跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 00:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李世偉
研究生(外文):Shih-Wei Li
論文名稱:醫院放流水中藥物在混合及自然光解作用下生態毒理效應
論文名稱(外文):Ecotoxicological Effect of Pharmaceuticals in Hospital Effluents in a Pharmaceutical Mixture and after Solar Irradiation
指導教授:林郁真林郁真引用關係
指導教授(外文):Angela Yu-Chen Lin
口試日期:2017-08-03
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:94
中文關鍵詞:醫院放流水環境生態毒性光解毒性混合毒性氯胺酮K他命繁殖毒性
外文關鍵詞:Hospital wastewaterecotoxicitymixture toxicityphotolysis toxicityKetaminereproductive toxicity
相關次數:
  • 被引用被引用:3
  • 點閱點閱:544
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
過去以來,許多藥物不斷在環境水體中被檢出,環境水體中的殘留藥物對生態系統具潛在性危害。文獻已證實這些常用藥物無法完全被傳統污水處理及飲用水處理系統去除,且藥物目前非屬放流水標準等相關法規管制項目,導致醫院廢水成為環境中殘留藥物最重要來源之一,然而廢水中殘留藥物對於環境影響之研究卻非常有限。因此,本研究目標包括(一)探討醫院廢水藥物濃度及生態毒性效應評估:利用生物急毒性測試探討醫院放流水毒性、藥物混合毒性及自然光解前後毒性變化等。除了常見藥物外,本研究特別選用非法濫用、環境中經常檢測出且不易自然分解之精神性藥物-氯胺酮(K他命)進行研究目標(二)探討氯胺酮在環境中真實濃度之生態毒性,首先建立生物急毒性資料並探討氯胺酮在混合及光解毒性上之變化,再利用慢毒性試驗評估氯胺酮在環境真實濃度下造成繁殖毒性影響進行深入探討。本研究各目標及重點成果簡列如下:
於「探討醫院廢水藥物濃度及生態毒性效應評估」目標,本研究先證明環境承受水體中藥物濃度明顯會受到醫院放流水影響而增加。利用四種生物急毒性試驗方法(鯉魚、羅漢魚、米蝦及水蚤)評估放流水及環境水體生物急毒性,結果顯示原廢水對於兩種脊椎生物皆具有明顯急毒性,而鯉魚(Cyprinus carpio)為脊椎生物中最敏感且急毒性較為顯著(半致死濃度LC50約59%)。藥物在放流水及環境水體中皆呈現混合存在,故本研究選定19種 (sulfamethoxazole, tetracycline, caffeine, pentoxifylline, acetaminophen, ciprofloxacin, ofloxacin, cephalexin, cephradine, cephapirin, cefazolin, naproxen, ketoprofen, diclofenac, piroxicam, gemfibrozil, salbutamol, propranolol and atenolol) 醫院放流水中較高濃度藥物並利用鯉魚作為試驗生物評估混合藥物毒性之變化,研究結果19種混合毒性之LC50為60.19 mg/L (每一種藥物3.19 mg/L);而19種藥物在單一狀況(3.19 mg/L)皆不具急毒性,結果證明藥物在混合狀態下會造成毒性增強效應。另外,本研究進一步證明藥物毒性會隨著自然光解作用而增加;混合藥物在自然光照1~5天後,對鯉魚造成的急毒性明顯增加;除了急毒性死亡率增加外,更導致許多不正常行為及後遺症(如翻肚游、魚鰓變紅、瞳孔放大及厭食症狀等)。然而接觸試驗藥物樣品倖存的鯉魚,即使回到無藥物存在的環境,也無法正常地延續生命;透過28天連續觀察,最終仍造成約四成的死亡率。因此殘留在生物體內的藥物可能會不斷產生後遺症,結果顯示殘留藥物對環境生態影響非常值得持續進行研究。
於「探討氯胺酮在環境中真實濃度之生態毒性」目標,氯胺酮為重要非法及濫用之藥物且被證實無法被傳統污水處理系統去除,許多文獻在環境及廢水中檢測出高濃度的氯胺酮,但環境中生態毒性卻未被明確定義。因此,本研究建立氯胺酮及其主要代謝產物去甲基氯胺酮(norketamine)之水蚤急毒性及慢毒性範圍,並測試許多不同環境情境氯胺酮及去甲基氯胺酮混合毒性變化。另外,本研究更探討氯胺酮光解毒性之變化及光解產物。研究結果發現,在48小時暴露下,氯胺酮和去甲基氯胺酮水蚤急毒性半致死濃度分別為30.93 及 25.35 mg/L。照光後毒性明顯會增強;氯胺酮(20 mg/L)照光兩小時後死亡率由0%急速增加至100%,在光解過程中新的去甲基氯胺酮光解副產物(M.W. 241)初次被發現。研究成果首度證實氯胺酮在環境真實濃度(5 μg/L-100 μg/L)下對水蚤造成顯著性的繁殖抑制,繁殖量減少33.6-49.8% (p < 0.05)。本研究結果顯示,氯胺酮在環境相關濃度下具環境危害之風險,但造成毒性之原因尚未無法完全釐清。因此除氯胺酮之外,醫院放流水中更含有數百種已知或尚未被檢出之殘留藥物及其代謝產物,造成的環境風險不但充滿未知數且不容被忽視,值得未來持續探討及評估。
Pharmaceuticals are detected frequently in aquatic environments, including surface water, ground water and drinking water; these compounds cannot be adequately removed by conventional wastewater treatment plants and drinking water treatment systems. Hospital effluents are an important source of residual drugs and other classes of pharmaceuticals in aquatic environments, but current knowledge of the environmental effects of residual drugs is limited. The first objective of this research is to evaluate the ecotoxicity and variation of residual pharmaceuticals in hospital effluents, including their biological, mixture and photolysis toxicity. Specifically, a neuro-active drug ketamine was chosen to evaluate its ecotoxicological effects at environmentally relevant concentrations and to determine its acute and chronic toxicity. The photolysis and synergistic aquatic toxicity of ketamine/norketamine was also evaluated. Environmentally relevant concentrations of ketamine were specifically examined in reproductive toxicity tests.
