跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2024/12/09 14:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭雅憶
研究生(外文):Ya-Yi Cheng
論文名稱:磁性固體酸觸媒之合成及其應用於高酸價油品之生質柴油製造
論文名稱(外文):Synthesis of Magnetic Solid Acid Catalyst and Its Application in Biodiesel Production from High Acid Value Oil
指導教授:張慶源張慶源引用關係
指導教授(外文):Ching-Yuan Chang
口試日期:2017-07-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:131
中文關鍵詞:生質柴油油酸大豆油痲瘋油酯化反應轉酯化反應固體酸觸媒磁性觸媒
外文關鍵詞:biodieseloleic acidsoybean oiljatropha oilesterificationtransesterificationsolid acid catalyst
相關次數:
  • 被引用被引用:0
  • 點閱點閱:226
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為避免生質原油中過高的酸價(acid value, AV),造成鹼催化轉酯化反應因皂化而降低產率,通常須要透過酯化反應或其他前處理,使油品的酸價小於2 mg KOH/g。本研究製備兩種不同的固體酸觸媒(SiO2-ZrO2和SO42--SM, SM: SiO2 on Fe3O4),先對油酸和大豆油混合之高酸價油品(AV= 41.60 mg KOH/g,自由脂肪酸(FFA)含量為20.8%) 進行酯化反應。透過改變不同酯化條件找出最適反應條件後,對非食用性植物油脂-痲瘋油(AV= 39.41 mg KOH/g)進行酯化反應。研究中並分析酯化反應後產物之酸價、碘價(IV)、動黏度(KV)、密度(ρLO)、含水率(MW)、自由脂肪酸轉化率(ηFFA)及脂肪酸甲基酯(FAME)之產率(YF)等性質。油酸和大豆油混合油之IV、KV、ρLO、MW分別為124.98 g I2/100 g、30.01 mm2/s、918.40 kg/m3、0.082 wt%,而痲瘋油之值則為96.24 g I2/100 g、32.76 mm2/s、915.90 kg/m3、0.082 wt%。
由溶膠凝膠法所合成之SiO2-ZrO2觸媒基本特性(SEM、XRD及FTIR)雖與參考文獻相近,但由於本研究使用的反應器容積較大,參與反應的生質原油量遠多於文獻中的10 g,故於相同反應條件下,提供的能量不足,以致效果不佳。而以含浸法合成之SO42--SM觸媒(SM以溶膠凝膠法合成)之酯化能力,則隨著含浸硫酸溶液濃度(CISA)增加而提升,其中以CISA = 2.0 M時的效果最好。
使用CISA= 2.0 M製成之SO42--SM作為觸媒,對油酸和大豆油混合油進行酯化反應,所得之最適反應條件為:甲醇對油莫耳比(M/O)為12:1、觸媒添加量(MC)為5 wt%、酯化溫度(TE)為393 K、酯化時間(tE)為2 h。此時產物之酸價為1.28 mg KOH/g,相當於96.92 wt%的自由脂肪酸轉化率,YF則為40.28 wt%,碘價為116.57 g I2/100 g,動黏度為13.58 mm2/s,密度為908.8 kg/m3,含水率則為0.117 wt%。而觸媒重複使用至第四次時,仍可使酸價降低至1.89 mg KOH/g,但YF則下降至25.15 wt%。當AV由41.60 mg KOH/g降至1.28 mg KOH/g時,FFA由20.8 wt%降至0.64 wt%。FFA減量20.16 wt%酯化生成FAME,故YF之40.28 wt%中有20.12 wt% (= 40.28 – 20.16)係由三酸甘油酯轉酯化成FAME。顯示SO42--SM酸觸媒兼具酯化和轉酯化兩種功能。
根據油酸和大豆油混合油的酯化結果,以相同反應條件對痲瘋油進行酯化,酸價可降為2.05 mg KOH/g,略高出目標值2 mg KOH/g。而進一步將M/O提升至15:1時,酸價則可降為1.86 mg KOH/g,可有效使酸價降至小於2 mg KOH/g。此時YF為52.10 wt%,碘價為90.40 g I2/100 g,動黏度為12.21 mm2/s,密度為901.7 kg/m3,含水率則為0.124 wt%。AV由39.41 mg KOH/g降至1.86 mg KOH/g時,FFA由19.71 wt%減至0.93 wt%。FFA減量18.78 wt%酯化生成FAME,故YF之52.10 wt%中有33.32 wt% (= 52.10 – 18.78)係由三酸甘油酯轉酯化生成FAME。此結果亦證實SO42--SM酸觸媒兼具酯化和轉酯化兩種效果。
以SO42--SM觸媒對油酸和大豆油混合油和痲瘋油進行酯化反應,可有效將酸價降低,避免鹼催化轉酯化反應時產生皂化。而油品之碘價、動黏度亦有顯著下降(混合油分別相對降低6.73%、54.75%;痲瘋油分別相對降低6.07%、62.73%),密度則僅略降(混合油和痲瘋油分別相對降低1.05%和1.55%),含水率則是大幅上升(混合油和痲瘋油分別相對升高42.68%和51.22%)。雖未達生質柴油標準,但仍可透過第二階段之轉酯化反應或是摻配使用改善碘價、動黏度及密度的問題,並利用無水硫酸鎂將油品中的水分加以去除。
