跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.224) 您好!臺灣時間:2024/04/14 18:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉祐辰
研究生(外文):You-Chen Liu
論文名稱:科學園區附近環境基質與食物中鎵與銦之量測
論文名稱(外文):Determination of Gallium and Indium in Food and Environmental Matrixes around a Science Park
指導教授:陳家揚陳家揚引用關係
指導教授(外文):Chia-Yang Chen
口試日期:2017-07-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:45
中文關鍵詞:牡蠣蛤蜊魚肉豬肉豬肝豬腎客雅溪頭前溪新竹科學園區底泥河水ICP-MS微波消化
外文關鍵詞:galliumindiumoysterclamfishkidneyliverporkwatersedimentKeya StreamToucian RiverHsinchu Science ParkMicrowave digestionICP-MS
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1038
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鎵跟銦是兩種被廣泛運用在高科技產業的金屬,不論是半導體或是面板產業都會使用到;隨著科技的進步,高科技產品的使用日益增多,這兩種金屬的用量也逐漸升高,臺灣又是世界知名的高科技重鎮,這兩種金屬的頻繁運用自然不在話下。之前的研究中指出,新竹科學園區廢水排入的客雅溪,水中被驗出了比其他地區較高濃度的鎵。除此之外,這兩種金屬在食物中的背景資料並不多。因此本研究將採集客雅溪以及附近頭前溪的水及底泥進行分析,並在當地購買食材 (豬肉、豬肝、豬腎、魚肉、蛤蜊以及牡蠣) 來偵測其中銦與鎵的濃度。本研究進行微波消化的方法測試以及方法驗證。1公克的食物加入5毫升的硝酸,而0.5克的底泥則加入6毫升硝酸和2毫升鹽酸,並在微波消化爐中依照各自的加溫程序升溫。消化液定量後再使用ICP-MS進行金屬的偵測。食物在微波消化之前添加三種不同濃度的鎵及銦標準品以進行方法驗證,回收率皆超過80%以上,並且%RSD皆不超過10%。底泥則是使用SRM 2782進行方法驗證,而本研究使用的方法偵測到的鎵跟銦皆落在SRM 2782的標準範圍之內。
在眾多食物樣本中,牡蠣及蛤蜊被檢測出具有高濃度的鎵,最高甚至可到達 79.7 ng/g,顯示出我們平常飲食中可能藉由這兩種海鮮攝取到高濃度的鎵,但在其他食物中的濃度皆十分相似。而銦在各類食物中的濃度皆相似。此外,不論是在底泥或者是河水中,在竹科廢水放流口下游都測到比上游還高的鎵與銦。除此之外,鎵在客雅溪水中偵測到的濃度較先前同樣地點的研究還高。而本篇研究後續則可結合新竹當地居民的日常飲食暴露調查研究,進行更完善的暴露評估研究
Gallium (Ga) and Indium (In) are two common metals in high-tech industries, and high technology industries in Taiwan were worldwide famous. However, the information on human exposure to these two metals from environmental and food matrixes are still limited. A previous study showed that there was high concentration of gallium in Keya Stream the river where Hsinchu science park discharge wastewater. This study focuses on food (pork, pig livers, pig kidneys, fish, oysters and clams) and environmental matrixes (water and sediment) that collected from Keya Stream, Toucian River and Hsinchu City. Microwave digestion was used to digest samples in this study. One gram food samples were mixed with 5 mL nitric acid and 0.5 g sediment samples were added with 9 mL nitric acid and 3 mL hydrochloric acid, then were heated by their individual heating program. ICP-MS is used to detect these two metals. The method was validated by spiking three different levels of standards of gallium and indium before microwave digestion. The recoveries of three spike levels were higher than 80% and the %RSD were lower than 10%. The concentrations of SRM 2782 detected in this research were in the certified concentration range.
