(3.231.166.56) 您好!臺灣時間:2021/03/08 10:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃郁揚
研究生(外文):Yu-Yang Huang
論文名稱:污泥生質炭再利用為三氯乙烯降解異相催化劑之可行性研究
論文名稱(外文):Sewage Sludge Derived Biochar Reuse as Heterogeneous Catalyst for Trichloroethene Degradation: A Feasibility Study
指導教授:闕蓓德闕蓓德引用關係
指導教授(外文):Pei-Te Chiueh
口試日期:2017-07-03
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:85
中文關鍵詞:微波裂解生命週期評估都市下水污泥三氯乙烯
外文關鍵詞:Microwave induced pyrolysisSewage sludgeTrichloroetheneLife Cycle Assessment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:116
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於普遍新建掩埋場困難,現有掩埋場之處理容量逐漸下滑使得都市下水污泥處理成本節節攀升,未來將有可能嚴重影響污水廠正常操作。都市下水污泥之目前已有之再利用方式分為土壤改良資材、能源再利用及建築材料再利用三個方向。但由於下水污泥之高含水率、高灰分、含有重金屬及機械強度低等特性,使得下水污泥再利用難以實用化。本研究運用取自迪化污水廠之乾燥污泥以200瓦、300瓦,及400瓦進行微波熱裂解30分鐘分解有機成分並活化金屬成分,提出將下水污泥以熱裂解產製生質炭為異相催化劑降解三氯乙烯之再利用方法。
污泥生質炭之物理化學特性在本研究中以近似分析(Proximate Analysis)、比表面積分析(Specific Analysis)、零電位點分析(Point of Zero Charge Analysis),及金屬成分分析進行研究。近似分析中,污泥生質炭之灰分隨著微波功率提升而顯著增加,於乾燥污泥中僅占25.54±0.52%,200瓦生質炭中占36.37±1.08%,300W生質炭中占58.67±2.11%,400瓦生質炭中占63.96±0.50%。而比表面積則是自200瓦的0.879 ± 0.104 m2/g開始提升,在300瓦時達到最高值37.362 ± 3.227 m2/g,最後於400瓦些許下降至33.071 ± 7.219 m2/g。零電位點分析發現污泥生質炭的表面電性於pH為中性的環境下皆帶負電荷,200瓦、300瓦,及400瓦之零電位點分別為pH=3.86、5.46,及5.31。金屬成分分析的結果顯示微波裂解使生質炭中鋅、鐵、銅、鉛濃度提升,而汞含量因高溫揮發而自生質炭中去除。透過掃描式電子顯微鏡-能量色散X射線光譜儀,本研究發現300瓦及400瓦裂解之生質炭表面出現均勻分布之微小圓球狀顆粒,可做為潛在催化位址促進三氯乙烯之降解。
為分析污泥生質炭於不同pH值條件下降解三氯乙烯的能力,污泥生質炭於pH=3.13±0.25、4.75±0.15,及6.79±0.15進行降解實驗。研究結果發現200瓦生質炭僅於pH=3.13±0.25具有約50%去除率,而於pH=4.75±0.15及6.79±0.15條件下對三氯乙烯降解能力較低。300瓦及400瓦生質炭則於pH=4.75±0.15及6.79±0.15依然有50%以上的去除率。連續批次實驗則證明在五次的降解實驗後400瓦生質炭之降解能力並未顯著的受到影響。
毒性特性溶出試驗(Toxicity Characteristic Leaching Process)的結果中觀察到微波裂解功率的增加與鋅、鉛的溶出具有正相關,但對於鐵、銅、鉻卻是負相關。表示微波裂解程序有助於鐵、銅、鉻三種金屬的穩定化。考慮到污泥生質炭將應用於透水反應牆之用途,將毒性特性溶出試驗之結果與台灣地下水污染管制標準進行比較。結果顯示除鉛微幅超標以外之金屬溶出濃度皆低於地下水汙染管制標準,然而於中性情況下其溶出狀況應低於標準值。
本研究以實驗數據為基礎進行生命週期評估(Life Cycle Assessment)探討污泥生質炭再利用為三氯乙烯降解催化劑之生命週期對環境造成的衝擊,比較三種功率製備之生質炭並分析此程序中可能的衝擊熱點。三種功率製備之生質炭中,以200瓦生質炭所造成的環境衝擊最大,此結果主要是因為其處理效率於中性情況下較低,造成生質炭投入增加。300瓦生質炭所造成的總環境衝擊略低於400瓦生質炭,其原因為300瓦生質炭製備時所耗費的能源較少,且於中性情況下對三氯乙烯的降解能力與400瓦生質炭相近。熱點分析結果發現微波裂解階段的能源使用為最大的環境衝擊來源。敏感度分析的結果顯示降解階段的污泥生質炭使用量為最敏感之參數,而裂解階段的能源使用為亦為十分敏感之參數。這些結果顯示,污泥生質炭的使用量、能源效率或是電力結構變化都將顯著的影響環境衝擊的分析結果。
本研究提出以微波裂解都市下水污泥為催化劑處理三氯乙烯的方式進行再利用,為都市下水污泥開啟新的再利用途徑。使用都市下水污泥的優勢在於不需再經過任何披覆程序即可有足夠的金屬成分可作為活性組分,中性條件下依然表現出一定的降解能力。毒性特性溶出試驗的結果亦證明污泥生質炭於現地使用對土壤造成的重金屬污染風險不高。綜合以上結果,污泥生質炭作為三氯乙烯降解催化劑是具有潛力的再利用方案。
