1.Altshuller, A. P. and I. R. Cohen, “Application of diffusion cells to the production of known concentrations of gaseous hydrocarbons,” Analytical Chemistry, 38(6), 802-810 (1960).
2.Ao, C. H., S. C. Lee, J. Z. Yu and J. H. Xu, “Photodegradation of formaldehyde by photocatalyst TiO2: effects on the presences of NO, SO2 and VOCs,” Applied Catalysis B-Environmental, 54(1), 41-50 (2004).
3.Asahi, R. and T. Morikawa, “Nitrogen complex species and its chemical nature in TiO2 for visible-light sensitized photocatalysis,” Chemical Physics, 339, 57–63 (2007).
4.Avila, P., A. Bahamonde, J. Blanco, B. Sanchez, A. I. Cardona and M. Romero, “Gas-phase photo-assisted mineralization of volatile organic compounds by monolithic titania catalysts,” Applied Catalysis B-Environmental, 17(1-2), 75-88 (1998).
5.Bernstein, J. A., N. Alexis, H. Bacchus, I. L. Bernstein, P. Fritz, E. Horner, N. Li, S. Mason, A. Nel, J. Oullette, K. Reijula, T. Reponen, J. Seltzer, A. Smith and S. M. Tarlo, "The health effects of nonindustrial indoor air pollution." Journal of Allergy and Clinical Immunology, 121(3), 585-591 (2008).
6.Braun, A. M. and E. Oliveros, “How to evaluate photochemical methods for water treatment,” Water Science and Technology, 35(4), 17-23 (1997).
7.Brooks, B. O., G. M. Utter, J. A. Debroy and R. D. Schimke, "Indoor Air-Pollution - an Edifice Complex." Journal of Toxicology-Clinical Toxicology, 29(3), 315-374 (1991).
8.Carp,O., C.L. Huisman and A. Reller, “Photoinduced reactivity of titanium dioxide,” Progress in Solid State Chemistry, 32, 33–177 (2004).
9.Cheng, M., I. E. Galbally, S.B. Molloy, P. W. Selleck, M. D. Keywood, S. J. Lawson, J. C. Powell, R. W. Gillett and E. Dunne, “Factors controlling volatile organic compounds in dwellings in Melbourne, Australia,” Indoor air, 26(2), 219-230 (2016).
10.Chang, C. P., J.N. Chen and M.C. Lu, “Heterogeneous photocatalytic oxidation of acetone for air purification by near UV-irradiated titanium dioxide,” Journal of Environmental Science and Health Part A – Toxic/Hazardous Substances & Environmental Engineering, 38, 1131-1143 (2003).
11.Chen, Q. H., H. L. Liu, Y. J. Xin and X. W. Cheng, “TiO2 nanobelts – Effect of calcination temperature on optical, photoelectrochemical and photocatalytic properties,” Electrochimica Acta, 111, 284-291 (2013).
12.Choi, W., A. Termin, and M. R. Hoffmann, “The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics,” J. Phys. Chem., 98, 13669-13679 (1994).
13.Dai, K., D. P. Li, L. H. Lu, Q. Liu, C. H. Liang, J. L. Lv, G. P. Zhu, “Plasmonic TiO2/AgBr/Ag ternary composite nanosphere with heterojunction structure for advanced visible light photocatalyst,” Applied Surface Science, 314, 864-871 (2014).
14.Deveau, P. A., F. Arsac, P. X. Thivel, C. Ferronato, F. Delpech, J. M. Chovelon, P. Kaluzny and C. Monnet, “Different methods in TiO2 photodegradation mechanism studies : Gaseous and TiO2-adsorbed phases,” Journal of Hazardous Materials, 144, 692–697 (2007).
15.Demirel, G., Ö. Özden, T. Döğeroğlu and E.O. Gaga, “Personal exposure of primary school children to BTEX, NO 2 and ozone in Eskişehir, Turkey: relationship with indoor/outdoor concentrations and risk assessment,” Sci. Total Environ., 473, 537–548 (2014).
16.Devi, L. G. and R. Kavitha, “A review on plasmonic metal TiO2 composite for generation, trapping, storing and dynamic vectorial transfer of photogenerated electrons across the Schottky junction in a photocatalytic system,” Applied Surface Science, 601-622 (2016).
17.Dhada, I., M. Sharma and P. K. Nagar, “Quantification and human health risk assessment of by-products of photo catalytic oxidation of ethylbenzene, xylene and toluene in indoor air of analytical laboratories,” Journal of Hazardous Materials, 316, 1-10 (2016).
