistry, 19(11), 2015-2023.
Almeida, P., and Stearns, L. B. (1998). Political opportunities and local grassroots environmental movements: The case of Minamata. Social Problems, 45(1), 37-60.
Alslaibi, T. M., Abustan, I., Ahmad, M. A., and Foul, A. A. (2013). Application of response surface methodology (RSM) for optimization of Cu2+, Cd2+, Ni2+, Pb2+, Fe2+, and Zn2+ removal from aqueous solution using microwaved olive stone activated carbon. Journal of Chemical Technology and Biotechnology, 88(12), 2141-2151.
Anderson, M. J., and Whitcomb, P. J. (2007). Response surface methods (RSM) for peak process performance at the most robust operating conditions. In Proceeding from International SEMATECH Manufacturing Initiative (ISMI) Symposium on Manufacturing Effectiveness.
Arami-Niya, A., Daud, W. M. A. W., Mjalli, F. S., Abnisa, F., and Shafeeyan, M. S. (2012). Production of microporous palm shell based activated carbon for methane adsorption: modeling and optimization using response surface methodology. Chemical Engineering Research and Design, 90(6), 776-784.
Attari, M., Bukhari, S. S., Kazemian, H., and Rohani, S. (2017). A low-cost adsorbent from coal fly ash for mercury removal from industrial wastewater. Journal of Environmental Chemical Engineering, 5(1), 391-399.
Atwood, D. A., and Zaman, M. K. (2006). Mercury removal from water. In Recent Developments in Mercury Science (pp. 163-182). Springer Berlin Heidelberg.
Azizian, S. (2004). Kinetic models of sorption: a theoretical analysis. Journal of colloid and Interface Science, 276(1), 47-52.
Bansal, R. C., and Goyal, M. (2005). Activated carbon adsorption. CRC press.
Barrett, E. P., Joyner, L. G., and Halenda, P. P. (1951). The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical Society, 73(1), 373-380.
Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., and Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965-977.
Binns, C. (2010). Introduction to nanoscience and nanotechnology (Vol. 14). John Wiley & Sons.
Budinova, T., Petrov, N., Parra, J., and Baloutzov, V. (2008). Use of an activated carbon from antibiotic waste for the removal of Hg (II) from aqueous solution. Journal of Environmental Management, 88(1), 165-172.
Burger, J., and Gochfeld, M. (2011). Mercury and selenium levels in 19 species of saltwater fish from New Jersey as a function of species, size, and season. Science of the Total Environment, 409(8), 1418-1429.
Burrowes, A., Teare, M., Marsh, R., Gigantelli, P., Macgillivray, J., Evans, C., ... and Hurst, T. (2011). Alberta’s energy reserves 2010 and supply/demand outlook 2011–2020. Annual Report ST98-2011, Energy Resources Conservation Board, Calgary, Alberta (June 2011).
Cai, H. (2010). Sulphur Chemistry in KOH-SO2 Activation of Fluid Coke and Mercury Adsorption from Aqueous Solutions (Doctoral dissertation). University of Toronto, Canada.
Cai, J. H., and Jia, C. Q. (2010). Mercury removal from aqueous solution using coke-derived sulfur-impregnated activated carbons. Industrial and Engineering Chemistry Research, 49(6), 2716-2721.
Cecen, F. (2014). Activated carbon. Retrieved from https://www.researchgate.net/publication/263062486_Activated_Carbon
Chen, H., and Hashisho, Z. (2012a). Fast preparation of activated carbon from oil sands coke using microwave-assisted activation. Fuel, 95, 178-182.
Chen, H., and Hashisho, Z. (2012b). Effects of microwave activation conditions on the properties of activated oil sands coke. Fuel processing technology, 102, 102-109.
Clarkson, T. W., and Magos, L. (2006). The toxicology of mercury and its chemical compounds. Critical Reviews in Toxicology, 36(8), 609-662.
Engelhardt, R. and M. Todirescu, School of Business at University of Alberta. (2012). An Introduction to Development in Alberta‘s Oil Sands. Retrieved from http://www.beg.utexas.edu/energyecon/thinkcorner/Alberta%20Oil%20Sands.pdf
Eto, K. (1997). Review article: pathology of minamata disease. Toxicologic Pathology, 25(6), 614-623.
Gomez-Serrano, V., Macias-Garcia, A., Espinosa-Mansilla, A., and Valenzuela-Calahorro, C. (1998). Adsorption of mercury, cadmium and lead from aqueous solution on heat-treated and sulphurized activated carbon. Water Research, 32(1), 1-4.
Hill, J. M., Karimi, A., and Malekshahian, M. (2014). Characterization, gasification, activation, and potential uses for the millions of tonnes of petroleum coke produced in Canada each year. The Canadian Journal of Chemical Engineering, 92(9), 1618-1626.