Sewage sludge has become a serious problem of wastewater treatment plant for increasing cost of landfill. Land amendment, energy recovery, and construction material substitution are major ways to reuse sewage sludge currently. Heavy metal content, high water content, and low mechanic strength decreased the value of sewage sludge in these applications. This research provides a new concept to well utilize the nature of high ash content in sewage sludge to produce catalyst for pollution degradation.
Pyrolysis was conducted by single mode microwave device with 200W, 300W, and 400W power level. Characteristics of sewage sludge derived biochar (SSDB) was investigated by proximate analysis, specific area analysis, point of zero charge analysis, and metal content analysis. For proximate analysis, ash content in SSDB was increased with microwave power absorption. Ash content in raw sludge, 200W SSDB, 300W SSDB, and 400W SSDB was 25.54±0.52%, 36.37±1.08%, 58.67±2.11%, and 63.96±0.50% respectively. Specific area of 200W, 300W ,and 400W SSDB was 0.879 ± 0.104 m2/g, 37.362 ± 3.227 m2/g, and 33.071 ± 7.219 m2/g respectively. All SSDB was found negatively charged at neutral pH.
In metal analysis, iron was the highest metal content as high as 42 mg/g in SSDB produced at 400W. Zinc was the second highest metal content in SSDB. Copper, chromium, cadmium, lead, mercury, and nickel were also found in SSDB. Concentration of copper, lead, zinc, and iron occurred during microwave induced pyrolysis. However, mercury was only found in raw sludge and SSDB produced at 200W because of evaporation in high temperature.
Surface morphology and chemical composition were observed by SEM-EDX. The surface of 200W SSDB was found relatively smooth which also can be proved by the result of specific area. Inorganic aggregation evenly distributed on 300W SSDB and 400W SSDB was observed. The aggregation can possibly react as catalytic active sites.
SSDB was activated by 20mM of hydrogen peroxide to degrade TCE in aqueous phase. Degradability of SSDB was tested at different pH value for 2-hour reaction. SSDB produced at all power level was able to remove TCE effectively at pH=3.13±0.25. The C/C0 of 200W, 300W, and 400W SSDB was 0.45, 0.17, and 0.23 respectively. C/C0 of SSDB produced at 300W and 400W is 0.33 and 0.45 of TCE at pH=4.75±0.15 respectively. For neutral pH=6.79±0.15, 300W and 400W removes 0.4 and 0.52.
