跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/21 10:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳以安
研究生(外文):Yi-An Chen
論文名稱:放大化電容去離子裝置之雙極式定電流操作能效最佳化
論文名稱(外文):Optimizing the Energetic Performance of A Scale-Up Capacitive Deionization Device Using Bipolar Connection at Constant Current
指導教授:侯嘉洪
指導教授(外文):Chia-Hung Hou
口試日期:2017-06-30
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:61
中文關鍵詞:電容去離子技術雙極式電極接觸模式定電流充電模式能源效率脫鹽能效最佳化
外文關鍵詞:Capacitive deionizationbipolar connectionconstant currentenergy efficiencydesalinationenergetic optimization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:195
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來由於能源與水資源匱乏的危機,具有高能源使用效率的脫鹽技術受到矚目並廣泛被研究討論。其中,電容去離子技術 (capacitive deionization, CDI) 為一低能耗、高產水率以及對環境友善的脫鹽技術。其操作係由被外加電場極化的電極吸附反向電荷離子並使離子由電雙層型態儲存於多孔電極表面,進而達到將水中離子去除的效果。電極的再生是藉由外部電場的移除或反向施加,吸附飽和的電極將離子釋出,同時產生高濃度的溶液。電容去離子系統的操作模式與電容去離子模組整體能耗有直接相關性,因此大量研究著重於電容去離子模組操作模式的改善,例如定電壓與定電流充放電操作模式。然而,單極式與雙極式電極接觸模式卻鮮少被研究討論。本研究目的為藉由電容去離子模組操作模式的最佳化,增進電容去離子模組的能源使用效率。實驗以連續式放大化電容去離子模組進行吸脫附實驗。電容去離子模組中活性碳電極有效面積為20 × 20 cm2,而處理水樣為濃度10 mM的氯化鈉溶液。研究將針對定電壓(施加電壓為1.2 V)、定電流(施加電流分別為0.15, 0.20, 0.25, 以及0.30 A)充電操作,以及單極、雙極式電極接觸實驗進行分析比對以及操作最佳化。
研究結果顯示,定電流操作模式較定電壓操作模式擁有更穩定的出流水質,且其能源使用效率為定電壓模式的1.54倍,而平均脫鹽速率為1.13倍,代表定電流較定電壓充電模式擁有更高的能源使用效率以及更高的平均脫鹽速率。另外,雙極式電極接觸模式較單極式電極接觸模式擁有更低的出流水濃度,且其能源使用效率比單極式高出10%,而平均脫鹽速率比單極式高出37%,代表雙極式電極接觸模式較單極式電極接觸模式擁有更高的能源使用效率以及更高的平均脫鹽速率。綜上所述,本研究結果指出,在考量整體脫鹽效果、能源使用效率,以及脫鹽速率之下,定電流充電模式優於定電壓充電模式,而雙極式電極接觸模式優於單極式電極接觸模式。
Development of low-energy demand water treatment technologies is a growing research priority in response to the global water and energy challenges. Capacitive deionization (CDI), a novel electrochemical technology for water desalination, offers several advantages such as low energy requirement, high water recovery, and environmental friendliness. Recently, investigation of different CDI operational charging modes (i.e., constant voltage and constant current operation) has drawn more attention due to that operational modes have crucial effects on energy efficiency and desalination performance of CDI device, especially for the scale-up one. However, for electrode connection mode, only a few researchers have investigated the effect of unipolar and bipolar connections on CDI performance, and little is known about the scale-up CDI stack operated in different electrode connections for desalination.
In this research, optimization of the energetic and desalination performances of a single-pass CDI device in constant voltage (voltage load = 1.2 V) charging mode, constant current (current load = 0.15, 0.20, 0.25, and 0.30 A) charging mode, unipolar connection, and bipolar connection were investigated. The effective surface area of each activated carbon electrode was 20 × 20 cm2, and the sample solution was 10 mM NaCl. Furthermore, evaluation on the key performances of CDI, including desalination capacity (DC), mean deionization rate (MDR), charge efficiency, specific energy input (Esalt), specific energy efficiency (SEE), and optimization product were conducted. SEE in bipolar connection was found to be 4.92 mg g−1 kJ−1, which was over 10% larger than that in unipolar connection. Besides, the MDR in bipolar connection was 0.085 mg g−1 min−1, which was 37% higher than that in unipolar connection. All of these results suggested that bipolar connection in CDI demonstrated preferred characteristics of higher desalination ability, and lower energy requirement. These parameters are also important for future development of scale-up CDI devices in water desalination.
誌謝 i
中文摘要 iii
Abstract iv
Contents vi
List of Figures viii
List of Tables xi
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation and Objectives 1
Chapter 2 Theory and Literature Review 3
2.1 Development of Electrochemical Capacitors 3
2.2 Development of Capacitive Deionization 6
2.3 Operation Modes of CDI 9
2.3.1 Charging Mode: Constant Voltage and Constant Current 9
2.3.2 Connection Mode: Unipolar and Bipolar Connections 12
Chapter 3 Experimental 15
3.1 Materials and Instruments 15
3.2 Activated Carbon Electrodes 18
3.2.1 Fabrication of Electrodes 18
3.2.2 Analysis of Electrode Characteristics 18
3.3 CDI Device 23
3.4 CDI System 23
3.5 CDI Experiments in CV and CC Charging Modes 26
3.6 CDI Experiments in Unipolar and Bipolar Connections 27
3.7 Key Performance Indicators 30
Chapter 4 Results and Discussion 34
4.1 Electrode Characteristics 34
4.2 Comparison between CV and CC Charging Modes 37
4.3 Optimization of CV and CC Charging Modes 42
4.4 Comparison between Unipolar and Bipolar Connections 46
4.5 Optimization of Unipolar and Bipolar Connections 53
Chapter 5 Conclusions and Recommendations 57
References 58
Anderson, M.A., Cudero, A.L. and Palma, J. (2010) Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochimica Acta 55(12), 3845-3856.