In the first part of this thesis, entitled “Increased acute toxicity caused by pharmaceuticals in hospital effluents”, raw wastewater from the studied hospital exhibited acute toxicity to vertebrate organisms, and Cyprinus carpio was the most sensitive organism tested (LC50~59%). A mixture of 19 commonly used pharmaceuticals (sulfamethoxazole, tetracycline, caffeine, pentoxifylline, acetaminophen, ciprofloxacin, ofloxacin, cephalexin, cephradine, cephapirin, cefazolin, naproxen, ketoprofen, diclofenac, piroxicam, gemfibrozil, salbutamol, propranolol and atenolol) caused acute toxicity to Cyprinus carpio with an LC50 value of 60.68 mg/L (3.19 mg/L for each chemical) after 96 h. This study demonstrated that irradiation for 1-5 days significantly increased the acute toxicity of the pharmaceuticals to fish, leading to increased mortality after a 2-h exposure, and approximately 40% of the surviving fish died within 28 days. The pre-irradiated pharmaceutical mixture also induced strange behaviors (including swimming belly up, the presence of red gills, mydriasis and anorexia) in the fish that survived the test. The environmental effects caused by residual drugs require in-depth investigation in future studies.
In the second part of this thesis, entitled “Ecotoxicological effect of ketamine”, one specific class of neuro-active drugs, i.e., ketamine, which is frequently detected in receiving surface waters and wastewater, was thoroughly investigated. Ketamine has been increasingly used in medicine and has the potential for abuse or illicit use around the world. Ketamine cannot be removed by conventional wastewater treatment plants. Although ketamine and its metabolite norketamine have been detected to a significant extent in effluents and aquatic environments, their ecotoxicity effects in aquatic organisms remain undefined. In this study, we investigated the acute toxicity of ketamine and its metabolite, along with the chronic reproductive toxicity of ketamine (5–100 μg/L) to Daphnia magna. Multiple environmental scenarios were also evaluated, including drug mixtures and sunlight irradiation toxicity. Ketamine and norketamine caused acute toxicity to D. magna, with half lethal concentration (LC50) values of 30.93 and 25.35 mg/L, respectively, after 48 h of exposure. Irradiated solutions of ketamine (20 mg/L) significantly increased the mortality of D. magna; pre-irradiation durations up to 2 h rapidly increased the death rate to 100%. A new photolysis byproduct (M.W. 241) of norketamine that accumulates during irradiation was identified for the first time. Environmentally relevant concentrations of ketamine produced significant reproductive toxicity effects in D. magna, as revealed by the reduction in the number of total live offspring, i.e., by 33.6-49.8% (p < 0.05). The results of this work demonstrated the hazard risks of environmentally relevant ketamine concentrations. In addition to ketamine, hundreds of compounds are present in hospital wastewaters and undergo solar photolysis in aquatic environments; therefore, potential synergistic effects of mixed pharmaceuticals on aquatic organisms cannot be ignored.