18.Dibble, L. A. and G. B. Raupp, “Fluidized-bed photocatalytic oxidation of trichloroethylene in contaminated airstreams,” Environmental Science & Technology, 26(3), 492-495 (1992).
19.Dunne, E., W. Kirstine, I. E. Galbally, J. Powell, P. Selleck and S. Lawson, “A study of gaseous indoor air quality for a Melbourne home,” Clean Air & Environ. Qual., 40(3), 45-51 (2006).
20.Durme, J. V., J. Dewulf, W. Sysmans, C. Leys and H. V. Langenhove, “Abatement and degradation pathways of toluene in indoor air by positive corona discharge,” Chemosphere, 68, 1821–1829 (2007).
21.Frankcombe, T. J. and S. C. Smith, “OH-Initiated Oxidation of Toluene. 1. Quantum Chemistry Investigation of the Reaction Path,” Phys. Chem. A, 111(19), 3686–3690 (2007).
22.Fogler, H. S., “Elements of chemical reaction engineering,” 3rd Ed., Prentice Hall International, Inc., New Jersey, USA (1999).
23.Fox, M. A. and M. T. Dulay, "Heterogeneous Photocatalysis." Chemical Reviews, 93(1), 341-357 (1993).
24.Goodman, N. B., A. Steinemann., A. J. Wheeler., P. J.Paevere., M. Cheng. and S. K. Brown, “Volatile organic compounds within indoor environments in Australia,” Building and Environment, (2017).
25.Gratzel, M., "Photoelectrochemical cells," Nature, 414, 338-344 (2001).
26.Guo, H., S.C. Lee, W.M. Li and J.J. Cao, “Source characterization of BTEX in indoor microenvironments in Hong Kong,” Atmos. Environ., 37 (1), 73–82 (2003).
27.Guo, T., Z. Bai, C. Wu and Tan Zhu, “Influence of relative humidity on the photocatalytic oxidation (PCO) of toluene by TiO2 loaded on activated carbon fibers: PCO rate and intermediates accumulation,” Applied Catalysis B: Environmental, 79, 171–178 (2008).
28.Hager, S., R. Bauer and G. Kudielka, “Photocatalytic oxidation of gaseous chlorinated organics over titanium dioxide,” Chemosphere, 41(8), 1219-1225 (2000).
29.Hamidin, N., J. Yu, D.T. Phung, D. Connell and C. Chu, “Volatile aromatic hydrocarbons (VAHs) in residential indoor air in Brisbane, Australia,” Chemosphere, 92(11), 1430-1435 (2013).
30.Hashimoto, K., K. Wasada, M. Osaki, E. Shono, K. Adachi, N. Toukai, H. Kominami and Y. Kera, “Photocatalytic oxidation of nitrogen oxide over titania–zeolite composite catalyst to remove nitrogen oxides in the atmosphere,” Applied Catalysis B: Environmental, 30(3-4), 429-436 (2001).
31.Hersh, J. H., P. E. Podruch, G. Rogers and B. Weisskopf., “Toluene embryopathy,” The Journal of Pediatrics, 106(6), 922-927 (1985).
32.Hines, A. L., K. G. Tushar, K. L. Sudarshan and C. W. Jr. Richand, “Indoor Air: Quality and Control,” PTR Prentice Hall Englewood Cliffs, New Jersey, USA(1993).
33.Hinwood, A. L., H. N. Berko, D. Farrar, I. E. Galbally and I. A. Weeks, “Volatile organic compounds in selected micro-environments,” Chemosphere, 63(3), 421-429 (2006).
34.Jing, D. W., L. J. Guo, L. Zhao, X. M. Zhang, H. Liu, M. T. Li, S. H. Shen, G. J. Liu, X. W. Hu, X. H. Zhang, K. Zhang, L. J. Ma, P. H. Guo, “Efficient solar hydrogen production by photocatalytic water splitting: From fundamental study to pilot demonstration,” International Journal of Hydrogen Energy, 35(13), 7087-7097 (2010).
35.Jones, A. P., “Indoor air quality and health, “Atmospheric Environment, 33, 4535-4564 (1999).
36.Kabir, E. and K. H. Kim, “An investigation on hazardous and odorous pollutant emission during cooking activities,” Journal of Hazardous Materials, 188(1), 443-454(2011).