Total hydrocarbon (THC), mercury emission and toxicity characteristic leaching process (TCLP) was conducted to investigate possibility of secondary pollution in SSDB life cycle. TCLP result shows that only lead concentration in leachate slightly surpassed groundwater pollution control standard in Taiwan. However, lead leaching at neutral pH is much less than acidic condition. Considering pH value of groundwater, SSDB is a safe material to apply on land.
The result of life cycle assessment shows that environmental impact caused by 200W SSDB was the highest. Detailed environmental impact hotspot was analyzed. Electricity consumption was found the major source of impact in SSDB life cycle. Sensitivity analysis identified SSDB input in degradation stage and energy consumption in pyrolysis stage are the most sensitive parameters.
Sewage sludge is a mixture of organic and metal content. This study applied microwave induced pyrolysis to reform organic content to fixed carbon support, and also activate metal content. The ability to degrade TCE at neutral pH and limited metal leaching make SSDB promising to use in situ remediation.
中文摘要 i
Abstract iii
Nomenclature 1
Chapter 1 Introduction 2
Chapter 2 Literature Review 4
2.1 Thermochemical Technologies 4
2.1.1 Torrefaction 4
2.1.2 Pyrolysis 5
2.1.3 Gasification 6
2.2 Sewage Sludge Derived Biochar Application 9
2.3 In Situ Chemical Oxidation 11
2.3.1 Homogeneous Fenton’s Reaction 12
2.3.2 Heterogeneous Fenton’s Reaction 13
2.4 Trichloroethene 15
2.4.1 Potential Health Risk 16
2.4.2 Degradation Approaches 18
2.5 Life Cycle Assessment 19
2.5.1 LCA of Sewage Sludge Application 21
2.5.2 LCA of Heterogeneous and Homogeneous Catalytic System 21
Chapter 3 Material and Method 22
3.1 Material 24
3.2 Single Mode Microwave Device 25
3.3 Pyrolysis Procedure 26
3.3.1 Pretreatment 26
3.3.2 Microwave Induced Pyrolysis 26
3.3.3 Potential Air Pollution Study 26
3.4 Biochar Characterization 27
3.4.1 Proximate Analysis 28
3.4.2 Point of Zero Charge Analysis 29
3.4.3 Inductively Coupled Plasma with Optical Emission Spectrometer 30
3.4.4 Brunauer–Emmett–Teller Surface Area Analysis 31
3.4.5 SEM-EDX 32
3.4.6 Toxicity Characteristic Leaching Procedure 33
3.5 TCE Degradation Experiment 34
3.5.1 Experimental Setup 34
3.5.2 Experimental Procedure 35
3.5.3 Series Batch Study 36
3.5.4 Gas Chromatography with Electron Capture Detector (GC-ECD) 37
3.6 Life Cycle Assessment 37
3.6.1 Goal and Scope Definition 37
3.6.2 Inventory Analysis 38
3.6.3 Damage Assessment 39
Chapter 4 Results and Discussion 41
4.1 SSDB Production 41
4.2 SSDB Characterization 45
4.2.1 Proximate Analysis 45
4.2.2 Specific Surface Area 46
4.2.3 Point of Zero Charge 47
4.2.4 Metal Analysis 48
4.2.5 Surface Morphology and Chemical Composition 49
4.3 TCE Degradation Study 54
4.3.1 Effects of pH Value on TCE Degradation 54
4.3.2 Effect of SSDB Dosage on TCE Degradation 58
4.4 Series Batch Study 58
4.5 Toxicity Test 59
4.5.1 Toxicity Characteristic Leaching Process 60
4.5.2 Metal Analysis for Reaction Solution 61
4.6 Life Cycle Assessment 62
4.6.1 Environmental Impact in SSDB Life Cycle 62
4.6.2 Impact Hotspot Analysis 67
4.6.3 Uncertainty Analysis 69
4.6.4 Sensitivity Analysis 70
Chapter 5 Conclusion and Suggestion 72
Reference 75
Appendix: Data Sheet of Inventory Analysis 83
Agrafioti, E., Bouras, G., Kalderis, D. and Diamadopoulos, E. (2013) Biochar production by sewage sludge pyrolysis. J. Anal. Appl. Pyrolysis 101, 72-78.
Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S.S. and Ok, Y.S. (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99, 19-33.
Al-Ansari, T., Korre, A., Nie, Z. and Shah, N. (2015) Development of a life cycle assessment tool for the assessment of food production systems within the energy, water and food nexus. Sustainable Production and Consumption 2, 52-66.
Alvarenga, P., Farto, M., Mourinha, C. and Palma, P. (2016) Beneficial Use of Dewatered and Composted Sewage Sludge as Soil Amendments: Behaviour of Metals in Soils and Their Uptake by Plants. Waste and Biomass Valorization 7(5), 1189-1201.
Alvarez, J., Lopez, G., Amutio, M., Bilbao, J. and Olazar, M. (2016) Preparation of adsorbents from sewage sludge pyrolytic char by carbon dioxide activation. Process Saf. Environ. Prot. 103, Part A, 76-86.
Asghar, A., Abdul Raman, A.A. and Wan Daud, W.M.A. (2015) Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: a review. Journal of Cleaner Production 87, 826-838.
Atienza-Martinez, M., Fonts, I., Abrego, J., Ceamanos, J. and Gea, G. (2013) Sewage sludge torrefaction in a fluidized bed reactor. Chem. Eng. J. 222, 534-545.
Atienza-Martínez, M., Fonts, I., Lázaro, L., Ceamanos, J. and Gea, G. (2015) Fast pyrolysis of torrefied sewage sludge in a fluidized bed reactor. Chem. Eng. J. 259, 467-480.
Atienza-Martínez, M., Mastral, J.F., Ábrego, J., Ceamanos, J.s. and Gea, G. (2014) Sewage Sludge Torrefaction in an Auger Reactor. Energy & Fuels 29(1), 160-170.
Audí-Miró, C., Cretnik, S., Otero, N., Palau, J., Shouakar-Stash, O., Soler, A. and Elsner, M. (2013) Cl and C isotope analysis to assess the effectiveness of chlorinated ethene degradation by zero-valent iron: Evidence from dual element and product isotope values. Appl. Geochem. 32, 175-183.
Augusto, O. and Miyamoto, S. (2011) Oxygen radicals and related species. Principles of free radical biomedicine 1, 19-42.
Awasthi, M.K., Wang, M., Chen, H., Wang, Q., Zhao, J., Ren, X., Li, D.-s., Awasthi, S.K., Shen, F., Li, R. and Zhang, Z. (2017) Heterogeneity of biochar amendment to improve the carbon and nitrogen sequestration through reduce the greenhouse gases emissions during sewage sludge composting. Bioresour. Technol. 224, 428-438.
Barbusiński, K. (2009) Henry John Horstman Fenton-short biography and brief history of Fenton reagent discovery. Chemia, Dydaktyka, Ekologia, Metrologia 1(14), 111,112.
Benjamin, G., Morten, B., Maj-Britt, Q. and Michael, H. (2013) Quantification of urban metabolism through coupling with the life cycle assessment framework: concept development and case study. Environmental Research Letters 8(3), 035024.
Bokare, A.D. and Choi, W. (2014) Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J. Hazard. Mater. 275, 121-135.
Brunauer, S., Emmett, P.H. and Teller, E. (1938) Adsorption of gases in multimolecular layers. J. Am. Chem. Soc 60(2), 309-319.