致謝 ……………………………………………………………………………………i
中文摘要 ……………………………………………………………………………ii
Abstract………………………………………………………………………………iv
Chapter 1. Introduction and framework.....1
1.1 Background/Problem statement 1
1.2 Aims and scope 3
1.3 Research framework of this study 5
1.4 Dissertation overview 7
Chapter 2. Literature Review 8
2.1 Occurrences of pharmaceuticals in hospital wastewater 8
2.2 Ecotoxicity of pharmaceuticals 9
2.2.1 Environmental impact and toxicity of pharmaceuticals 9
2.2.2 Photolysis toxicity of pharmaceuticals 10
2.3 The ecotoxicity of neuroactive drugs: Ketamine 11
Chapter 3. Materials and Methods 23
3.1 Chemicals and Standards 23
3.2 Description and water quality of the sampled hospital effluents and surface water 23
3.3 Chemical analysis of the pharmaceuticals 26
3.4 Byproducts Identification 29
3.5 Photolysis experiment 30
3.5.1 Sunlight photolysis experiment of mixture pharmaceuticals 30
3.5.2 Simulator photolysis experiments of ketamine and norketmine 30
3.6 Acute toxicity test 32
3.7 Chronic exposure (reproduction test) 35
3.8 Mixture toxicity 36
Chapter 4. Results and Discussion 37
4.1 Part I: Increased acute toxicity caused by pharmaceuticals in hospital effluents 37
4.1.1 Common pollutants and pharmaceuticals in hospital wastewater 37
4.1.2 Acute toxicity of hospital wastewater 44
4.1.3 Acute toxicity of a pharmaceutical mixture to Cyprinus carpio 49
4.1.4 Acute toxicity variation in samples pre-irradiated with sunlight 62
4.2 Part II: Ecotoxicological effect of ketamine 67
4.2.1 Acute toxicity of ketamine and norketamine to Daphnia magna 67
4.2.2 Acute toxicity variations (with different pre-irradiated times) and photolysis byproducts 69
4.2.3 Mixture toxicity of ketamine and norketamine 74
4.2.4 Reproduction test (chronic toxicity) 76
4.2.5 Environmental relevance 82
Chapter 5. Conclusions, environmental implications and Suggestions 83
5.1 Conclusions 83
5.2 Environmental implications and suggestion for future work 85
Chapter 6. References 87
Altenburger, R., Nendza, M., Schüürmann, G., 2003. Mixture toxicity and its modeling by quantitative structure‐activity relationships. Environ. Toxicol. Chem. 22, 1900-1915.
Altin, A., Altin, S., Degirmenci, M., 2003. Characteristics and treatability of hospital(medical) wastewaters. Fresenius Environ. Bull. 12, 1098-1108.
Baker, D.R., Kasprzyk-Hordern, B., 2013. Spatial and temporal occurrence of pharmaceuticals and illicit drugs in the aqueous environment and during wastewater treatment: new developments. Sci. Total Environ. 454, 442-456.
Brian, J.V., Harris, C.A., Scholze, M., Backhaus, T., Booy, P., Lamoree, M., Pojana, G., Jonkers, N., Runnalls, T., Bonfà, A., 2005. Accurate prediction of the response of freshwater fish to a mixture of estrogenic chemicals. Environ. health perspectives 113, 721.
Brian, J.V., Harris, C.A., Scholze, M., Kortenkamp, A., Booy, P., Lamoree, M., Pojana, G., Jonkers, N., Marcomini, A., Sumpter, J.P., 2007. Evidence of estrogenic mixture effects on the reproductive performance of fish. Environ. Sci. Technol. 41, 337-344.
Campos, B., Piña, B., Barata C, C., 2012. Mechanisms of action of selective serotonin reuptake inhibitors in Daphnia magna. Environ. Sci. Technol. 46, 2943-2950.
Carlsson, C., Johansson, A.-K., Alvan, G., Bergman, K., Kühler, T., 2006. Are pharmaceuticals potent environmental pollutants?: Part II: Environmental risk assessments of selected pharmaceutical excipients. Sci. Total Environ. 364, 88-95.