37.Keller, V. and F. Garin, “Photocatalytic behavior of a new composite ternary system: WO3/SiC-TiO2. Effect of the coupling of semiconductors and oxides in photocatalytic oxidation of methylethylketone in the gas phase,” Catalysis Communications, 4(8), 377-383 (2003)
38.Klepeis, N. E., W. C. Nelson, W. R. Ott, J. P. Robinson, A. M. Tsang, P. Switzer, J. V. Behar, S. C. Hern and W. H. Engelmann, “The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants,” Journal of exposure analysis and environmental epidemiology, 11(3), 231-252 (2001).
39.Ku, Y., C. M. Ma and Y. S. Shen, “Decomposition of gaseous trichloroethylene in a photoreactor with TiO2-coated nonwoven fiber textile,” Applied Catalysis B: Environmental, 34(3), 181-190 (2001).
40.Kyrklund, T., P. Kjellstrand. and K. Haglid, “Brain lipid changes in rats exposed to xylene and toluene,” toxicology, 45(2), 123-133 (1987).
41.Lee, S. C., W. M. Li and L. Y. Chan, "Indoor air quality at restaurants with different styles of cooking in metropolitan Hong Kong." Science of the Total Environment, 279(1-3), 181-193 (2001).
42.Lee, S.C., W.M. Li and C.H. Ao, “Investigation of indoor air quality at residential homes in Hong Kong—case study,” Atmos. Environ., 36 (2), 225–237 (2002).
43.Legan, R. W., ”Ultraviolet-light takes on cpi role,” Chemical Engineering, 89(2), 95-100 (1982)
44.Lewandowski, M. and D. F. Ollis, “Extension of a two-site transient kinetic model of TiO2 deactivation during photocatalytic oxidation of aromatics: concentration variations and catalyst regeneration studies,” Applied Catalysis B-Environmental, 45(3), 223-238 (2003).
45.Li, X. Z., Li, F. B. and Xie, Y. B., “Photocatalytic oxidation using lanthanide ion-doped titanium dioxide catalysts for water and wastewater treatment.” Trends in Water Pollution Research, 31-74 (2005).
46.Liang, W. J., J. Li and Y. Q. Jin, “Photo-catalytic degradation of gaseous formaldehyde by TiO2/UV, Ag/TiO2/UV and Ce/TiO2/UV,” Building and Environment, 51, 345-350 (2012).
47.Liang, H., C. P. Li, J. Bai, J. Z. Wang. A. Shan. L. P. Guo and D. Yu, “Fabrication of visible-light-responsed calcium metasilicate-supported Ag–AgX/TiO2 (X = Cl, Br, I) composites and their photocatalytic properties,” Advanced Powder Technology, 26(3), 1005-1012 (2015).
48.Liu, Y., C. Xie, H. Li., H. Chen., Y. Liao and D. Zeng, ” Low bias photoelectrocatalytic (PEC) performance for organic vapour degradation using TiO2/WO3 nanocomposite,” Applied Catalysis B: Environmental, 102(1-2), 157-162 (2011).
49.Liu, X. X., D. Zhang, B. Guo, Y. Qu, Ge Tian, H. J. Yue and S. H. Feng., “Recyclable and visible light sensitive Ag–AgBr/TiO2: Surface adsorption and photodegradation of MO,” Applied Surface Science, 353, 913-923 (2015).
50.Luo, Y. and D.F. Ollis, “Heterogeneous photocatalytic oxidation of trichloroethylene and toluene mixtures in air: kinetic promotion and inhibition, time-dependent catalyst activity,” Journal of Catalysis, 163, 1-11 (1996).
51.Irokawa, Y., T. Morikawa, K. Aoki, S. Kosaka, T. Ohwaki and Y. Taga, “Photodegradation of toluene over TiO2−xNx under visible light irradiation,”Phys. Chem., 8, 1116-1121 (2006).
52.Izabela, D. G., M.Á. Gómez-García, S.M. López Zamora, E. GilPavasc, J. Bojarska, M. Kozanecki and J.M. Rynkowski, “Transition metal loaded TiO2 for phenol photo-degradation,” Comptes Rendus Chimie, 18(10), 1170-1182 (2015).
53.Mills, A., R. H. Davies and D. Worsley, “Water purification by semiconductor photocatalysis,” Chemical Society Reviews, 22(6), 417-425 (1993).
54.Mills, A. and LeHunte, S., “An overview of semiconductor photocatalysis,” Journal of Photochemistry and Photobiology A-chemistry, 108(1), 1-35 (1997).
55.Mishra, N., G. A. Ayoko, T. Salthammer and L. Morawska, “Evaluating the risk of mixtures in the indoor air of primary school classrooms,” Environ. Sci. Pollut. Res., 22(19), 15080-15088 (2015).