Hornyak, G. L., Dutta, J., Tibbals, H. F., and Rao, A. (2008). Introduction to nanoscience. CRC press.
Huang, Y. P., Hou, C. H., Hsi, H. C., and Wu, J. W. (2015). Optimization of highly microporous activated carbon preparation from Moso bamboo using central composite design approach. Journal of the Taiwan Institute of Chemical Engineers, 50, 266-275.
Ioannidou, O., and Zabaniotou, A. (2007). Agricultural residues as precursors for activated carbon production—a review. Renewable and Sustainable Energy Reviews, 11(9), 1966-2005.
Jagiello, J., and Thommes, M. (2004). Comparison of DFT characterization methods based on N2, Ar, CO2, and H2 adsorption applied to carbons with various pore size distributions. Carbon, 42(7), 1227-1232.
Joy, D. C. (2006). Scanning electron microscopy. In Materials Science and Technology (pp. 221-249). Wiley‐VCH Verlag GmbH and Co. KGaA.
Karimi, A., Thinon, O., Fournier, J., and Hill, J. M. (2013). Activated carbon prepared from Canadian oil sands coke by CO2 activation: I. Trends in pore development and the effect of pre‐oxidation. The Canadian Journal of Chemical Engineering, 91(9), 1491-1499.
Kawano, T., Kubota, M., Onyango, M. S., Watanabe, F., and Matsuda, H. (2008). Preparation of activated carbon from petroleum coke by KOH chemical activation for adsorption heat pump. Applied Thermal Engineering, 28(8), 865-871.
Khuri, A. I., and Mukhopadhyay, S. (2010). Response surface methodology. Wiley Interdisciplinary Reviews: Computational Statistics, 2(2), 128-149.
Kim, K. H., Kabir, E., and Jahan, S. A. (2016). A review on the distribution of Hg in the environment and its human health impacts. Journal of Hazardous Materials, 306, 376-385.
Krishnan, K. A., and Anirudhan, T. S. (2002). Removal of mercury (II) from aqueous solutions and chlor-alkali industry effluent by steam activated and sulphurised activated carbons prepared from bagasse pith: kinetics and equilibrium studies. Journal of Hazardous Materials, 92(2), 161-183.
Kubota, M., Ito, T., Watanabe, F., and Matsuda, H. (2011). Pore structure and water adsorptivity of petroleum coke-derived activated carbon for adsorption heat pump–Influence of hydrogen content of coke. Applied Thermal Engineering, 31(8), 1495-1498.
Landis, M. S., Ryan, J. V., ter Schure, A. F., and Laudal, D. (2014). Behavior of mercury emissions from a commercial coal-fired power plant: The relationship between stack speciation and near-field plume measurements. Environmental Science and Technology, 48(22), 13540-13548.
Lillo-Ródenas, M. A., Cazorla-Amorós, D., and Linares-Solano, A. (2003). Understanding chemical reactions between carbons and NaOH and KOH: an insight into the chemical activation mechanism. Carbon, 41(2), 267-275.
Lu, C., Xu, S., and Liu, C. (2010). The role of K2CO3 during the chemical activation of petroleum coke with KOH. Journal of Analytical and Applied pyrolysis, 87(2), 282-287.
Lu, X., Jiang, J., Sun, K., Wang, J., and Zhang, Y. (2014). Influence of the pore structure and surface chemical properties of activated carbon on the adsorption of mercury from aqueous solutions. Marine pollution bulletin, 78(1), 69-76.
Marsh, H., and Reinoso, F. R. (2006). Activated carbon. Elsevier.
Menéndez, J. A., Arenillas, A., Fidalgo, B., Fernández, Y., Zubizarreta, L., Calvo, E. G., and Bermúdez, J. M. (2010). Microwave heating processes involving carbon materials. Fuel Processing Technology, 91(1), 1-8.
Mohan, D., Gupta, V. K., Srivastava, S. K., and Chander, S. (2001). Kinetics of mercury adsorption from wastewater using activated carbon derived from fertilizer waste. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 177(2), 169-181.
Monser, L., and Adhoum, N. (2002). Modified activated carbon for the removal of copper, zinc, chromium and cyanide from wastewater. Separation and purification technology, 26(2), 137-146.
Nabi, S. (2014). Methylmercury and Minamata Disease. In Toxic Effects of Mercury (pp. 187-199). Springer India.
Rambabu, N., Azargohar, R., Dalai, A. K., and Adjaye, J. (2013). Evaluation and comparison of enrichment efficiency of physical/chemical activations and functionalized activated carbons derived from fluid petroleum coke for environmental applications. Fuel Processing Technology, 106, 501-510.