Cheung, Y.W., Ch''ien, J.M.N., 1996. Drug use and drug policy in Hong Kong: changing patterns and new challenges. Subst. Use Misuse 31, 1573-1597.
Chiaia, A.C., Banta-Green, C., Field, J., 2008. Eliminating solid phase extraction with large-volume injection LC/MS/MS: analysis of illicit and legal drugs and human urine indicators in US wastewaters. Environ. Sci. Technol. 42, 8841-8848.
Cleuvers, M., 2003. Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol. Lett. 142, 185-194.
Cleuvers, M., 2008. Chronic mixture toxicity of pharmaceuticals to Daphnia–the example of nonsteroidal anti-inflammatory drugs, Pharmaceuticals in the Environment. Springer, Berlin, pp. 277-284.
Ding, J., Lu, G., Li, Y., 2016. Interactive effects of selected pharmaceutical mixtures on bioaccumulation and biochemical status in crucian carp (Carassius auratus). Chemosphere 148, 21-31.
Du, P., Li, K., Li, J., Xu, Z., Fu, X., Yang, J., Zhang, H., Li, X., 2015. Methamphetamine and ketamine use in major Chinese cities, a nationwide reconnaissance through sewage-based epidemiology. Water Res. 84, 76-84.
Emmanuel, E., Keck, G., Blanchard, J.-M., Vermande, P., Perrodin, Y., 2004. Toxicological effects of disinfections using sodium hypochlorite on aquatic organisms and its contribution to AOX formation in hospital wastewater. Enviro. int. 30, 891-900.
Escher, B.I., Bramaz, N., Richter, M., Lienert, J., 2006. Comparative ecotoxicological hazard assessment of beta-blockers and their human metabolites using a mode-of-action-based test battery and a QSAR approach. Environ. Sci. Technol. 40, 7402-7408.
Ferrari, B.t., Paxeus, N., Giudice, R.L., Pollio, A., Garric, J., 2003. Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac. Ecotoxicol. Environ. Saf. 55, 359-370.
Fick, J., Lindberg, R.H., Tysklind, M., Larsson, D.G.J., 2010. Predicted critical environmental concentrations for 500 pharmaceuticals. Regul. Toxicol. Pharmacol. 58, 516-523.
Gómez, M.J., Sirtori, C., Mezcua, M., Fernández-Alba, A.R., Agüera, A., 2008. Photodegradation study of three dipyrone metabolites in various water systems: identification and toxicity of their photodegradation products. Water Res. 42, 2698-2706.
Halling-Sørensen, B., Lützhøft, H.-C.H., Andersen, H., Ingerslev, F., 2000. Environmental risk assessment of antibiotics: comparison of mecillinam, trimethoprim and ciprofloxacin. J. Antimicrob. chemother. 46, 53-58.
Hartmann, A., Alder, A.C., Koller, T., Widmer, R.M., 1998. Identification of fluoroquinolone antibiotics as the main source of umuC genotoxicity in native hospital wastewater. Environ. Toxicol. Chem. 17, 377-382.
Isidori, M., Lavorgna, M., Nardelli, A., Parrella, A., Previtera, L., Rubino, M., 2005. Ecotoxicity of naproxen and its phototransformation products. Sci. Total Environ. 348, 93-101.
Jiang, J.-J., Lee, C.-L., Fang, M.-D., Tu, B.-W., Liang, Y.-J., 2014. Impacts of emerging contaminants on surrounding aquatic environment from a youth festival. Environ. Sci. Technol. 49, 792-799.
Jiao, S., Zheng, S., Yin, D., Wang, L., Chen, L., 2008. Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria. Chemosphere 73, 377-382.
Kümmerer, K., Al‐Ahmad, A., 1997. Biodegradability of the Anti‐tumour Agents 5‐Fluorouracil, Cytarabine, and Gemcitabine: Impact of the Chemical Structure and Synergistic Toxicity with Hospital Effluent. Acta hydrochim. Hydrobiol. 25, 166-172.
Köpf, W., 1995. Effects of endocrine substances in bioassays with aquatic organisms, Presented at the 50th Seminar of the Bavarian Association for Water Supply.
Kim, E.-M., Lee, J.-S., Choi, S.-K., Lim, M.-A., Chung, H.-S., 2008. Analysis of ketamine and norketamine in urine by automatic solid-phase extraction (SPE) and positive ion chemical ionization–gas chromatography–mass spectrometry (PCI–GC–MS). Forensic Sci. Int. 174, 197-202.
