( 您好!臺灣時間:2021/02/27 03:49
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Meng-Tse Yang
論文名稱(外文):Conversion of Waste Bamboo Chopsticks and Tung oil to Bio-crude oil via Co-liquefaction
指導教授(外文):Ching-Yuan Chang
外文關鍵詞:bamboo chopstickstung oilco-liqefactionbio-crude oilγ-Al2O3
  • 被引用被引用:0
  • 點閱點閱:66
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在各產物當中以BO為本研究的目標產物。結果顯示將竹筷與桐油共液化於TC = 573-623 K和trcT = 0-30 min,其生質油產率(YBO)最高可以達到58.52 wt%,其餘均在40-50 wt%之間。加入觸媒(γ-Al2O3)後,BO的產率均下降,最高只到46 wt%,顯示加入觸媒使得液體中間產物之裂解加劇分解成氣體產物。加入觸媒可以使BO熱值從原本未加入時的39.25 MJ/kg略升到40.86 MJ/kg。
模擬蒸餾的結果顯示,桐油主要組成碳數為C16-C22之不飽和脂肪酸。不論有無加入觸媒,經過共液化過後,裂解成低碳數碳氫化合物之效果佳,在573、603及623 K時,沒有加入觸媒的情況下所產生的生質油品其C6-C14所佔比例依序為45、60及53%,與航空用油C10-C14佔61%相當接近。但其產物BO之其他性質(酸價、熱值等)均與航空用油標準有一段差距,所以仍需改善。
Since the decrease of fossil fuel, the development of renewable energy is concerned around the world. In this research, co-liquefaction, which is thermochical methods, was applied for transforming the waste bamboo chopsticks and tung oil into bioenergy. The affecting factors of co-liquefaction include reaction temperature(TC), reaction time(trcT), heating rate, type of materials, size of materials, initial gas in reactor and the type of catalysts. The products of co-liquefation contain bio-crude oil (BO), solid product (SP) and gas product (GP). Effects of reaction temperature, reaction time and use of catalysts on the system performance were emphasized.
The most important product of co-liquefaction is BO. At TC = 573-623 K with trcT = 0-30 min, the highest of BO yield(YBO) reached is 58.52 wt%, while the others are between 40 and 50 wt%. After adding the catalyst (γ-Al2O3), YBO decreases with the highest YBO of 46 wt%. Thus, adding the catalyst results in the vigorous decomposition of liquid intermediat products into gaseous products, reducing the YBO. However, adding catalyst makes the heating value slightly rise to 40.86 MJ/kg from 39.25 MJ/kg without adding catalyst. So adding the catalyst can lead to a big change of BO yield.
The main composition of tung oil is unsaturated fatty acid with carbon number between C16 to C20. Whether adding the catalyst or not, the results indicate that the pyrolysis is effective via co-liquefaction, cracking the BO into small fragments of low carbons. Without adding the catalyst, the fractions of components of C6 to C14 in the BO could reach about 45, 60 and 53% at 573, 603 and 623 K, respectively. They are close to that of C10 to C14 in aviation fuels which is around 61%. Howerver, the properties of BO including acid value, heating value and so on do not conform the standard of aviation fuels. Further upgrading of BO would be needed.
摘要 I
圖目錄 VI
表目錄 IX
符號說明 XII
第一章 緒論 1
1.1研究背景 1
1.2研究目的 2
1.3預期效益 2
第二章 文獻回顧 4
2.1目標生質物 4
2.1.1竹筷(Bamboo chopsticks, BC) 4
2.1.2桐油(Tung oil) 4
2.2生質能的產生 5
2.2.1物理轉換 7
2.2.2生物轉換 7
2.2.3 化學轉換 7
2.3生質物液化反應的因素 8
2.3.1反應溫度 10
2.3.2反應時間 10
2.3.3原物料組成 10
2.3.4溶劑與原料比例 12
2.3.5原料粒徑 14
2.3.6反應槽的工作氣體 14
2.3.7催化劑之添加 14
2.4航空用油概況及性質 16
2.4.1燃料油主要性質 16
2.4.2航空油之分類 17
第三章 研究方法 26
3.1研究架構 26
3.2實驗材料與設備 27
3.2.1實驗材料 27
3.2.2實驗藥品 27
3.2.1氣體標準品 27
3.2.2液體標準品 32
3.2.3實驗設備 32
3.3實驗方法與步驟 33
3.3.1原物料的前處理 33
3.3.2共液化(Co-liquefaction)實驗流程 34
3.4產物分析 36
3.4.1生質油產物(BO+ASO)分析 36
3.4.2固體產物(SP)分析 40
3.4.3氣體產物(GP)分析 41
3.5分析方法 42
3.5.1固體特性分析 42
3.5.2.油品特性分析 47
3.5.3氣體特性分析 48
第四章 結果與討論 57
4.1原料基本性質分析 57
4.1.1竹筷性質分析 57
4.1.2 竹筷熱重分析 57
4.1.3 桐油性質分析 60
4.1.4 桐油熱重分析 63
4.2桐油直接裂解 73
4.2.1生質油(BO)分析 73
4.2.2固體產物(SP)分析 74
4.2.3氣體產物(GP)分析 75
4.3竹筷與桐油共液化 81
4.3.1生質油(BO)分析 81
4.3.2固體產物(SP)分析 82
4.3.3氣體產物(GP)分析 83
4.4竹筷與桐油催化共液化 92
4.4.1生質油(BO)分析 92
4.4.2固體產物(SP)分析 93
4.4.3氣體產物(GP)分析 93
4.5 γ-Al2O3的影響 102
4.5.1生質油(BO)分析 102
4.5.2固體產物(SP)分析 104
4.5.3氣體產物(GP)分析 104
4.6綜合討論 114
4.6.1生質油(BO)分析 114
4.6.2固體產物(SP)分析 115
4.6.3氣體產物(GP)分析 115
第五章 結論與建議 119
5.1結論 119
5.2建議 119
參考文獻 120
1.Air BP. (Air BP Ltd). (2000). Handbook of products.