Caldwell J., B.A., Bull R.J.,Charbotel B (2014) Trichloroethylene, Tetrachloroethylene, and some other chlorinated agents, IARC (International Agency for Research on Cancer).
Cao, Y. and Pawłowski, A. (2013) Life cycle assessment of two emerging sewage sludge-to-energy systems: evaluating energy and greenhouse gas emissions implications. Bioresour. Technol. 127, 81-91.
Che, H., Bae, S. and Lee, W. (2011) Degradation of trichloroethylene by Fenton reaction in pyrite suspension. J. Hazard. Mater. 185(2–3), 1355-1361.
Chiu, W.A., Jinot, J., Cheryl Siegel, S., Makris, S.L., Cooper, G.S., Dzubow, R.C., Bale, A.S., Evans, M.V., Guyton, K.Z., Nagalakshmi, K., Lipscomb, J.C., Barone, S., Jr., Fox, J.F. and Gwinn, M.R. (2013) Human Health Effects of Trichloroethylene: Key Findings and Scientific Issues. Environmental Health Perspectives (Online) 121(3), 303.
Cucciniello, R., Intiso, A., Castiglione, S., Genga, A., Proto, A. and Rossi, F. (2017) Total oxidation of trichloroethylene over mayenite (Ca12Al14O33) catalyst. Applied Catalysis B: Environmental 204, 167-172.
del Reino, S., Rodríguez-Rastrero, M., Escolano, O., Welte, L., Bueno, J., Fernández, J.L., Schmid, T. and Millán, R. (2015) Environment, Energy and Climate Change I: Environmental Chemistry of Pollutants and Wastes. Jiménez, E., Cabañas, B. and Lefebvre, G. (eds), pp. 207-228, Springer International Publishing, Cham.
EPA, T. (2011) Groundwater pollution control standard. EPA, T. (ed).
Epold, I., Trapido, M. and Dulova, N. (2015) Degradation of levofloxacin in aqueous solutions by Fenton, ferrous ion-activated persulfate and combined Fenton/persulfate systems. Chem. Eng. J. 279, 452-462.
Fang, G., Zhu, C., Dionysiou, D.D., Gao, J. and Zhou, D. (2015) Mechanism of hydroxyl radical generation from biochar suspensions: Implications to diethyl phthalate degradation. Bioresour. Technol. 176, 210-217.
Fischer, D. and Glaser, B. (2012) Synergisms between compost and biochar for sustainable soil amelioration, INTECH Open Access Publisher.
Fonts, I., Azuara, M., Lázaro, L., Gea, G. and Murillo, M.B. (2009) Gas Chromatography Study of Sewage Sludge Pyrolysis Liquids Obtained at Different Operational Conditions in a Fluidized Bed. Industrial & Engineering Chemistry Research 48(12), 5907-5915.
Fonts, I., Gea, G., Azuara, M., Ábrego, J. and Arauzo, J. (2012) Sewage sludge pyrolysis for liquid production: a review. Renewable and sustainable energy reviews 16(5), 2781-2805.
François, J., Abdelouahed, L., Mauviel, G., Patisson, F., Mirgaux, O., Rogaume, C., Rogaume, Y., Feidt, M. and Dufour, A. (2013) Detailed process modeling of a wood gasification combined heat and power plant. Biomass Bioenergy 51, 68-82.
Glaze, W.H., Kenneke, J.F. and Ferry, J.L. (1993) Chlorinated byproducts from the titanium oxide-mediated photodegradation of trichloroethylene and tetrachloroethylene in water. Environ. Sci. Technol. 27(1), 177-184.
GmbH, G.R.E. (2014) Multifuel Gasification, Güssing Renewable Energy. GmbH (ed), Austria.
Harder, R., Peters, G.M., Molander, S., Ashbolt, N.J. and Svanstrom, M. (2016) Including pathogen risk in life cycle assessment: the effect of modelling choices in the context of sewage sludge management. International Journal of Life Cycle Assessment 21(1), 60-69.