Andres, G.L. and Yoshihara, Y. (2016) A capacitive deionization system with high energy recovery and effective re-use. Energy 103, 605-617.

Blair, J.W. and Murphy, G.W. (1960) Electrochemical demineralization of water with porous electrodes of large surface area. Advances in Chemistry 27, 206-223.

Burke, A. (2000) Ultracapacitors: why, how, and where is the technology. Journal of Power Sources 91(1), 37-50.

Cheng, H., Hu, Y. and Zhao, J. (2009) Meeting china’s water shortage crisis: current practices and challenges. Environmental Science & Technology 43(2), 240-244.

Doornbusch, G.J., Dykstra, J.E., Biesheuvel, P.M. and Suss, M.E. (2016) Fluidized bed electrodes with high carbon loading for water desalination by capacitive deionization. Journal of Materials Chemistry A 4(10), 3642-3647.

El-Deen, A.G., Barakat, N.A.M. and Kim, H.Y. (2014) Graphene wrapped MnO2-nanostructures as effective and stable electrode materials for capacitive deionization desalination technology. Desalination 344, 289-298.

Garcia-Quismondo, E., Gomez, R., Vaquero, F., Cudero, A.L., Palma, J. and Anderson, M. (2013a) New testing procedures of a capacitive deionization reactor. Physical Chemistry Chemical Physics 15(20), 7648-7656.

Garcia-Quismondo, E., Santos, C., Lado, J., Palma, J. and Anderson, M.A. (2013b) Optimizing the energy efficiency of capacitive deionization reactors working under real-world conditions. Environmental Science and Technology 47(20), 11866-11872.

Garcia-Quismondo, E., Santos, C., Soria, J., Palma, J. and Anderson, M.A. (2016) New operational modes to increase energy efficiency in capacitive deionization systems. Environmental Science and Technology 50(11), 6053-6060.

Simon, P. and Gogotsi, Y. (2008) Materials for electrochemical capacitors. Nature Materials 7, 845 - 854

He, D., Wong, C.E., Tang, W., Kovalsky, P. and Waite, T.D. (2016) Faradaic reactions in water desalination by batch-mode capacitive deionization. Environmental Science & Technology Letters 3(5), 222-226.

Hou, C.H. and Huang, C.Y. (2013) A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization. Desalination 314, 124-129.

Hou, C.H., Huang, J.F., Lin, H.R. and Wang, B.Y. (2012) Preparation of activated carbon sheet electrode assisted electrosorption process. Journal of the Taiwan Institute of Chemical Engineers 43(3), 473-479.

Jeon, S.i., Park, H.r., Yeo, J.g., Yang, S., Cho, C.H., Han, M.H. and Kim, D.K. (2013) Desalination via a new membrane capacitive deionization process utilizing flow-electrodes. Energy & Environmental Science 6(5), 1471.

Kang, J., Kim, T., Jo, K. and Yoon, J. (2014) Comparison of salt adsorption capacity and energy consumption between constant current and constant voltage operation in capacitive deionization. Desalination 352, 52-57.

Kim, T. and Yoon, J. (2015) CDI ragone plot as a functional tool to evaluate desalination performance in capacitive deionization. Royal Society of Chemistry 5(2), 1456-1461.

Kim, Y.J. and Choi, J.H. (2010) Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane. Separation and Purification Technology 71(1), 70-75.

Ng, K.C., Zhang S., Peng C., and Chen G. Z. (2009) Individual and bipolarly stacked asymmetrical aqueous supercapacitors of CNTs / SnO2 and CNTs / MnO2 nanocomposites. Journal of the Electrochemical Society 16(1), 153-162.