High acid value (AV) will saponify the oil in alkaline transesterification process and consequently decrease the yield of fatty acid methyl ester (FAME). In order to avoid the saponification, the AV must be decreased to less than 2 mg KOH/g by esterification or other pre-treatments. In this study, two solid acid catalysts (SiO2-ZrO2 and SO42--SM, SM: SiO2 on Fe3O4) were synthesized and applied for esterification. The mixed oil (oleic acid : soybean oil = 1 : 4) with the AV of 41.60 mg KOH/g and the free fatty acid (FFA) content of 20.8% was esterified. After a series of experiments were conducted to find the optimal esterification conditions, the non-edible jatropha oil with the AV of 39.41 mg KOH/g and FFA of 19.71% was esterified at the same conditions. The properties of the esterified oil, such as AV, iodine value (IV), kinematic viscosity (KV), density (ρLO), water content (MW), FFA conversion (ηFFA), and yield of FAME (YF) were measured. The initial IV, KV, ρLO, and MW of the mixed oil are 124.98 g I2/100 g, 30.01 mm2/s, 918.40 kg/m3, and 0.082 wt%, respectively. The initial IV, KV, ρLO, and MW of the jatropha oil are 96.24 g I2/100 g, 32.76 mm2/s, 915.90 kg/m3, and 0.082 wt%, respectively.
Although the characteristics (SEM, XRD and FTIR) of the SiO2-ZrO2 catalyst made by sol-gel method are similar to those of the reference, however, the efficiency of the esterification is not good. It is because that the volume of reactor of this study is higher than that of the reference, and the amount of the oil reactant in this study is also greater than 10 g in the reference. As a result, esterifying the mixed oil in the same conditions as the reference would obtain a lower efficiency due to the short of the energy supply. The esterification ability of the SO42--SM (SM was made by sol-gel method) catalyst made by impregnation method is promoted with an increase of the concentration of the impregnation solution of sulfuric acid (CISA) and the optimal condition is CISA = 2.0 M.
The optimal esterification conditions of the mixed oil are 12:1 molar ratio of methanol to oil (M/O) and 5 wt% of catalyst loading relative to oil (MC) at the esterification temperature (TE) of 393 K for esterification time (tE) of 2 h. The AV of the esterified mixed oil is 1.28 mg KOH/g. That is to say, the ηFFA is 96.92 wt%. In addition, the YF, IV, KV, ρLO, and MW are 40.28 wt%, 116.57 g I2/100 g, 13.58 mm2/s, 908.8 kg/m3, and 0.117 wt%, respectively. About the reuse of the catalyst, the AV of the oil can be effectively reduced to 1.89 mg KOH/g as the catalyst were used for four times. Nevertheless, the YF was reduced to 25.15 wt%. While the AV was reduced from 41.60 mg KOH/g to 1.28 mg KOH/g, the FFA content was reduced from 20.8 wt% to 0.64 wt%. The decrement of FFA was 20.16 wt% and it was esterified into FAME. The result shows that the 20.12 wt% (= 40.28 – 20.16) coming from 40.28 wt% of YF was transesterified into FAME from triglyceride (TG). It was confirmed that the SO42--SM catalyst had both functions of esterification and transesterification with major and supplemental roles, respectively.