2.Akhtar, J. and Amin, N. A. S. (2011). "A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass." Renewable and Sustainable Energy Reviews 15(3): 1615-1624.
3.ATAG (Air transport action group). (2011). "Beginner’s guide to aviation biofuels ATAG."
4.Chen, Y. H., Chang, C. C., Chang, C. Y., Yuan, M. H., Ji, D. R., Shie, J. L., Lee, C. H., Chen, Y. H., Chang, W. R., Yang, T. Y., Hsu, T. C., Huang, M., Wu, C. H., Lin, F. C. and Ko, C. H. (2017). "Production of a solid bio-fuel from waste bamboo chopsticks by torrefaction for cofiring with coal." Journal of Analytical and Applied Pyrolysis 126: 315-322.
5.Dhyani, V. and Bhaskar, T. (2017). "A comprehensive review on the pyrolysis of lignocellulosic biomass." Renewable Energy (In press, available online 18 April 2017).
6.Fan, S. P., Zakaria, S., Chia, C. H, Jamaluddin, F., Nabihah, S., Liew, T.K and Pua, F.L. (2011). "Comparative studies of products obtained from solvolysis liquefaction of oil palm empty fruit bunch fibres using different solvents." Bio-resource Technology 102(3): 3521-3526.
7.Goyal, H. B., Aysu, T. and Saxena, R. C. (2008). "Bio-fuels from thermochemical conversion of renewable resources: A review." Renewable and Sustainable Energy Reviews 12(2): 504-517.
8.Guo, Y., Yeh, T., Song, W., Xu, D. and Wang, S. (2015). "A review of bio-oil production from hydrothermal liquefaction of algae." Review and Sustainable Energy Reviews 48: 776-790.
9.Heilmann, S. M., Jader, L. R., Harned, L. A., Sadowsky, M. J., Schendel, F. J., Lefebvre, P. A., von Keitz, M. G. and Valentas, K. J. (2011). "Hydrothermal carbonization of microalgae II. Fatty acid, char, and algal nutrient products." Applied Energy 88(10): 3286-3290.
10.Hirano, A., Hon-Nami, K., Kunito, S., Hada, M. and Ogushi, Y. (1998). "Temperature effect on continuous gasification of microalgal biomass: theoretical yield of methanol production and its energy balance." Catalysis Today 45(1-4): 399-404.
11.IEA/OECD (Internetional Energy Agency). (2015). Key World Energy Statistics, Edition.
12.IPCC (Intergovernmental Panel on Climate Change). (2014). "Climate Change 2014: Mitigation of Climate Change."
13.Kelly-Yong, T. L., Lee, K. T., Mohamed, A. R. and Bhatia, S. (2007). "Potential of hydrogen from oil palm biomass as a source of renewable Energy worldwide." Energy Policy 35(11): 5692-5701.
14.Knothe, G. and Dunn, R. O. (2003). "Dependence of oil stability index of fatty compounds on their structure and concentration and presence of metals" Journal of the American Oil Chemist’s Society 80(10): 1021-1026.
15.López Barreiro, D., Prins, W., Ronsse, F. and Brilman, W. (2013). "Hydrothermal liquefaction (HTL) of microalgae for biofuel production: State of the art review and future prospects." Biomass and Bioenergy 53: 113-127.
16.Ma, Z., Zhu, W. and Wei, Q. (2007). "Advances in the researches of biodiesel from woody oil-bearing plants." Journal of Northwest Forestry University 22(6): 125-130. (In Chinese).
17.Mazume, T. and Nagao, S. (1928). "Heat polymerization of tung oil and ethyl ester of eleostearic acid." J. Chem. Soc. Jpn., Ind. Chem. Sect. 31: 473-476.
18.Mei, Y., Che, Q., Yang, Q., Draper, C., Yang, H., Zhang, S. and Chen, H. (2016). "Torrefaction of different parts from a corn stalk and its effect on the characterization of products." Industrial Crops and Products 92: 26-33.