Heimersson, S., Svanström, M., Cederberg, C. and Peters, G. (2017) Improved life cycle modelling of benefits from sewage sludge anaerobic digestion and land application. Resources, Conservation and Recycling 122, 126-134.
Hischier, R., Weidema, B., Althaus, H.-J., Bauer, C., Doka, G., Dones, R., Frischknecht, R., Hellweg, S., Humbert, S., Jungbluth, N., Köllner, T., Loerincik, Y., Margni, M. and Nemecek, T. (2010) Implementation of Life Cycle Impact Assessment Methods, Ecoinvent.
Hwang, H.-T., Jeen, S.-W., Sudicky, E.A. and Illman, W.A. (2015) Determination of rate constants and branching ratios for TCE degradation by zero-valent iron using a chain decay multispecies model. J. Contam. Hydrol. 177–178, 43-53.
IBI (2015) Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil, International Biochar Initiative (IBI).
Inguanzo, M., Domınguez, A., Menéndez, J., Blanco, C. and Pis, J. (2002) On the pyrolysis of sewage sludge: the influence of pyrolysis conditions on solid, liquid and gas fractions. J. Anal. Appl. Pyrolysis 63(1), 209-222.
ISO (2006) Environmental management — Life cycle assessment — Principles and framework.
Jamaluddin, M.A., Ismail, K., Mohd Ishak, M.A., Ab Ghani, Z., Abdullah, M.F., Safian, M.T.-u., Idris, S.S., Tahiruddin, S., Mohammed Yunus, M.F. and Mohd Hakimi, N.I.N. (2013) Microwave-assisted pyrolysis of palm kernel shell: Optimization using response surface methodology (RSM). Renewable Energy 55, 357-365.
Jin, Z., Liu, T., Yang, Y. and Jackson, D. (2014) Leaching of cadmium, chromium, copper, lead, and zinc from two slag dumps with different environmental exposure periods under dynamic acidic condition. Ecotoxicol. Environ. Saf. 104, 43-50.
Joy, D.C. (2006) Mater. Sci. Technol., Wiley-VCH Verlag GmbH & Co. KGaA.
Kappe, C.O., Stadler, A. and Dallinger, D. (2012) Microwaves in organic and medicinal chemistry, John Wiley & Sons.
Kommineni, S., Zoeckler, J., Stocking, A., Liang, P.S., Flores, A., Rodriguez, R., Browne, T., Roberts, P.R. and Brown, A. (2000) 3.0 Advanced Oxidation Processes. Treatment Technologies for degradation of Methyl Tertiary Butyl Ether (MTBE) fron drinking water: air stripping, Advanced Oxidation Process, Granular Actived carbon, Sinthetic resin sorbents 2, 109-208.
Langmuir, I. (1918) The adsorption of gases on plane surface of glass, mica and platinum. J. Am. chem. soc 30, 1361.
Li, X., Grace, J., Lim, C., Watkinson, A., Chen, H. and Kim, J. (2004) Biomass gasification in a circulating fluidized bed. Biomass Bioenergy 26(2), 171-193.
Lien, H.-L. and Zhang, W.-x. (2001) Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloids Surf. Physicochem. Eng. Aspects 191(1–2), 97-105.
Lu, H., Zhang, W., Yang, Y., Huang, X., Wang, S. and Qiu, R. (2012) Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Res. 46(3), 854-862.
Mašek, O., Budarin, V., Gronnow, M., Crombie, K., Brownsort, P., Fitzpatrick, E. and Hurst, P. (2013) Microwave and slow pyrolysis biochar—Comparison of physical and functional properties. J. Anal. Appl. Pyrolysis 100, 41-48.
Michael P áMingos, D. (1991) Tilden Lecture. Applications of microwave dielectric heating effects to synthetic problems in chemistry. Chem. Soc. Rev. 20(1), 1-47.