56.Mo, J. H., Y. P. Zhang, Q. J. Xu, J. J. Lamson and R. Y. Zhao, “Photocatalytic purification of volatile organic compounds in indoor air: A literature review,” Atmospheric Environment, 43(14), 2229-2246 (2009).
57.Mo, J., Y. Zhang, Q. Xu, Y. Zhu, J. J. Lamson and R. Zhao, “Determination and risk assessment of by-products resulting from photocatalytic oxidation of toluene,” Applied Catalysis B: Environmental, 89, 570–576 (2009).
58.Mo, J., Y. P. Zhang, Q. J. Xu, “Effect of water vapor on the by-products and decomposition rate of ppb-level toluene by photocatalytic oxidation,” Applied Catalysis B: Environmental, 132-133, 212-218 (2013).
59.Molloy, S. B., M. Cheng, I. E. Galbally, M. D. Keywood, S. J. Lawson, J. C. Powell, R. Gillett, E. Dunne and P.W. Selleck, “Indoor air quality in typical temperate zone Australian dwellings,” Atmos. Environ., 54, 400-407 (2012).
60.Nguyen, T. V., S. S. Kim and O. B. Yang, “Water decomposition on TiO2–SiO2 and RuS2/TiO2–SiO2 photocatalysts: the effect of electronic characteristics,” Catalysis Communications, 5(2), 59-62 (2004).
61.Nøjgaard, J. K., K. B. Christensen and P. Wolkoff, "The effect on human eye blink frequency of exposure to limonene oxidation products and methacrolein." Toxicology letters, 156(2), 241-251 (2005).
62.Obee, T. N. and R. T. Brown, “TiO2 photocatalysis for indoor air applications effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene,” Environmental Science & Technology, 29(5), 1223-1231 (1995).
63.Obee, T. N., “Photooxidation of Sub-Parts-per-Million Toluene and Formaldehyde Levels on Titania Using a Glass-Plate Reactor,” Environ. Sci. Technol, 30(12), 3578-3584 (1996).
64.Obee, T. N. and S. O. Hay, “Effects of moisture and temperature on the photooxidation of ethylene on titania,” Environmental Science & Technology, 31(7), 2034-2038 (1997).
65.Ohno, T., F. Tanigawa, K. Fujihara. S. Izumi and M. Matsumura, “Photocatalytic oxidation of water on TiO2-coated WO3 particles by visible light using Iron(III) ions as electron acceptor,” Journal of Photochemistry and Photobiology A: Chemistry, 118(1), 41-44 (1989).
66.Okamoto K., Y. Yamamoto, H. Tanaka, M. Tanaka and A. Itaya, “Heterogeneous photocatalytic decomposition of phenol over TiO2 powder,” Bulletin of the Chamical Society of Japan, 58(7), 2015-2022 (1985).
67.Paevere, P. J., S. Tucker, P. Crowther, S. Seo, R. Drogemuller, D. Johnston, M. Hardie, A. Williams, S. Khan, P. Mitchell, L. Kivlighon, P. Watson, G. Miller, D. Jones, S. Brown, O. Newhouse, M. Luther, M. Ambrose, J. Mahoney, P. Lawther, M. Cheng and A. O''Donnell, “Design Guidelines for Delivering High Quality Indoor Environments,” CRC for Construction Innovation (2008)
68.Peral, J. and D. F. Ollis, “Heterogeneous photocatalytic oxidation of gas-phase organics for air purification: Acetone, 1-butanol, butyraldehyde, formaldehyde, and m-xylene oxidation,” Journal of Catalysis, 136(2), 554-565 (1992).
69.Perry, R. H., D. W. Green and J. O. Maloney, Perry’s chemcal engineers’ handbook 7th ed. McGraw-Hill, New York (1997).
70.Pichat, P. , “Photocatalytic Degradation of Pollutants in Water and Air: Basic Concepts and Applications,” In: Tarr, M.A., Ed. “Chemical Degradation Methods for Wastes and Pollutants Environmental and Industrial Applications,” Marcel Dekker,Inc., New York, U.S.A., 77-120 (2003).
71.Rafael, M. R. and C. M. Nelson, “Relationship between the formation of surface species and catalyst deactivation during the gas-phase photocatalytic oxidation of toluene,” Catalysis Today, 40(4), 353-365 (1998).