Gallium were found at high concentrations in oysters and clams, and it showed that people might intake high contents of gallium from oysters and clams. The concentrations of gallium in pork, kidneys livers and fish were similar. Indium in different food were similar, too. The sediment and water samples after the effluent of Hsinchu science park were detected high concentration of gallium and indium in Keya Stream. The concentrations of gallium in water from Keya Stream were higher than the previous research in the same sites before, and the concentrations of indium in water from Keya Stream were higher than some rivers and lagoons in Japan. This research enriched the information of gallium and indium in different food, and indicated the metal pollution from science park in environment.
中文摘要 I
Abstract II
List of figures V
List of tables VI
Chapter 1. Introduction 1
1.1. Gallium 1
1.2. Indium 2
1.3. Gallium and indium in environmental matrixes 3
1.4. Gallium and indium in food 5
1.5. Analytical methods 5
1.6. Objectives 6
Chapter 2. Methods 8
2.1. Chemicals and Reagents 8
2.2. Sample collection 8
2.2.1. Environmental matrixes 8
2.2.2. Food 10
2.3. Sample pretreatment and microwave digestion 11
2.4. Instrumental and data analysis 13
2.5. Method validation 14
2.6. Quality assurance and quality control 15
Chapter 3. Results and Discussion 16
3.1. Sample pretreatment and microwave digestion 16
3.2. Optimization of ICP-MS 18
3.3. Method validation 20
3.4 Application to food and environmental samples 22
Chapter 4. Conclusion 28
Figures 30
Tables 36
Reference 42
1.Sostman, H.E., The gallium melting point standard-Its role in manufacture and quality control of electronic thermometers for the clinical laboratory. Clin. Chem, 1977. 23: p. 725.
2.Aldridge, S. and Downs, A.J., The Group 13 Metals Aluminium, Gallium, Indium and Thallium: Chemical Patterns and Peculiarities. 2011: John Wiley & Sons.
3.Downs, A.J., Chemistry of aluminium, gallium, indium and thallium. 1993: Springer Science & Business Media.
4.Kern, W., Schnable, G.L., Moss, S.J., and Ledwith, A., The chemistry of the semiconductor industry. Blackie, Glasgow, 1987.
5.Moskalyk, R.R., Gallium: the backbone of the electronics industry. Minerals Engineering, 2003. 16(10): p. 921-929.
6.Leyland-Jones, B., Treatment of cancer-related hypercalcemia: the role of gallium nitrate. 2003. 30: p. 13-19.
7.Einhorn, L., Gallium nitrate in the treatment of bladder cancer. 2003. 30: p. 34-41.
8.Chitambar, C.R., Medical applications and toxicities of gallium compounds. International Journal of Environmental Research and Public Health, 2010. 7(5): p. 2337-61.
9.Chua, M.-S., Bernstein, L.R., Li, R.U.I., and So, S.K., Gallium maltolate is a promising chemotherapeutic agent for the treatment of hepatocellular carcinoma. Anticancer Research, 2006. 26(3A): p. 1739-1743.
10.Chitambar, C.R., Purpi, D.P., Woodliff, J., Yang, M., and Wereley, J.P., Development of gallium compounds for treatment of lymphoma: gallium maltolate, a novel hydroxypyrone gallium compound, induces apoptosis and circumvents lymphoma cell resistance to gallium nitrate. Journal of Pharmacology and Experimental Therapeutics, 2007. 322(3): p. 1228-1236.
11.Deleon, K., Balldin, F., Watters, C., Hamood, A., Griswold, J., Sreedharan, S., and Rumbaugh, K.P., Gallium maltolate treatment eradicates Pseudomonas aeruginosa infection in thermally injured mice. Antimicrobial Agents and Chemotherapy, 2009. 53(4): p. 1331-1337.
12.Webb, D.R., Sipes, I.G., and Carter, D.E., In vitro solubility and in vivo toxicity of gallium arsenide. Toxicology and Applied Pharmacology, 1984. 76(1): p. 96-104.
13.Webb, D.R., Wilson, S.E., and Carter, D.E., Comparative pulmonary toxicity of gallium arsenide, gallium (III) oxide, or arsenic (III) oxide intratracheally instilled into rats. Toxicology and Applied Pharmacology, 1986. 82(3): p. 405-416.