Jatropha oil was esterified by the same conditions as the mixed oil. The AV of the esterified jatropha oil can be reduced to 2.05 mg KOH/g, but it was slightly higher than the target value of 2 mg KOH/g. While the M/O was increased to 15:1, the AV can be reduced to 1.86 mg KOH/g, which was below 2 mg KOH/g. The YF, IV, KV, ρLO, and MW of the esterified jatropha oil were 52.10 wt%, 90.40 g I2/100 g, 12.21 mm2/s, 901.7 kg/m3, and 0.124 wt%, respectively. While the AV was reduced from 39.41 mg KOH/g to 1.86 mg KOH/g, the FFA content was reduced from 19.71 wt% to 0.93 wt%. The FFA was decreased 18.78 wt% and esterified into FAME. The result indicates that the 33.32 wt% (= 52.10 – 18.78) coming from 52.10 wt% of YF was transesterified into FAME from TG. The result also confirmed that the SO42--SM catalyst can both esterify and transesterify the oil.
The esterification of mixed oil and jatropha oil by SO42--SM both can effectively decrease the AV and prevent the saponification in alkaline transesterification process. The IV and KV had remarkable decrement (mixed oil had relative decrement of 6.73% and 54.75%, while jatropha oil had relative reduction of 6.07% and 62.73%, respectively). The ρLO reduced slightly (the relative decrement were 1.05% and 1.55% respectively). The MW increased with the relative increment of 42.68% and 51.22%, respectively. Though the IV, KV, and ρLO cannot meet the standards, they can be improved by transesterification or blending with other oils. The excessive water content can be removed by adsorption using magnesium sulphate.
目錄
摘要 i
Abstract iii
圖目錄 x
表目錄 xiii
符號說明 xiv
縮寫說明 xvi
第一章 前言 1
1.1研究背景 1
1.2研究內容與目的 2
1.3預期效益 3
第二章 文獻回顧 4
2.1再生能源之興起 4
2.2 生質柴油 4
2.2.1生質柴油的演進與發展現況 4
2.2.2生質柴油的定義與特性 7
2.2.3生質柴油之原料 10
2.2.4痲瘋油之簡介 18
2.2.5生質柴油法規標準 18
2.2.6生質柴油製造技術 24
2.3高酸價油品之前處理方法 27
2.3.1酯化法 34
2.4生質柴油製程使用之觸媒 35
2.4.1均相觸媒 35
2.4.2異相觸媒 35
2.5磁性固體酸觸媒 41
2.5.1超順磁性氧化鐵顆粒 41
第三章 研究方法 47
3.1研究內容與規劃 47
3.2實驗材料及設備 47
3.2.1實驗藥品 47
3.2.2實驗設備及分析儀器 48
3.3研究方法 51
3.3.1觸媒之製備 51
3.3.2磁性固體酸觸媒之特性分析 52
3.3.3高酸價油品酯化反應 55
3.3.4油品特性分析 55
3.3.5磁性固體酸觸媒之回收與重複使用評估 63
第四章 結果與討論 64
4.1原物料基本特性 64
4.2觸媒合成與性質分析 66
4.2.1 SiO2-ZrO2觸媒 66
4.2.2 SO42--SM觸媒 70
4.3 SiO2-ZrO2觸媒催化高酸價油品 77
4.4 SO42--SM觸媒催化高酸價油品 79
4.4.1 含浸硫酸濃度之影響 81
4.4.2醇油莫耳比之影響 81
4.4.3觸媒添加量之影響 83
4.4.4反應溫度之影響 85
4.4.5反應時間之影響 87
4.5觸媒重複使用 89
4.6 SO42--SM觸媒催化痲瘋油 96
第五章 結論與建議 98
5.1結論 98
5.2建議 99
參考文獻 102
A附錄: 酯化反應數據 A-1
1.Agarwal D, Agarwal AK. Performance and emissions characteristics of Jatropha oil (preheated and blends) in a direct injection compression ignition engine. Applied Thermal Engineering 2007, 27(13), 2314-2323.