Lee, J.H., Bae, W.S. and Choi, J.H. (2010) Electrode reactions and adsorption/desorption performance related to the applied potential in a capacitive deionization process. Desalination 258(1-3), 159-163.

Lee, J.K., Kim, Y.E., Kim, J., Chung, S., Ji, D. and Lee, J. (2012) Comparable mono and bipolar connection of capacitive deionization stack in NaCl treatment. Journal of Industrial and Engineering Chemistry 18(2), 763-766.

Lee, J.Y., Seo, S.J., Yun, S.H. and Moon, S.H. (2011) Preparation of ion exchanger layered electrodes for advanced membrane capacitive deionization (MCDI). Water Research 45(17), 5375-5380.

Liu, X., Wu, T., Dai, Z., Tao, K., Shi, Y., Peng, C., Zhou, X. and Chen, G.Z. (2016a) Bipolarly stacked electrolyser for energy and space efficient fabrication of supercapacitor electrodes. Journal of Power Sources 307, 208-213.

Liu, Y.H., Hsi, H.C., Li, K.C. and Hou, C.H. (2016b) Electrodeposited manganese dioxide/activated carbon composite as a high-performance electrode material for capacitive deionization. ACS Sustainable Chemistry & Engineering 4(9), 4762-4770.

Nativ, P., Badash, Y. and Gendel, Y. (2017) New insights into the mechanism of flow-electrode capacitive deionization. Electrochemistry Communications 76, 24-28.

Porada, S., Zhao, R., van der Wal, A., Presser, V. and Biesheuvel, P.M. (2013) Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science 58(8), 1388-1442.

Qu, Y., Campbell, P.G., Gu, L., Knipe, J.M., Dzenitis, E., Santiago, J.G. and Stadermann, M. (2016) Energy consumption analysis of constant voltage and constant current operations in capacitive deionization. Desalination 400, 18-24.

Shaffer, D.L., Yip, N.Y., Gilron, J. and Elimelech, M. (2012) Seawater desalination for agriculture by integrated forward and reverse osmosis: Improved product water quality for potentially less energy. Journal of Membrane Science 415-416, 1-8.

Siddiqi, A. and Anadon, L.D. (2011) The water–energy nexus in Middle East and North Africa. Energy Policy 39(8), 4529-4540.

Suss, M.E., Baumann, T.F., Bourcier, W.L., Spadaccini, C.M., Rose, K.A., Santiago, J.G. and Stadermann, M. (2012) Capacitive desalination with flow-through electrodes. Energy & Environmental Science 5(11), 9511.

Suss, M.E., Porada, S., Sun, X., Biesheuvel, P.M., Yoon, J. and Presser, V. (2015) Water desalination via capacitive deionization: what is it and what can we expect from it? Energy & Environmental Science 8(8), 2296-2319.

Wang, C., Song, H., Zhang, Q., Wang, B. and Li, A. (2015) Parameter optimization based on capacitive deionization for highly efficient desalination of domestic wastewater biotreated effluent and the fouled electrode regeneration. Desalination 365, 407-415.

Wang, G., Zhang, L. and Zhang, J. (2012) A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews 41(2), 797-828.

Welgemoed, T.J. and Schutte, C.F. (2005) Capacitive deionization technology™: an alternative desalination solution. Desalination 183(1-3), 327-340.

Yang, S., Choi, J., Yeo, J.G., Jeon, S.I., Park, H.R. and Kim, D.K. (2016) Flow-electrode capacitive deionization using an aqueous electrolyte with a high salt concentration. Environmental Science and Technology 50(11), 5892-5899.

Yin, H., Zhao, S., Wan, J., Tang, H., Chang, L., He, L., Zhao, H., Gao, Y. and Tang, Z. (2013) Three-dimensional graphene/metal oxide nanoparticle hybrids for high-performance capacitive deionization of saline water. Advanced Materials 25(43), 6270-6276.

Yu, T.H., Shiu, H.Y., Lee, M., Chiueh, P-T. and Hou, C.H. (2016) Life cycle assessment of environmental impacts and energy demand for capacitive deionization technology. Desalination 399, 53-60.

Zhang, L.L. and Zhao, X.S. (2009) Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews 38(9), 2520-2531.

Zhao, R., Biesheuvel, P.M. and van der Wal, A. (2012) Energy consumption and constant current operation in membrane capacitive deionization. Energy & Environmental Science 5(11), 9520.

Zhao, R., Satpradit, O., Rijnaarts, H.H., Biesheuvel, P.M. and van der Wal, A. (2013) Optimization of salt adsorption rate in membrane capacitive deionization. Water Research 47(5), 1941-1952.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