14.Ohyama, S., Ishinishi, N., Hisanaga, A., and Yamamoto, A., Comparative chronic toxicity, including tumorigenicity, of gallium arsenide and arsenic trioxide intratracheally instilled into hamsters. Applied Organometallic Chemistry, 1988. 2(4): p. 333-337.
15.Pohanish, R.P., Sittig''s handbook of toxic and hazardous chemicals and carcinogens. 2008: William Andrew.
16.Onikura, N., Nakamura, A., and Kishi, K., Acute toxicity of gallium and effects of salinity on gallium toxicity to brackish and marine organisms. Bulletin of Environmental Contamination and Toxicology, 2005. 75(2): p. 356-60.
17.Yang, J.-L. and Chen, H.-C., Effects of gallium on common carp (Cyprinus carpio): acute test, serum biochemistry, and erythrocyte morphology. Chemosphere, 2003. 53(8): p. 877-882.
18.Mangum, B.W., Determination of the Indium Freezing-point and Triple-point Temperatures. metrologia, 1989. 26(4): p. 211.
19.Mikolajczak, C., Availability of indium and gallium. Indium Corporation, 2009.
20.Schwarz‐Schampera, U., Indium. Critical Metals Handbook, 2014: p. 204-229.
21.Shur, M.S., Handbook series on semiconductor parameters. Vol. 1. 1996: World Scientific.
22.Kim, H., Gilmore, C.M., Pique, A., Horwitz, J.S., Mattoussi, H., Murata, H., Kafafi, Z.H., and Chrisey, D.B., Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices. Journal of Applied Physics, 1999. 86(11): p. 6451-6461.
23.Ha, N.N., Agusa, T., Ramu, K., Tu, N.P., Murata, S., Bulbule, K.A., Parthasaraty, P., Takahashi, S., Subramanian, A., and Tanabe, S., Contamination by trace elements at e-waste recycling sites in Bangalore, India. Chemosphere, 2009. 76(1): p. 9-15.
24.Nagano, K., Nishizawa, T., Eitaki, Y., Ohnishi, M., Noguchi, T., Arito, H., and Fukushima, S., Pulmonary toxicity in mice by 2-and 13-week inhalation exposures to indium-tin oxide and indium oxide aerosols. Journal of occupational health, 2011. 53(3): p. 234-239.
25.Tanaka, A., Toxicity of indium arsenide, gallium arsenide, and aluminium gallium arsenide. Toxicology and Applied Pharmacology, 2004. 198(3): p. 405-11.
26.Brun, N.R., Christen, V., Furrer, G., and Fent, K., Indium and indium tin oxide induce endoplasmic reticulum stress and oxidative stress in zebrafish (Danio rerio). Environmental Science & Technology, 2014. 48(19): p. 11679-87.
27.Chang, S.-C., The TFT–LCD industry in Taiwan: competitive advantages and future developments. Technology in Society, 2005. 27(2): p. 199-215.
28.Liao, S.-H. and Hu, T.-C., Knowledge transfer and competitive advantage on environmental uncertainty: An empirical study of the Taiwan semiconductor industry. Technovation, 2007. 27(6-7): p. 402-411.
29.So, B.W.Y., Reassessment of the state role in the development of high-tech industry: A case study of Taiwan’s Hsinchu Science Park. East Asia, 2006. 23(2): p. 61-86.
30.解鴻年, 胡太山, and 王俊堯, 產業地區創新與生產網絡之研究—以新竹科學園區暨周邊地區積體電路為例. 建築與規劃學報, 2004. 5(2): p. 178-200.
31.Torrance, K.W., Keenan, H.E., Hursthouse, A.S., and Stirling, D., Measurement of arsenic and gallium content of gallium arsenide semiconductor waste streams by ICP-MS. Journal of Environmental Science and Health. Part A: Toxic/Hazardous Substances & Environmental Engineering, 2010. 45(4): p. 471-5.
