跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2025/01/22 13:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾宇
研究生(外文):Yu Tseng
論文名稱:以連續式觸媒填充床系統氫化裂解桐油產製生質油品
論文名稱(外文):Production of bio-oil by hydrocracking of tung oil in continuous catalyst bed system
指導教授:張慶源張慶源引用關係
口試日期:2017-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:158
中文關鍵詞:桐油觸媒裂解氫化裂解碳化鉬生質燃料油
外文關鍵詞:Tung oilcatalyst crackinghydrocrackingMo2Cbio-fuel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了因應能源的日漸匱乏與氣候變遷造成的損害,生質油品成為近代備受矚目之再生能源。本研究利用自行合成之鉬基碳化物(Mo2C)披覆於活性氧化鋁(γ-Al2O3)顆粒表面之觸媒,以航空用油作為改質目標,於高溫高壓下氫化裂解桐油產製生質油品。
研究中以觸媒填充床搭配各項操作參數(溫度、氫氣流量、氫氣分壓、空間流速)進行桐油的氫化裂解改質實驗。根據各項操作參數產製之生質油品產率、特性(酸價、碘價、密度、熱值、氫含量、氧含量、碳數分布),找出最適之操作條件。本研究先於溫度參數中找出最適之溫度條件,再進行下一最適操作參數探討之實驗,接序探討的順序為氫氣流量、氫氣分壓、空間流速。得到最適之操作條件後,再將工作氣體由H2改為N2以證明產製之生質油品品質並非單純之裂解就可達到。
結果顯示,溫度723 K、氫氣流量250 sccm、氫氣分壓50 psig、觸媒量25 g為最適之操作條件。其產製之生質油品於碘價、熱值、氧含量皆可達到目標油品之品質,產率還能維持在50 vol%以上;不能達到標準的酸價、密度、氫含量也與標準相差不多;且碳數分布與航空用油接近。於GC-MS分析中偵測出豐富的直鏈狀烷類。上述結果證實鉬基碳化物觸媒為有效之氫化反應觸媒。
本研究於最適條件下產製之生質油品品質接近航空用油,未達標準之酸價、密度、氫含量可以藉由與航空用油摻配的方式進行改善。
In order to solve for the problems of lack of energy and the disasters by climate change, the bio-fuel has recently become a notable renewable energy. This study synthesized the Mo2C/γ-Al2O3 catalyst and applied it for the hydro-cracking of tung oil via the continuous flow process to produce the bio-fuel which could substitute the aviation fuel.
The hydro-cracking was carried out in a fixed catalytic bed. Key system variables were examined to find out the proper operating conditions. These included cracking temperature (TC), flow rate of hydrogen (QG), pressure of hydrogen (PH2), and amount of catalyst (mC). Comparison of using working gases of H2 and N2 was made to elucidate the role of H2. Properties of product of bio-fuel measured included acid value (AV), iodine value (IV), density (ρLO), heating value (HV), contents of hydrogen (MH) and oxygen (MO), and distribution of carbon numbers.
Following the sequence of testing on TC, QG, pH2, and mC, the proper operation conditions were determined as 723 K, 250 sccm, 50 psig, and 25 g, respectively. The IV, HV, and MO of bio-fuel thus produced were satisfied with those of standards of aviation fuel Jet A-1. The AV, ρLO, and MH of bio-fuel could not meet the standards of Jet A-1, however, with small differences only. These small deficits can be resolved by blending an acceptable portion of bio-fuel with the Jet A-1. The distribution of carbon numbers of bio-fuel was close to that of Jet A-1. Further, the results of GC-MS analysis showed the bio-fuel was rich in linear alkanes, supporting that the catalytic hydro-cracking is effective.
口試委員審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 vi
圖目錄 ix
表目錄 xii
符號說明 xvii
英文縮寫 xviii
第一章 緒論 1
1.1研究背景 1
1.2研究內容及目的 3
1.3預期效益 3
第二章 文獻回顧 4
2.1.燃料油性質與標準 4
2.1.1燃料油常見之性質 4
2.1.2我國生質柴油之規範 6
2.1.3航空燃油 6
2.2桐油 6
2.2.1背景 6
2.2.2基本性質 7
2.3生質柴油常見製作方法 8
2.4石化工業 16
2.4.1氫化 17
2.4.2裂解 21
2.4.3氫化裂解 21
2.4.4氫化裂解觸媒 22
2.4.5反應器 24
第三章 研究方法 26
3.1研究架構 26
3.2研究設備與藥品 28
3.2.1實驗材料 28
3.2.2實驗藥品 28
3.2.3實驗用氣體 28
3.2.4實驗液體標準品 28
3.2.5觸媒合成設備 28
3.2.6氫化裂解反應設備 29
3.2.7觸媒特性分析儀器 29
3.2.8產物分析儀器 30
3.3實驗方法與步驟 31
3.3.1觸媒製備方法 31
3.3.2氫化裂解實驗 32
3.4分析項目及方法 34
3.4.1原料油品基本性質分析 34
3.4.2液體產物性質分析 34
3.4.3氣體產物分析 41
第四章 結果與討論 45
4.1原物料基本性質分析 45
4.1.1原物料之基本性質 45
4.1.2原物料組成成分分析 46
4.1.3熱重分析 47
4.2觸媒性質分析 47
4.2.1基本物理性質 47
4.2.2組成成分分析 53
4.3油品觸媒氫化裂解 57
4.3.1溫度之影響 57
4.3.2理論用氫量及氫氣流量之影響 68
4.3.3氫氣分壓之影響 76
4.3.4空間流速之影響 86
4.4直接裂解 91
4.5不同觸媒之比較 102
第五章 結論與建議 109
5.1結論 109
5.2建議 110
參考文獻 111
附錄A GC-MS結果 116
1.Aresta M (Ed). Carbon dioxide recovery and utilization. Springer Science & Business Media, 2003.