72.Raillard, C., V. Héquet, P. Le Cloirec and J. Legrand, “Kinetic study of ketones photocatalytic oxidation in gas phase using TiO2-containing paper: effect of water vapor” Journal of Photochemistry and Photobiology A: Chemistry, 163(3), 425-431 (2004).
73.Ramesh, T., B. Nayak, A. Amirbahman, C. P. Tripp and S. Mukhopadhyay, “Application of ultraviolet light assisted titanium dioxide photocatalysis for food safety: A review,” Innovative Food Science & Emerging Technologies, 38, 105-115 (2016).
74.Rumchev,K., J. Spickett, M. Bulsara, M. Phillips and S. Stick, “Association of domestic exposure to volatile organic compounds with asthma in young children,” Thorax, 59(9), 746-751 (2004).
75.Rodgman, A., and T. A. Perfetti, “The chemical components of tobacco and tobacco smoke, ”1st Ed., CRC Press, Boca Raton, Florida, USA(2008).
76.Sari, D. K., S. Kuwahara. Y. Tsukamoto, H. Hori, N. Kunugita, K. Arashidani, H. Fujimaki and F. Sasaki, “Effect of prolonged exposure to low concentrations of formaldehyde on the corticotropin releasing hormone neurons in the hypothalamus and adrenocorticotropic hormone cells in the pituitary gland in female mice”, Vol. 1013, No. 1, pp. 107-116 (2004).
77.Sauer, M. L. and D. F. Ollis, “Acetone oxidation in a photocatalytic monolith reactor,” Journal of Catalysis, 149(1), 81-91 (1994).
78.Scheff, P. A. and R. A. Wadden., “Receptor modeling of volatile organic compounds: 1. Emission inventory and validation,” Environmental Science and Technology,” 27(4),617-625 (1993).
79.Schwarzenbach, R. P., P. M. Gschwend and D. M. Imboden, Environment Organic Chemistry, John Wiley & Sons, New York, 1993.
80.Sclafani, A., L. Palmisano, M. Schiavello, “Influence of the preparation methods of titanium dioxide on the photocatalytic degradation of phenol in aqueous dispersion,” J. Phys. Chem., 94(2), 829-832 (1990).
81.Sclafani, A. and J. M. Herrmann, “Comparison of the Photoelectronic and Photocatalytic Activities of Various Anatase and Rutile Forms of Titania in Pure Liquid Organic Phases and in Aqueous Solutions,” J. Phys. Chem., 100(32), 13655-13661 (1996).
82.Serpone, N. and E. Pelizzetti, “photocatalysis fundamentals and applications serpone, ”1st Ed., John Wiley & Sons, New York, USA (1989).
83.Shang, J., Y. Du and Z. Xu, “Photocatalytic oxidation of heptane in the gas-phase over TiO2,” Chemosphere, 46(1), 93-99 (2002).
84.Sleiman, M., P. Conchon, C. Ferronato and J. M. Chovelon, “Photocatalytic oxidation of toluene at indoor air levels (ppbv): Towards a better assessment of conversion, reaction intermediates and mineralization,” Applied Catalysis B: Environmental, 86(3-4), 159-165 (2009).
85.So, W. W., K. J. Kim and Sang-Jin Moon, “Photo-production of hydrogen over the CdS–TiO2 nano-composite particulate films treated with TiCl4,” International Journal of Hydrogen Energy, 29(3), 229-234 (2004).
86.Sobana, N., K. Selvam, M. Swaminathan, “Optimization of photocatalytic degradation conditions of Direct Red 23 using nano-Ag doped TiO2,” Separation and Purification Technology, 62(3), 648-653 (2008).
87.Sui, Y., C. Su, X. Yang, J. Hu and X. Lin, “Ag-AgBr nanoparticles loaded on TiO2 nanofibers as an efficient heterostructured photocatalyst driven by visible light,” Journal of Molecular Catalysis A: Chemical, 410, 226–234 (2015).
88.Sundell J., “On the history of indoor air quality and health,” Indoor Air., 14, 51–58 (2004).
89.Takeuchi, M., J. Deguchi, S. Sakai and M. Anpo, “Effect of H2O vapor addition on the photocatalytic oxidation of ethanol, acetaldehyde and acetic acid in the gas phase on TiO2 semiconductor powders,” Applied Catalysis B-Environmental, 96(1-2), 218-223 (2010).
90.Verbruggen, S. W., “TiO2 photocatalysis for the degradation of pollutants in gas phase: From morphological design to plasmonic enhancement,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 24, 64-82 (2015).