2.Aghbashlo M, Demirbas A. Biodiesel: hopes and dreads. Biofuel Research Journal 2016, 3(2), 379-379.
3.Akbar E, Yaakob Z, Kamarudin SK, Ismail M, Salimon J. Characteristic and composition of Jatropha curcas oil seed from Malaysia and its potential as biodiesel feedstock feedstock. European journal of scientific research 2009, 29(3), 396-403.
4.Alptekin E, Canakci M. Determination of the density and the viscosities of biodiesel–diesel fuel blends. Renewable Energy 2008, 33(12), 2623-2630.
5.Antunes WM, de Oliveira Veloso C, Henriques CA. Transesterification of soybean oil with methanol catalyzed by basic solids. Catalysis Today 2008, 133, 548-554.
6.Aranzabal A, González-Marcos JA, Romero-Sáez M, González-Velasco JR, Guillemot M, Magnoux P. Stability of protonic zeolites in the catalytic oxidation of chlorinated VOCs (1, 2-dichloroethane). Applied Catalysis B: Environmental 2009, 88(3), 533-541.
7.Ardizzone S, Bianchi CL, Cappelletti G, Porta F. Liquid-phase catalytic activity of sulfated zirconia from sol–gel precursors: the role of the surface features. Journal of Catalysis 2004, 227(2), 470-478.
8.Atabani AE, Silitonga AS, Badruddin IA, Mahlia TMI, Masjuki HH, Mekhilef S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and Sustainable Energy Reviews 2012, 16(4), 2070-2093.
9.Atadashi IM, Aroua MK, Aziz AA, Sulaiman NMN. The effects of catalysts in biodiesel production: A review. Journal of Industrial and Engineering Chemistry 2013, 19(1), 14-26.
10.Avendaño RR, Reyes JDL, Montoya JA., Viveros T. Effect of synthesis parameters on sol–gel silica modified by Zirconia. Journal of sol-gel science and technology 2005, 33(1), 133-138.
11.Barnwal BK, Sharma MP. Prospects of biodiesel production from vegetable oils in India. Renewable and Sustainable Energy Reviews 2005, 9(4), 363-378.
12.Birks LS, Friedman H. Particle size determination from X‐ray line broadening. Journal of Applied Physics 1946, 17(8), 687-692.
13.Borges ME, Díaz, L. Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: a review. Renewable and Sustainable Energy Reviews 2012, 16(5), 2839-2849.
14.Bozbas K. Biodiesel as an alternative motor fuel: production and policies in the European Union. Renewable and Sustainable Energy Reviews 2008, 12(2), 542-552.
15.Canakci M, Van Gerpen J. Biodiesel production via acid catalysis. Transactions- American Society of Agricultural Engineers 1999, 42(5), 1203-1210.
16.Canakci M, Van Gerpen J. Biodiesel production from oils and fats with high free fatty acids. Transactions-American Society of Agricultural Engineers 2001, 44(6), 1429-1436.
17.Chai M, Tu Q, Lu M, Yang YJ. Esterification pretreatment of free fatty acid in biodiesel production, from laboratory to industry. Fuel Processing Technology 2014, 125, 106-113.
18.Chen CL, Huang CC, Tran DT, Chang JS. Biodiesel synthesis via heterogeneous catalysis using modified strontium oxides as the catalysts. Bioresource Technology 2012, 113, 8-13.
19.Chouhan AS, Sarma AK. Modern heterogeneous catalysts for biodiesel production: A comprehensive review. Renewable and Sustainable Energy Reviews 2011, 15(9), 4378-4399.
20.De Oliveira E, Torres JD, Silva CC, Luz AA, Bakuzis P, Prado AG. Tetramethylguanidine covalently bonded onto silica gel as catalyst for the addition of nitromethane to cyclopentenone. Journal of the Brazilian Chemical Society 2006, 17(5), 994-999.
21.Demirbas A. Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Progress in Energy and Combustion Science 2005, 31(2), 171-192.
22.Demirbas A. Progress and recent trends in biodiesel fuels. Energy Conversion and Management 2009, 50(1), 14-34.