2.Baptista P, Felizardo P, Menezes JC, Correia MJN. Multivariate near infrared spectroscopy models for predicting the iodine value, CFPP, kinematic viscosity at 40 C and density at 15 C of biodiesel. Talanta 2008, 77(1), 144-151.
3.CPC (China Petroleum Corporation, Taiwan). The properties of Jet A-1, 2016.
4.Demirbas A. Importance of biodiesel as transportation fuel. Energy Policy 2007, 35(9), 4661-4670.
5.Elliott DC, Hart TR, Neuenschwander GG, Rotness LJ, Zacher AH. Catalytic hydroprocessing of biomass fast pyrolysis bio‐oil to produce hydrocarbon products. Environmental Progress & Sustainable Energy 2009, 28(3), 441-449.
6.IEA (International Energy Agency). World energy outlook 2010.
7.IEA. World energy outlook 2013.
8.IEA. World energy outlook 2016.
9.Kim SK, Yoon D, Lee SC, Kim J. Mo2C/Graphene nanocomposite as a hydrodeoxygenation catalyst for the production of diesel range hydrocarbons. ACS Catal 2015, 5(6), 3292-3303.
10.Lin YC, Li CL, Wan HP, Lee HT, Liu CF. Catalytic hydrodeoxygenation of guaiacol on Rh-based and sulfided CoMo and NiMo catalysts. Energy Fuels 2011, 25(3), 890-896.
11.Lotero E, Liu Y, Lopez DE, Suwannakarn K, Bruce DA, Goodwin JG Jr. Synthesis of biodiesel via acid catalysis. Industrial & Engineering Chemistry Research 2005, 44(14), 5353-5363
12.Ma F, Hanna MA. Biodiesel production: a review. Bio-resource Technology 1999, 70(1), 1–15.
13.Mazume T, Nagao S. Heat polymerization of tung oil and ethyl ester of eleostearic acid. J. Chem. Soc. Jpn., Ind. Chem. Sect. 1928, 31, 473-476.
14.Mohanty S, Kunzru D, Saraf DN. Hydrocracking: a review. Fuel 1990, 69(12), 1467-1473.
15.Mortensen PM, Grunwaldt JD, Jensen PA, Knudsen KG, Jensen AD. A review of catalytic upgrading of bio-oil to engine fuels. Applied Catalysis A: General 2011, 407(1), 1-19.
16.Naegeli DW, Dodge LG, Moses CA. Sooting tende ncy of fuels containing polycyclic aromatics in a research combustor. Journal of Energy 1983, 7(2), 168-175.
17.Parawira W. Biodiesel production from Jatropha curcas: A review. Scientific Research and Essays 2010, 5(14), 1796-1808.
18.Sawyer CN, McCarty PL, Parkin GF. Chemistry for Environmental Engineering and Science. McGraw Hill, Edmonton, AB, Canada, 2002.
19.Schwab AW, Bagby MO, Freedman B. Preparation and properties of diesel fuels from vegetable oils. Fuel 1987, 66(10), 1372–8
20.Scott JW, Bridge AG. Origin and refining of petroleum, Adv. Chem. Ser. Chem. Series 103, Washington, DC. 1971, 113–129
21.Şenol Oİ, Viljava TR, Krause AOI. Effect of sulphiding agents on the hydrodeoxygenation of aliphatic esters on sulphided catalysts. Applied Catalysis A: General 2007, 326(2), 236-244.
22.Silitonga AS, Atabani AE, Mahlia TMI, Masjuki HH, Badruddin I A, Mekhilef S. A review on prospect of Jatropha curcas for biodiesel in Indonesia. Renewable and Sustainable Energy Reviews 2011, 15(8), 3733-3756.
23.Steins M, Froment GF, Jacobi P and Uvtterhoeven J. Industrial & Engineering Chemistry Product Research and Development 1981, 20(4), 669-674.
24.Stocker T. Climate Change 2013: The Physical Science Basis. EPA, 2014.
25.TBOS (Bureau of Standards, Metrology and Inspection of Taiwan). CNS 15072.(Chinese National Standards). http://www.cnsonline.com.tw/(accessed in May 2017).