32.Avigliano, E., Schenone, N.F., Volpedo, A.V., Goessler, W., and Fernandez Cirelli, A., Heavy metals and trace elements in muscle of silverside (Odontesthes bonariensis) and water from different environments (Argentina): aquatic pollution and consumption effect approach. Science of the Total Environment, 2015. 506-507: p. 102-8.
33.Hsu, S.C., Hsieh, H.L., Chen, C.P., Tseng, C.M., Huang, S.C., Huang, C.H., Huang, Y.T., Radashevsky, V., and Lin, S.H., Tungsten and other heavy metal contamination in aquatic environments receiving wastewater from semiconductor manufacturing. Journal of Hazardous materials, 2011. 189(1-2): p. 193-202.
34.Mao, L., Mo, D., Yang, J., Jia, Y., and Guo, Y., Concentration and pollution assessment of hazardous metal elements in sediments of the Xiangjiang River, China. Journal of Radioanalytical and Nuclear Chemistry, 2013. 295(1): p. 513-521.
35.Wasim, M., Iqbal, S., Arif, M., and Ali, M., Determination of elements in Hunza River sediment by k 0 instrumental neutron activation analysis. Journal of Radioanalytical and Nuclear Chemistry, 2013. 298(1): p. 563-570.
36.Tokatli, C. and Bastatli, Y., Trace and Toxic Element Levels in River Sediments. Polish Journal of Environmental Studies, 2016. 25(4): p. 1715-1720.
37.Miyazaki, A., Kimura, A., and Tao, H., Distribution of indium, thallium and bismuth in the environmental water of Japan. Bulletin of Environmental Contamination and Toxicology, 2012. 89(6): p. 1211-5.
38.Duan, L., Song, J., Xu, Y., Li, X., and Zhang, Y., The distribution, enrichment and source of potential harmful elements in surface sediments of Bohai Bay, North China. Journal of Hazardous materials, 2010. 183(1): p. 155-164.
39.Jarzynska, G. and Falandysz, J., Selenium and 17 other largely essential and toxic metals in muscle and organ meats of Red Deer (Cervus elaphus)--consequences to human health. Environment International, 2011. 37(5): p. 882-8.
40.Mert, R., Alas, A., Bulut, S., and Ozcan, M.M., Determination of heavy metal contents in some freshwater fishes. Environmental Monitoring and Assessment, 2014. 186(11): p. 8017-22.
41.Guerin, T., Chekri, R., Vastel, C., Sirot, V., Volatier, J.L., Leblanc, J.C., and Noel, L., Determination of 20 trace elements in fish and other seafood from the French market. Food Chemistry, 2011. 127(3): p. 934-42.
42.Millour, S., Noël, L., Chekri, R., Vastel, C., Kadar, A., Sirot, V., Leblanc, J.-C., and Guérin, T., Strontium, silver, tin, iron, tellurium, gallium, germanium, barium and vanadium levels in foodstuffs from the Second French Total Diet Study. Journal of Food Composition and Analysis, 2012. 25(2): p. 108-129.
43.行政院環境保護署環境檢驗所, 魚介類酸性消化總則-微波消化/元素分析. 2011, NIEA.
44.行政院環境保護署環境檢驗所, 廢棄物及底泥中金屬檢測方法-微波輔助酸消化法. 2015, NIEA.
45.行政院環境保護署環境檢驗所, 土壤及底泥水分含量測定方法-重量法. 2012, NIEA.
46.Taylor, S.R., Abundance of chemical elements in the continental crust: a new table. Geochimica et Cosmochimica Acta, 1964. 28(8): p. 1273-1285.
47.行政院環境保護署環境檢驗所. 水中微量元素檢測方法—感應耦合電漿質譜法. 2015.
48.行政院環境保護署環境檢驗所. 水中元素萃取消化法-微波輔助酸消化法. 2014.
49.Wedepohl, K.H., The composition of the continental crust. Geochimica et Cosmochimica Acta, 1995. 59(7): p. 1217-1232.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top