23.Demirbas A. Competitive liquid biofuels from biomass. Applied Energy 2011, 88(1), 17-28.
24.Dhar A, Kevin R, Agarwal AK. Production of biodiesel from high-FFA neem oil and its performance, emission and combustion characterization in a single cylinder DICI engine. Fuel Processing Technology 2012, 97, 118-129.
25.Di Serio M, Tesser R, Dimiccoli M, Cammarota F, Nastasi M, Santacesaria E. Synthesis of biodiesel via homogeneous Lewis acid catalyst. Journal of Molecular Catalysis A: Chemical 2005, 239(1), 111-115.
26.Dincer I. Renewable energy and sustainable development: a crucial review. Renewable and Sustainable Energy Reviews 2000, 4(2), 157-175.
27.Encinar JM, Sánchez N, Martínez G, García L. Study of biodiesel production from animal fats with high free fatty acid content. Bioresource Technology 2011, 102(23), 10907-10914.
28.Esmaeilpour M, Sardarian AR, Javidi J. Synthesis and characterization of Schiff base complex of Pd (II) supported on superparamagnetic Fe3O4@ SiO2 nanoparticles and its application as an efficient copper-and phosphine ligand-free recyclable catalyst for Sonogashira–Hagihara coupling reactions. Journal of Organometallic Chemistry 2014, 749, 233-240.
29.Evangelista SM, DeOliveira E, Castro GR, Zara LF, Prado AG. Hexagonal mesoporous silica modified with 2-mercaptothiazoline for removing mercury from water solution. Surface Science 2007, 601(10), 2194-2202.
30.Faria EA, Marques JS, Dias IM, Andrade RD, Suarez PA, Prado AG. Nanosized and reusable SiO2/ZrO2 catalyst for highly efficient biodiesel production by soybean transesterification. Journal of the Brazilian Chemical Society 2009, 20(9), 1732-1737.
31.Fauzi AHM, Amin NAS, Mat R. Esterification of oleic acid to biodiesel using magnetic ionic liquid: multi-objective optimization and kinetic study. Applied Energy 2014, 114, 809-818.
32.Felizardo P, Machado J, Vergueiro D, Correia MJN, Gomes JP, Bordado JM. Study on the glycerolysis reaction of high free fatty acid oils for use as biodiesel feedstock. Fuel Processing Technology 2011, 92(6), 1225-1229.
33.Fjerbaek L, Christensen KV, Norddahl B. A review of the current state of biodiesel production using enzymatic transesterification. Biotechnology and Bioengineering 2009, 102(5), 1298-1315.
34.Fukuda H, Kondo A, Noda H. Biodiesel fuel production by transesterification of oils. Journal of Bioscience and Bioengineering 2001, 92(5), 405-416.
35.Ghaly AE, Dave D, Brooks MS, Budge S. Production of biodiesel by enzymatic transesterification: review. American Journal of Biochemistry and Biotechnology 2010, 6(2), 54-76.
36.Gui MM, Lee KT, Bhatia S. Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy 2008, 33(11), 1646-1653.
37.Haas MJ, Scott KM, Marmer WN, Foglia TA. In situ alkaline transesterification: an effective method for the production of fatty acid esters from vegetable oils. Journal of the American Oil Chemists'' Society 2004, 81(1), 83-89.
38.Helwani Z, Othman MR, Aziz N, Kim J, Fernando WJN. Solid heterogeneous catalysts for transesterification of triglycerides with methanol: a review. Applied Catalysis A: General 2009, 363(1), 1-10.
39.Hoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M. Review of biodiesel composition, properties, and specifications. Renewable and Sustainable Energy Reviews 2012, 16(1), 143-169.
40.Holman RT and Elmer OC. The rates of oxidation of unsaturated fatty acids and esters. Journal of the American Oil Chemists'' Society 1947, 24(4), 127-129.
41.Huang CK, Hou CH, Chen CC, Tsai YL, Chang LM, Wei HS, Hsieh KH, Chan CH. Magnetic SiO2/Fe3O4 colloidal crystals. Nanotechnology 2008, 19(5), 055701.