26.US Geological Survey. Mineral Commodity Summaries: Technical Report, 2013.
27.US EPA (US Environmental Protection Agency). A comprehensive analysis of biodiesel impacts on exhaust emissions-draft technical report. Washington DC. EPA420-P-02-001.USEPA, 2002.
28.Vansina H, Miguel A, Baltanas, Froment GF. Hydroisomerization and hydrocracking. 4. Product distribution from n-octane and 2, 2, 4-trimethylpentane. Industrial & Engineering Chemistry Product Research and Development 1983, 22(4), 526-531.
29.Wang H, Male J, Wang Y. Recent advances in hydrotreating of pyrolysis bio-oil and its oxygen-containing model compounds. ACS Catalysis 2013, 3(5), 1047-1070.
30.Wildschut J, Mahfud FH, Venderbosch RH, Heeres HJ. Hydrotreatment of fast pyrolysis oil using heterogeneous noble-metal catalysts. Industrial & Engineering Chemistry Research 2009, 48(23), 10324-10334.
31.Xiang M, Li D, Li W, Zhong B, Sun Y. Performances of mixed alcohols synthesis over potassium promoted molybdenum carbies. Fuel 2006, 85(17-18), 2662-2665.
32.Xiang M, Li D, Li W, Zhong B, Sun,Y. K/Fe/β-Mo2C: A novel catalyst for mixed alcohols synthesis from carbon monoxide hydrogenation. Catalysis Communications 2007 a, 8(1), 88-90
33.Xiang M, Li D, Li W, Zhong B, Sun Y. Synthesis of higher alcohols from syngas over K/Co/β-Mo2C catalysts. Catalysis Communications 2007 b, 8(3), 503-507.
34.Xiang M, Li D, Li W, Zhong B, Sun,Y. Potassium and nickel doped β-Mo2C catalysts for mixed alcohols synthesis via syngas. Catalysis Communications 2007 c, 8(3), 513-518.
35.Xiang M, Li D, Qi H, Li W, Zhong B, Sun Y. Mixed alcohols synthesis from carbon monoxide hydrogenation over potassium promoted β-Mo2C catalysts. Fuel 2007 d, 86(9), 1298-1303.
36.Xiang M, Li D, Xiao H, Zhang J, Li W, Zhong B Sun,Y. K/Ni/β-Mo2C: A highly active and selective catalyst for higher alcohols synthesis from CO hydrogenation. Catalysis Today 2008, 131(1-4), 489-495
37.Yakovlev VA, Khromova SA, Sherstyuk OV, Dundich VO, Ermakov DY, Novopashina VM, Parmon VN. Development of new catalytic systems for upgraded bio-fuels production from bio-crude-oil and biodiesel. Catalysis Today 2009, 144(3), 362-366.
38.Zhang Q, Chang J, Wang TXuY. Review of biomass pyrolysis oil properties and upgrading research. Energy conversion and management 2007, 48(1), 87-92.
39.Zhen MA, Wei ZHU, Qin WEI. Advances in the Researches of Biodiesel from Woody Oil-bearing Plants. Journal of Northwest Forestry University 2007, 22(6), 125-130.
40.朱少華。石油化學技術,第一冊,中國石油公司人事處訓練所,2007。
41.任世彪。Ni2+在γ-Al2O3上的分散狀態及負載型Ni/γ- Al2O3催化剂的α-蒎烯加氫活性。無機化學學報2007, 23(6), 1021-1028.
42.江勝偉。以表面改質鉬基觸媒由合成氣產製烷類及醇類之研究。臺灣大學環境工程學研究所博士論文,2012
43.周慧。桐油製備生物柴油的工藝研究。應用化工2007, 36(7), 633-635。
44.昆明理工大學化學工程學院。石油煉製技術發展。化學學院 2013年5月。
45.林世雄。石油煉製工程。北京工業出版社,北京,中國,2000。
46.許念文。反應工程。三民書局,台北市,台灣,1981。
47.張天順。桐油轉化生物柴油工藝技術分析與研究。安徽農業科2010, 38(15), 8202 - 8203+8255。
48.黃莉軒。生質油品氫化改質研究。臺灣大學環境工程學研究所碩士論文,2016。
49.趙傳。桐油轉化生物柴油的研究。西北農林科技大學學報:自然科學版2007, 35(11), 176-180。
50.蔡信行。石油煉製。明志技術學院化工系,2003。
51.劉玄啟。桐油用途變化與近代國際桐油市場的蓬勃。廣西師範大學學報:哲學社會科學版2009, 45(1), 114-118。
52.鄧禮堂。反應工程。高立圖書,台灣,1985。
53.環檢所(中華民國行政院環境保護署環境檢驗所)。廢棄物熱質檢測方法-燃燒彈熱卡計法。NIEA R214.01C.
http://www.niea.gov.tw/analysis/method/m_n_1.asp?m_niea=R214.01c(accessed in May 2017).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top