91.Wang, K. H., H. H. Tsai and Y. H. Hsieh, “The kinetics of photocatalytic degradation of trichloroethylene in gas phase over TiO2 supported on glass bead,” Applied Catalysis B-Environmental, 17(4), 313-320 (1998).
92.Wang, Q. Y., R. C. Jin, M. Zhang and S. M. Gao, “Solvothermal preparation of Fe-doped TiO2 nanotube arrays for enhancement in visible light induced photoelectrochemical performance,” Journal of Alloys and Compounds, 690, 139-144 (2016).
93.Weschler, C. J., A. T. Hodgson and J. D. Wooley, “Indoor chemistry ozone, volatile organic compounds, and carpets,” Environmental Science & Technology, 26(12), 2371-2377 (1992).
94.Xu, W. Z., D. Raftery and J. S. Francisco, “Effect of irradiation sources and oxygen concentration on the photocatalytic oxidation of 2-propanol and acetone studied by in situ FTIR,” Journal of Physical Chemistry B, 107(19), 4537-4544 (2003).
95.Yang, R., Y. Zhang, Q. Xu and J. Mo, “A mass transfer based method for measuring the reaction coefficients of a photocatalyst,” Atmospheric Environment, 41(6), 1221-1229 (2007).
96.Yang, H., X. Y. Li, Q. D. Zhao, G. H. Chen and C. L. Raston, “Role of Hydroxyl Radicals and Mechanism of Escherichia coli Inactivation on Ag/AgBr/TiO2 Nanotube Array Electrode under Visible Light Irradiation,” Environ. Sci. Technol., 46(7), 4042–4050 (2012).
97.Yasar, S., E. Yildirim., M. Koklu., E. Gursoy., M. Celik. and U. C. Yuksel, “A case of reversible cardiomyopathy associated with acute toluene exposure,” Turkish Journal of Emergency Medicine, 16(3), 123-125 (2016).
98.Yu, H., K. Zhang and C. Rossi, “Experimental study of the photocatalytic degradation of formaldehyde in indoor air using a nano-particulate titanium dioxide photocatalyst,” Indoor and Built Environment, 16(6), 529-537 (2007).
99.Zhang, Y. J., W. Yan, Y. P. Wu and Z. H. Wang, “Synthesis of TiO2 nanotubes coupled with CdS nanoparticles and production of hydrogen by photocatalytic water decomposition,” Materials Letters, 62(23), 3846-3848 (2008).
100.Zhang, Y., Z. R. Tang, X. Z. Fu and Y. J. Xu, “Nanocomposite of Ag–AgBr–TiO2 as a photoactive and durable catalyst for degradation of volatile organic compounds in the gas phase,” Applied Catalysis B: Environmental, 106(3-4), 445-452 (2011).
101.勞動部,勞工作業環境空氣中有害物容許濃度標準
102.吳怡亭,“使用內照明蜂巢式反應器進行低濃度揮發性有機物的移除”,國立台灣大學化學工程學研究所,博士論文,2014。103.林冠沂,“利用蜂巢狀光觸媒處理甲醛之研究”,國立台灣大學環境工程學研究所,碩士論文,2013。104.余國賓,“以紫外光/臭氧程序增進光觸媒對室內揮發性有機物去除效率之研究” ,國立台灣大學環境工程學研究所,博士論文,2006。105.周文傑,“燃燒金紙與拜鄉所產生氣態污染物及飛灰中金屬成分之分布”,國立成功大學環境工程學系,碩士論文,2007。106.郭柏成,“應用真空濺鍍法製備複合型奈米TiO2/ITO薄膜光觸媒之丙酮分解研究”,國立中山大學環境工程研究所,碩士論文,2010。107.洪安傑,“以蜂巢狀光觸媒載體處理室內生物源揮發性有機物之研究”,國立台灣大學環境工程學研究所,碩士論文,2012。108.賴明俊,“以紫外光/臭氧程序增進光觸媒對室內揮發性有機物三氯乙烯去除效率之研究”,國立台灣大學環境工程學研究所,碩士論文,2009。
109.謝哲隆、白崢鈺,“UVA、UVC 及 UVLED 結合 Ag/TiO2光觸媒光催化甲苯反應動力”,工業污染防治 第123期,2012。110.宋宗信,“以 GC/MS 偵測高科技工業區內空氣中揮發性有機物濃度之研究”,國立交通大學工學院永續環境科技學程,2010。
111.高濂、鄭珊、張青紅著/陳憲偉校訂,“奈米光觸媒”,五南圖書公司,2004。