Motasemi, F. and Afzal, M.T. (2013) A review on the microwave-assisted pyrolysis technique. Renewable and Sustainable Energy Reviews 28, 317-330.
Nassar, N.N. (2012) Iron oxide nanoadsorbents for degradation of various pollutants from wastewater: an overview. Application of Adsorbents for Water Pollution Control, 81-118.
Nidheesh, P. (2015) Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: a review. Rsc Advances 5(51), 40552-40577.
Obiri-Nyarko, F., Grajales-Mesa, S.J. and Malina, G. (2014) An overview of permeable reactive barriers for in situ sustainable groundwater remediation. Chemosphere 111, 243-259.
Olesik, J.W. (1996) Peer reviewed: Fundamental research in ICP-OES and ICPMS. Anal. Chem. 68(15), 469A-474A.
Rodríguez, R., Espada, J., Pariente, M., Melero, J., Martínez, F. and Molina, R. (2016) Comparative life cycle assessment (LCA) study of heterogeneous and homogenous Fenton processes for the treatment of pharmaceutical wastewater. Journal of Cleaner Production 124, 21-29.
Romero, A., Santos, A., Vicente, F. and González, C. (2010) Diuron abatement using activated persulphate: Effect of pH, Fe(II) and oxidant dosage. Chem. Eng. J. 162(1), 257-265.
Schwarzenbach, R.P., Gschwend, P.M. and Imboden, D.M. (2005) Environmental organic chemistry, John Wiley & Sons.
Shen, L., Gao, Y. and Xiao, J. (2008) Simulation of hydrogen production from biomass gasification in interconnected fluidized beds. Biomass Bioenergy 32(2), 120-127.
Smol, M., Kulczycka, J., Henclik, A., Gorazda, K. and Wzorek, Z. (2015) The possible use of sewage sludge ash (SSA) in the construction industry as a way towards a circular economy. Journal of Cleaner Production 95, 45-54.
Tu, Y., Tian, S., Kong, L. and Xiong, Y. (2012) Co-catalytic effect of sewage sludge-derived char as the support of Fenton-like catalyst. Chem. Eng. J. 185, 44-51.
Vejerano, E., Lomnicki, S.M. and Dellinger, B. (2012) Formation and Stabilization of Combustion-Generated, Environmentally Persistent Radicals on Ni(II)O Supported on a Silica Surface. Environ. Sci. Technol. 46(17), 9406-9411.
Wang, M.J., Huang, Y.F., Chiueh, P.T., Kuan, W.H. and Lo, S.L. (2012) Microwave-induced torrefaction of rice husk and sugarcane residues. Energy 37(1), 177-184.
Wei, X., Wu, H. and Sun, F. (2017) Magnetite/Fe-Al-montmorillonite as a Fenton catalyst with efficient degradation of phenol. J. Colloid Interface Sci. 504, 611-619.
Werle, S. and Dudziak, M. (2014) Analysis of Organic and Inorganic Contaminants in Dried Sewage Sludge and By-Products of Dried Sewage Sludge Gasification. Energies 7(1), 462.
Wu, X., Gu, X., Lu, S., Xu, M., Zang, X., Miao, Z., Qiu, Z. and Sui, Q. (2014) Degradation of trichloroethylene in aqueous solution by persulfate activated with citric acid chelated ferrous ion. Chem. Eng. J. 255, 585-592.
Xie, F., Lu, Q., de Toledo, R.A. and Shim, H. (2016) Enhanced simultaneous degradation of MTBE and TCE mixture by Paracoccus sp. immobilized on waste silica gel. Int. Biodeterior. Biodegrad. 114, 222-227.
Zhu, L., Lei, H., Wang, L., Yadavalli, G., Zhang, X., Wei, Y., Liu, Y., Yan, D., Chen, S. and Ahring, B. (2015) Biochar of corn stover: Microwave-assisted pyrolysis condition induced changes in surface functional groups and characteristics. J. Anal. Appl. Pyrolysis 115, 149-156.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