42.Jitputti J, Kitiyanan B, Rangsunvigit P, Bunyakiat K, Attanatho L, Jenvanitpanjakul P. Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts. Chemical Engineering Journal 2006, 116(1), 61-66.
43.Kammen DM. The rise of renewable energy. Scientific American 2006, 295(3), 84-93.
44.Karmakar A, Karmakar S, Mukherjee S. Properties of various plants and animals feedstocks for biodiesel production. Bioresource Technology 2010, 101(19), 7201-7210.
45.Kinderlerer JL, Johnson S. Rancidity in hazelnuts due to volatile aliphatic aldehydes. Journal of the Science of Food and Agriculture 1992, 58(1), 89-93.
46.Kiss AA. Novel process for biodiesel by reactive absorption. Separation and Purification Technology 2009, 69(3), 280-287.
47.Knothe G, Dunn RO. Dependence of oil stability index of fatty compounds on their structure and concentration and presence of metals. Journal of the American Oil Chemists'' Society 2003, 80(10), 1021-1026.
48.Knothe G. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Processing Technology 2005, 86(10), 1059-1070.
49.Ko JB, Lee SW, Kim DE, Kim YU, Li G, Lee SG, Chang TS, Kim DJ, Joo YL. Fabrication of SiO2-ZrO2 composite fiber mats via electrospinning. Journal of Porous Materials 2006, 13(3), 325-330.
50.Kulkarni MG, Dalai AK. Waste cooking oil an economical source for biodiesel: a review. Industrial & Engineering Chemistry Research 2006, 45(9), 2901-2913.
51.Lee AF, Bennett JA, Manayil JC, Wilson K. Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification. Chemical Society Reviews 2014, 43(22), 7887-7916.
52.Leung DY, Wu X, Leung MKH. A review on biodiesel production using catalyzed transesterification. Applied Energy 2010, 87(4), 1083-1095.
53.Li S, Wang Y, Dong S, Chen Y, Cao F, Chai F, Wang X. Biodiesel production from Eruca Sativa Gars vegetable oil and motor, emissions properties. Renewable Energy 2009, 34(7), 1871-1876.
54.Li L, Saber M, Xu WZ, Zhu YT, Koch CC, Scattergood RO. High-temperature grain size stabilization of nanocrystalline Fe–Cr alloys with Hf additions. Materials Science and Engineering: A 2014, 613, 289-295.
55.Lien YS, Hsieh LS, Wu JC. Biodiesel synthesis by simultaneous esterification and transesterification using oleophilic acid catalyst. Industrial & Engineering Chemistry Research 2010, 49(5), 2118-2121.
56.Liu Y, Lotero E, Goodwin JG. Effect of water on sulfuric acid catalyzed esterification. Journal of Molecular Catalysis A: Chemical 2006, 245(1), 132-140.
57.Liu X, He H, Wang Y, Zhu S. Transesterification of soybean oil to biodiesel using SrO as a solid base catalyst. Catalysis Communications 2007, 8(7), 1107-1111.
58.Lotero E, Liu Y, Lopez DE, Suwannakarn K, Bruce DA, Goodwin JG. Synthesis of biodiesel via acid catalysis. Industrial & Engineering Chemistry Research 2005, 44(14), 5353-5363.
59.Ma F, Hanna MA. Biodiesel production: a review. Bioresource Technology 1999, 70(1), 1-15.
60.Ma L, Han Y, Sun K, Lu J, Ding J. Optimization of acidified oil esterification catalyzed by sulfonated cation exchange resin using response surface methodology. Energy Conversion and Management 2015, 98, 46-53.
61.Marchetti JM, Miguel VU, Errazu AF. Possible methods for biodiesel production. Renewable and Sustainable Energy Reviews 2007, 11(6), 1300-1311.
62.Marchetti JM, Errazu AF. Esterification of free fatty acids using sulfuric acid as catalyst in the presence of triglycerides. Biomass and Bioenergy 2008, 32(9), 892-895.
63.McCormick RL, Graboski MS, Alleman TL, Herring AM, Tyson KS. Impact of biodiesel source material and chemical structure on emissions of criteria pollutants from a heavy-duty engine. Environmental Science & Technology 2001, 35(9), 1742-1747.