Kim, Y., Choi, K., Jung, J., Park, S., Kim, P.G., Park, J., 2007. Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea. Environ. Int. 33, 370-375.
Knoll/BASF, 1995. Pharmaceutical safety data sheet (Issue/Revision 06/04/94). Knoll Pharmaceuticals, Nottingham, UK.
Lürling, M., Sargant, E., Roessink, I., 2006. Life‐history consequences for Daphnia pulex exposed to pharmaceutical carbamazepine. Environ. Toxicol. 21, 172-180.
Li, K., Du, P., Xu, Z., Gao, T., Li, X., 2016. Occurrence of illicit drugs in surface waters in China. Environ. Pollut. 213, 395-402.
Li, S.-W., Lin, A.Y.-C., 2015. Increased acute toxicity to fish caused by pharmaceuticals in hospital effluents in a pharmaceutical mixture and after solar irradiation. Chemosphere 139, 190-196.
Li, Y., Niu, J., Wang, W., 2011. Photolysis of enrofloxacin in aqueous systems under simulated sunlight irradiation: kinetics, mechanism and toxicity of photolysis products. Chemosphere 85, 892-897.
Lian, Z., Liu, Z., Liu, R., Sun, G., Mu, Y., Lu, X., Cao, J., 2005. Epidemiological survey of ketamine in China. Chin. J. Drug Depend. 14, 280.
Liao, P.-H., Hwang, C.-C., Chen, T.-H., Chen, P.-J., 2015. Developmental exposures to waterborne abused drugs alter physiological function and larval locomotion in early life stages of medaka fish. Aquat. Toxicol. 165, 84-92.
Lilius, H., Hästbacka, T., Isomaa, B., 1995. Short communication: a comparison of the toxicity of 30 reference chemicals to Daphnia magna and Daphnia pulex. Environ. Toxicol. Chem. 14, 2085-2088.
Lin, A.Y.-C., Lee, W.-N., Wang, X.-H., 2014. Ketamine and the metabolite norketamine: persistence and phototransformation toxicity in hospital wastewater and surface water. Water Res. 53, 351-360.
Lin, A.Y., Wang, X.H., Lin, C.F., 2010. Impact of wastewaters and hospital effluents on the occurrence of controlled substances in surface waters. Chemosphere 81, 562-570.
Liu, C., Li, J.-H., Tsay, W.-I., Hsu, J., 2005. Drug use and profile of individuals arrested on drug-related charges in Taiwan. J. Food Drug Anal. 13, 101-106.
Matamoros, V., Duhec, A., Albaigés, J., Bayona, J.M., 2009. Photodegradation of carbamazepine, ibuprofen, ketoprofen and 17α-ethinylestradiol in fresh and seawater. Water Air Soil Pollut. 196, 161-168.
Meinertz, J.R., Schreier, T.M., Bernardy, J.A., Franz, J.L., 2010. Chronic toxicity of diphenhydramine hydrochloride and erythromycin thiocyanate to daphnia, Daphnia magna, in a continuous exposure test system. Bull. Environ. Contam. Toxicol. 85, 447-451.
Monarca, S., Feretti, D., Collivignarelli, C., Guzzella, L., Zerbini, I., Bertanza, G., Pedrazzani, R., 2000. The influence of different disinfectants on mutagenicity and toxicity of urban wastewater. Water Res. 34, 4261-4269.
Moore, K.A., Sklerov, J., Levine, B., Jacobs, A.J., 2001. Urine concentrations of ketamine and norketamine following illegal consumption. J. Anal. Toxicol. 25, 583-588.
Morgan, C.J.A., Curran, H.V., 2012. Ketamine use: a review. Addiction 107, 27-38.
Murray, J.B., 1998. Psychophysiological aspects of amphetamine-methamphetamine abuse. J. Psychol. 132, 227-237.
Neuwoehner, J., Fenner, K., Escher, B.I., 2009. Physiological modes of action of fluoxetine and its human metabolites in algae. Environ. Sci. Technol. 43, 6830-6837.
Noorzurani, R., Vicknasingam, B., Narayanan, S., 2010. Illicit ketamine induced frequency of micturition in a young Malay woman. Drug Alcohol Rev. 29, 334-336.