Rao, M. M., Reddy, D. K., Venkateswarlu, P., and Seshaiah, K. (2009). Removal of mercury from aqueous solutions using activated carbon prepared from agricultural by-product/waste. Journal of Environmental Management, 90(1), 634-643.
Salman, J. M., and Hameed, B. H. (2010). Effect of preparation conditions of oil palm fronds activated carbon on adsorption of bentazon from aqueous solutions. Journal of Hazardous Materials, 175(1), 133-137.
Saucier, C., Adebayo, M. A., Lima, E. C., Cataluña, R., Thue, P. S., Prola, L. D., ... and Dotto, G. L. (2015). Microwave-assisted activated carbon from cocoa shell as adsorbent for removal of sodium diclofenac and nimesulide from aqueous effluents. Journal of Hazardous Materials, 289, 18-27.
Sekar, M., Sakthi, V., and Rengaraj, S. (2004). Kinetics and equilibrium adsorption study of lead (II) onto activated carbon prepared from coconut shell. Journal of Colloid and Interface Science, 279(2), 307-313.
Sowlat, M. H., Abdollahi, M., Gharibi, H., Yunesian, M., and Rastkari, N. (2014). Removal of vapor-phase elemental mercury from stack emissions with sulfur-impregnated activated carbon Reviews of Environmental Contamination and Toxicology volume (pp. 1-34): Springer.
Terzyk, A. P. (2001). The influence of activated carbon surface chemical composition on the adsorption of acetaminophen (paracetamol) in vitro: Part II. TG, FTIR, and XPS analysis of carbons and the temperature dependence of adsorption kinetics at the neutral pH. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 177(1), 23-45.
Torres-Pérez, J., Soria-Serna, L. A., Solache-Ríos, M., and McKay, G. (2015). One Step Carbonization/Activation Process for Carbonaceous Material Preparation from Pecan Shells for Tartrazine Removal and Regeneration after Saturation. Adsorption Science and Technology, 33(10), 895-913.
UNEP. (2013). Global Mercury Assessment 2013. Retrieved from https://www.zaragoza.es/contenidos/medioambiente/onu/942-eng.pdf
USEPA. (2016). Artisanal and Small-Scale Gold Mining Without Mercury. Retrieved from https://www.epa.gov/international-cooperation/artisanal-and-small-scale-gold-mining-without-mercury.
USEPA. (2016). Basic Information about Mercury. Retrieved from https://www.epa.gov/mercury/basic-information-about-mercury.
Wajima, T., and Sugawara, K. (2011). Adsorption behaviors of mercury from aqueous solution using sulfur-impregnated adsorbent developed from coal. Fuel Processing Technology, 92(7), 1322-1327.
Warkany, J., and Hubbard, D. M. (1953). Acrodynia and mercury. The Journal of Pediatrics, 42(3), 365-386.
WHO. (1991). Inorganic mercury. Environmental Health Criteria 118. International Program on Chemical Safety, World Health Organization.
Yang, K., Peng, J., Srinivasakannan, C., Zhang, L., Xia, H., and Duan, X. (2010). Preparation of high surface area activated carbon from coconut shells using microwave heating. Bioresource Technology, 101(15), 6163-6169.
Yardim, M. F., Budinova, T., Ekinci, E., Petrov, N., Razvigorova, M., and Minkova, V. (2003). Removal of mercury (II) from aqueous solution by activated carbon obtained from furfural. Chemosphere, 52(5), 835-841.
Zabihi, M., Ahmadpour, A., and Asl, A. H. (2009). Removal of mercury from water by carbonaceous sorbents derived from walnut shell. Journal of Hazardous Materials, 167(1), 230-236.
Zhang, D., Yin, J., Zhao, J., Zhu, H., and Wang, C. (2015). Adsorption and removal of tetracycline from water by petroleum coke-derived highly porous activated carbon. Journal of Environmental Chemical Engineering, 3(3), 1504-1512.
Zhang, F. S., Nriagu, J. O., and Itoh, H. (2005). Mercury removal from water using activated carbons derived from organic sewage sludge. Water Research, 39(2), 389-395.
Zhong, Z. Y., Yang, Q., Li, X. M., Luo, K., Liu, Y., and Zeng, G. M. (2012). Preparation of peanut hull-based activated carbon by microwave-induced phosphoric acid activation and its application in Remazol Brilliant Blue R adsorption. Industrial Crops and Products, 37(1), 178-185.
Zou, L., Morris, G., & Qi, D. (2008). Using activated carbon electrode in electrosorptive deionisation of brackish water. Desalination, 225(1-3), 329-340.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