64.Meher LC, Sagar DV, Naik SN. Technical aspects of biodiesel production by transesterification—a review. Renewable and Sustainable Energy Reviews 2006, 10(3), 248-268.
65.Mohammadi A, Barikani M, Barmar M. Effect of surface modification of Fe3O4 nanoparticles on thermal and mechanical properties of magnetic polyurethane elastomer nanocomposites. Journal of materials science 2013, 48(21), 7493-7502.
66.Musa IA. The effects of alcohol to oil molar ratios and the type of alcohol on biodiesel production using transesterification process. Egyptian Journal of Petroleum 2016, 25(1), 21-31.
67.Musić S, Filipović-Vinceković N, Sekovanić L. Precipitation of amorphous SiO2 particles and their properties. Brazilian journal of chemical engineering 2011, 28(1), 89-94.
68.Nicoletti G, Arcuri N, Nicoletti G, Bruno R. A technical and environmental comparison between hydrogen and some fossil fuels. Energy Conversion and Management 2015, 89, 205-213.
69.Orchard B, Denis J, Cousins J. Developments in biofuel processing technologies. World Pumps 2007, 2007(487), 24-28.
70.Park YM, Chung SH, Eom HJ, Lee JS, Lee KY. Tungsten oxide zirconia as solid superacid catalyst for esterification of waste acid oil (dark oil). Bioresource Technology 2010, 101(17), 6589-6593.
71.Piriou B, Vaitilingom G, Veyssière B, Cuq B, Rouau X. Potential direct use of solid biomass in internal combustion engines. Progress in Energy and Combustion Science 2013, 39(1), 169-188.
72.Prasad DMR, Izam A, Khan MMR. Jatropha curcas: plant of medical benefits. Journal of Medicinal Plants Research 2012, 6(4), 2691-2699.
73.Ramadhas AS, Jayaraj S, Muraleedharan C. Use of vegetable oils as IC engine fuels—a review. Renewable Energy 2004, 29(5), 727-742.
74.Saboya RMA, Cecilia JA, García-Sancho C, Sales AV, de Luna FMT, Rodríguez-Castellón E, Cavalcante CL. Synthesis of biolubricants by the esterification of free fatty acids from castor oil with branched alcohols using cationic exchange resins as catalysts. Industrial Crops and Products 2017, 104, 52-61.
75.Sani YM, Daud WMAW, Aziz AA. Activity of solid acid catalysts for biodiesel production: a critical review. Applied Catalysis A: General 2014, 470, 140-161.
76.Saravanan K, Tyagi B, Bajaj HC. Nano-crystalline, mesoporous aerogel sulfated zirconia as an efficient catalyst for esterification of stearic acid with methanol. Applied Catalysis B: Environmental 2016, 192, 161-170.
77.Schuchardt U, Sercheli R, Vargas RM. Transesterification of vegetable oils: a review. Journal of the Brazilian Chemical Society 1998, 9(3), 199-210.
78.Schwab AW, Bagby MO, Freedman B. Preparation and properties of diesel fuels from vegetable oils. Fuel 1987, 66(10), 1372-1378.
79.Serdari A, Lois E, Stournas S. Impact of esters of mono-and dicarboxylic acids on diesel fuel quality. Industrial & Engineering Chemistry Research 1999, 38(9), 3543-3548.
80.Shi L, Dong BH, Gao RJ, Su G, Liu W, Xia CH, Zhao FH, Cao LX. Hierarchical Fe3O4@ titanate microspheres with superior removal capability for water treatment: in situ growth and structure tailoring via hydrothermal assisted etching. RSC Advances 2015, 5(89), 73126-73132.
81.Singh SP, Singh D. Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: a review. Renewable and Sustainable Energy Reviews 2010, 14(1), 200-216.
82.Sonntag NOV. Reactions of fats and fatty acids. D. Swern (Ed.), Bailey’s industrial oil and fat products (4th ed.), vol. 1, p. 99, John Wiley & Sons, New York, 1979.
83.Srivastava PK, Verma M. Methyl ester of karanja oil as an alternative renewable source energy. Fuel 2008, 87(8), 1673-1677.