Oaks, J.L., Gilbert, M., Virani, M.Z., Watson, R.T., Meteyer, C.U., Rideout, B.A., Shivaprasad, H., Ahmed, S., Chaudhry, M.J.I., Arshad, M., 2004. Diclofenac residues as the cause of vulture population decline in Pakistan. Nature 427, 630-633.
OECD, 2012. Daphnia magna reproduction test, OECD guideline for the testing of chemicals. OECD, Paris.
Owen, S.F., Giltrow, E., Huggett, D.B., Hutchinson, T.H., Saye, J., Winter, M.J., Sumpter, J.P., 2007. Comparative physiology, pharmacology and toxicology of β-blockers: mammals versus fish. Aqua. Toxicol. 82, 145-162.
Pauwels, B., Noppe, H., De Brabander, H., Verstraete, W., 2008. Comparison of steroid hormone concentrations in domestic and hospital wastewater treatment plants. J. Environ. Eng. 134, 933-936.
Reinthaler, F., Posch, J., Feierl, G., Wüst, G., Haas, D., Ruckenbauer, G., Mascher, F., Marth, E., 2003. Antibiotic resistance of< i> E. coli in sewage and sludge. Water Res. 37, 1685-1690.
Rivetti, C., Campos, B., Barata, C., 2016. Low environmental levels of neuro-active pharmaceuticals alter phototactic behaviour and reproduction in Daphnia magna. Aquat. Toxicol. 170, 289-296.
Schweinfurth, H., Lange, R., Gunzel, P., 1996. Environmental fate and ecological effects of steroidal estrogens, Proceedings of the Oestrogenic Chemicals in the Environment Conference. IBC Technical Service Ltd., London.
Senta, I., Krizman, I., Ahel, M., Terzic, S., 2015. Multiresidual analysis of emerging amphetamine-like psychoactive substances in wastewater and river water. J. Chromatogr. A 1425, 204-212.
Stuer-Lauridsen, F., Birkved, M., Hansen, L.P., Holten Lützhøft, H.-C., Halling-Sørensen, B., 2000. Environmental risk assessment of human pharmaceuticals in Denmark after normal therapeutic use. Chemosphere 40, 783-793.
Triebskorn, R., Casper, H., Scheil, V., Schwaiger, J., 2007. Ultrastructural effects of pharmaceuticals (carbamazepine, clofibric acid, metoprolol, diclofenac) in rainbow trout (Oncorhynchus mykiss) and common carp (Cyprinus carpio). Anal. Bioanal. Chem. 387, 1405-1416.
Trovó, A.G., Nogueira, R.F., Agüera, A., Sirtori, C., Fernández-Alba, A.R., 2009. Photodegradation of sulfamethoxazole in various aqueous media: persistence, toxicity and photoproducts assessment. Chemosphere 77, 1292-1298.
Tuméo, E., Gbaguidi-Haore, H., Patry, I., Bertrand, X., Thouverez, M., Talon, D., 2008. Are antibiotic-resistant< i> Pseudomonas aeruginosa isolated from hospitalised patients recovered in the hospital effluents? Int. J. Hyg. Environ. Health 211, 200-204.
van der Aa, M., Bijlsma, L., Emke, E., Dijkman, E., van Nuijs, A.L.N., van de Ven, B., Hernández, F., Versteegh, A., de Voogt, P., 2013. Risk assessment for drugs of abuse in the Dutch watercycle. Water Res. 47, 1848-1857.
Verlicchi, P., Galletti, A., Petrovic, M., Barceló, D., 2010. Hospital effluents as a source of emerging pollutants: an overview of micropollutants and sustainable treatment options. J. Hydrol. 389, 416-428.
Vieno, N., Tuhkanen, T., Kronberg, L., 2007. Elimination of pharmaceuticals in sewage treatment plants in Finland. Water Res. 41, 1001-1012.
Wang, X.-H., Lin, A.Y.-C., 2012. Phototransformation of cephalosporin antibiotics in an aqueous environment results in higher toxicity. Environ. Sci. Technol. 46, 12417-12426.
Wollenberger, L., Halling-Sørensen, B., Kusk, K.O., 2000. Acute and chronic toxicity of veterinary antibiotics to Daphnia magna. Chemosphere 40, 723-730.
Zuccato, E., Castiglioni, S., Bagnati, R., Chiabrando, C., Grassi, P., Fanelli, R., 2008. Illicit drugs, a novel group of environmental contaminants. Water Res. 42, 961-968.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top