19.Nigam, P, S. and Singh, A. (2011). "Production in liquid biofuels from renewable resources." Progress in Energy and Combustion Science 37(1): 52-68.
20.Patwardhan, P. R., Dalluge, D. L., Shanks, B. H. and Brown, R. C. (2011). "Distinguishing primary and secondary reactions of cellulose pyrolysis. "Bio-resource Technology 102(8): 5265-5269.
21.Peterson, A. A., Vogel, F., Lahance, R. P., Fröling, M., Antal Jr., M. J. and Tester, J. W. (2008). "Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies." Energy and Environmental Science 1(1): 32-65.
22.Pimchuai, A., Dutta, A. and Basu, P. (2010). "Torrefaction of agriculture residue to enhance combustible properties " Energy & Fuels 24(9): 4638-4645.
23.Singh, R., Krishna, B. B., Mishra, G. and Kumar, J. (2016). "Strategies for selection of thermal-chemical processes for the valorisation of biomass." Renewable Energy 98: 226-237.
24.Stefanidis, S. D., Kalogiannis, K. G., Iliopoulou, E. F., Michailof, C. M., Pilavachi, P. A. and Lappas, A. A. (2014). "A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin." Journal of Analytical and Applied Pyrolysis 105: 143-150.
25.Steiins, M., Froment. G. F., Jacobi, P. and Uvtherhoeven, J. (1981). "Ceramic humidity sensor." Industrial & Engineering Chemistry Product Research and Development 20(4): 654.
26.Sugano, M., Takagi, H., Hirano, K. and Mashimo, K. (2008). "Hydrothermal liquefaction of plantation biomass with two kinds of wastewater from paper industry." Journal of Materials Science 43(7): 2476-2486.
27.Sun, Z.Q., Ma, F. Y., Liu, X. J., Wu, H. H., Niu, C. G., Su, X. T. and Liu, J. M. (2015). "Large-scale synthesis and catalysis of oleic acid-coated Fe2O3 for co-liquefaction of coal and petroleum vacuum residues." Fuel Processing Technology 139: 173-177.
28.Tekin, K., Karagöz, S. and Bektas, S. (2014). "A review of hydrothermal biomass process" Renewable and Sustainable Energy Reviews 40: 673-687
29.Toor, S. S., Rosendahl, L. and Rudolf, A. (2011). "Hydrothermal liquefaction of biomass: A review of subcritical water technologies." Energy 36(5): 2328-2342.
30.Thomas, A. (2002). "Fats and fatty oils. " Ullmann’s Encyclopedia of Industrial Chemistry.
31.Vansina, H., Baltanas, M. A. and Froment, G. F. (1983). "Hydroisomerization and hydrocracking. 4. Product distribution from n-octane and 2, 2, 4-trimethylpentane. " Industrial and Engineering Chemistry Product Research and Development 22(4): 526-531.
32.Wildschut, J., Mahfud, F. H., Venderbosch, R. H. and Heeres, H. J. (2009). "Hydrotreatment of fast pyrolysis oil using heterogeneous noble-metal catalysts." Industrial and Engineering Chemistry Research 48(23) 10324-10334.
33.Xu, C. and Lancaster, J. (2008). "Conversion of secondary pulp/paper sludge powder to liquid oil products for energy recovery by direct liquefaction in hot-compressed water." Water Research 42(6): 1571-1582.
34.Zhang, B., von Keitz, M. and Valentas, K. (2009). "Thermochemical liquefaction of high-diversity grassland perennials." Journal of Analytical and Applied Pyrolysis 84(1): 18-24.
35.Zmierczak, W. W. and Miller, J . D. (2011). "Processes for catalytic conversion of lignin to liquid bio-fuels and novel bio-fuels." Patent US 7964761 B2.
36.田偲穎. (2015). "以超音波輔助半連續是痲瘋油轉酯化程序產製生質柴油." 國立台灣大學環境工程學研究所碩士論文.
37.台灣中油(台灣中油公司). (2006). "燃料類規範全."
38.余致安. (2006). "柴油車使用生質柴油之污染排放與動力分析之研究." 國立中正大學機械工程學系碩士論文.
39.能源教育知識網 (2010). "生質能(Biomass power)." http://www.enedu.org.tw/GreenEnergy/ge-4.php. (擷取日期: 2010).
40.陳陵援、林修正. (2003). "煉油廠中的仙女棒.",科學發展專題報導; 10: 370.
41.陳麒百. (2015). "以水熱法進行不同性質生質物液化轉製液體燃料之研究." 國立台灣大學環境工程學研究所碩士論文.
42.黃啓峰. (2007). "二氧化碳減量:二氧化碳與地球暖化" 科學發展 413期 6-12頁.
43.趙傳. (2007). "桐油轉化生物柴油的研究." 西北農林科技大學學報: 自然科學版; 35(11): 176-180.
44.環保署(環境保護署). (2014). "減量政策." 廢棄物管理處 http://www.epa.gov.tw/ct.asp?xItem=35377&CtNode=34119&mp=epa. (擷取日期: 2016/8/26).
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