84.Stournas S, Lois E, Serdari A. Effects of fatty acid derivatives on the ignition quality and cold flow of diesel fuel. Journal of the American Oil Chemists’ Society 1995, 72(4), 433-437.
85.Tábora JE, Davis RJ. Structure of Fe, Mn-promoted sulfated zirconia catalyst by X-ray and IR absorption spectroscopies. Journal of the Chemical Society, Faraday Transactions 1995, 91(12), 1825-1833.
86.Talebian-Kiakalaieh A, Amin NAS, Mazaheri H. A review on novel processes of biodiesel production from waste cooking oil. Applied Energy 2013, 104, 683-710.
87.Tanabe K, Yamaguchi T. Acid-base bifunctional catalysis by ZrO2 and its mixed oxides. Catalysis today 1994, 20(2), 185-197.
88.Tang S, Wang L, Zhang Y, Li S, Tian S, Wang B. Study on preparation of Ca/Al/Fe3O4 magnetic composite solid catalyst and its application in biodiesel transesterification. Fuel processing technology 2012, 95, 84-89.
89.Tesfa B, Mishra R, Gu F, Powles N. Prediction models for density and viscosity of biodiesel and their effects on fuel supply system in CI engines. Renewable Energy 2010, 35(12), 2752-2760.
90.Tiwari AK, Kumar A, Raheman H. Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: an optimized process. Biomass and Bioenergy 2007, 31(8), 569-575.
91.Tonetto GM, Marchetti, JM. Transesterification of soybean oil over Me/Al2O3 (Me= Na, Ba, Ca, and K) catalysts and monolith K/Al2O3-cordierite. Topics in Catalysis 2010, 53(11-12), 755-762.
92.Van Gerpen J, Shanks B, Pruszko R, Clements D, Knothe G. Biodiesel analytical methods. Report, 37-47, National Renewable Energy Laboratory, Golden, Colorado, 2004a.
93.Van Gerpen J, Shanks B, Pruszko R, Clements D, Knothe G.. Biodiesel production technology. Report, 52, National Renewable Energy Laboratory, Golden, Colorado, 2004b.
94.Vicente G, Martınez M, Aracil, J. Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresource Technology 2004, 92(3), 297-305.
95.Viola E, Blasi A, Valerio V, Guidi I, Zimbardi F, Braccio G, Giordano G. Biodiesel from fried vegetable oils via transesterification by heterogeneous catalysis. Catalysis Today 2012, 179(1), 185-190.
96.Wang Y, Ou S, Liu P, Zhang Z. Preparation of biodiesel from waste cooking oil via two-step catalyzed process. Energy Conversion and Management 2007, 48(1), 184-188.
97.Wen L, Wang Y, Lu D, Hu S, Han H. Preparation of KF/CaO nanocatalyst and its application in biodiesel production from Chinese tallow seed oil. Fuel 2010, 89(9), 2267-2271.
98.West AH, Posarac D, Ellis N. Assessment of four biodiesel production processes using HYSYS.Plant. Bioresource Technology 2008, 99(14), 6587-6601.
99.Wu W, He Q, Jiang C. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale research letters 2008, 3(11), 397.
100.Xu C, Sun, S. Monodisperse magnetic nanoparticles for biomedical applications. Polymer International 2007, 56(7), 821-826.
101.Zabeti M, Daud WMAW, Aroua MK. Activity of solid catalysts for biodiesel production: a review. Fuel Processing Technology 2009, 90(6), 770-777.
102.Zhu H, Wu Z, Chen Y, Zhang P, Duan S, Liu X, Mao Z. Preparation of biodiesel catalyzed by solid super base of calcium oxide and its refining process. Chinese Journal of Catalysis 2006, 27(5), 391-396.
103.經濟部能源局,永續能源政策綱領(2008)。
104.經濟部能源局,104年能源統計年報(2015)。
105.蔡民鎰,磁性固體觸媒之合成及其應用於生質柴油製造,碩士論文,臺北,臺灣:國立臺灣大學環境工程學研究所(2016)。
106.羅聖全,科學基礎研究之重要利器-掃描式電子顯微鏡(SEM),科學研習月刊,第52卷,第5期,p. 2-4
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