跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/01/21 13:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭穗文
研究生(外文):Sui-Wen Hsiao
論文名稱:聖多美普林西比民主共和國斑點熱立克次體之分子及血清流行病學研究
論文名稱(外文):Molecular and seroepidemiological study of spotted fever group rickettsiae in the Democratic Republic of Sao Tome and Principe
指導教授:蔡坤憲蔡坤憲引用關係
指導教授(外文):Kun-Hsien Tsai
口試日期:2017-07-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:96
中文關鍵詞:斑點熱立克次體血清流行病學花蜱屬乾燥濾紙血片
外文關鍵詞:Spotted fever group rickettsiaeseroepidemiologyAmblyomma spp.dried blood spots
相關次數:
  • 被引用被引用:0
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
斑點熱立克次體病是一種新興以及再興蟲媒傳染病,病原體屬於立克次體屬,主要以硬蜱作為主要的病媒。聖多美普林西比民主共和國是中非熱帶地區島國,當地居民的居住環境靠近農場與叢林,與家畜及其寄生性節肢動物接觸頻率高,形成有利於蜱傳播斑點熱的生活環境。在過去的斑點熱血清流行病研究中,撒哈拉沙漠以南非洲地區的盛行率從0% 到91.4%不等,但是在聖多美並沒有斑點熱的相關報告。除此之外,聖多美近年的瘧疾檢驗陽性率已經大幅下降,但是去醫院就診的不明原因發燒病人數卻年年上升。這些非感染瘧疾的發燒病人有否可能是由於潛在的斑點熱立克次體感染所造成,值得進一步研究。在先期試驗中,以124個長期居住在聖多美的婦女血清為樣本,透過酵素免疫分析法檢測IgG抗體,血清陽性率為8.9%。在進一步的橫斷式研究中,於2016年在省區Agua Grande收集的健康居民乾燥濾紙血片檢體以不同年齡層進行隨機抽樣選取240個檢體,以間接免疫螢光染色法檢測抗斑點熱立克次體IgG抗體。結果顯示對病原體R. africae, R. conorii, R. felis 的血清陽性率分別為1.7% (4/240),6.7% (16/240),以及 2.9% (7/240)。在八個不同年齡層中,0-5歲的血清陽性率為13.3% (4/30),16-25歲為 20.0% (6/30),26-35歲為16.7% (5/30),46-55歲為6.7% (2/30),56-65歲為13.3% (4/30),年齡>65的族群陽性率為23.3%(7/30),其中6-15歲及36-45歲沒有檢測到陽性檢體。斑點熱立克次體的總血清陽性率為11.7% (28/240),其中>65歲的年齡層有最高的陽性率。外寄生蜱分別於2012年在聖多美南部的一座動物牧場,以及2016年在聖多美北部Lobata省區的Agua Casada動物牧場從牛羊身上直接採集。102隻硬蜱檢體以形態學鑑定,2016年採集的60個檢體為變異花蜱(Amblyomma variegatum),2012年採集的42個檢體為星狀花蜱(Amblyomma astrion)。蜱體內的立克次體以聚合酶連鎖反應(PCR)檢測立克次體的gltA,ompA,ompB基因,變異花蜱的陽性率為81.7% (49/60),星狀花蜱陽性率為 52.4% (22/42)。蜱體內立克次體的種類鑑定是依據Fournier and other於2003年提出的指引,定序立克次體的rrs,gltA,ompA,ompB,以及sca4基因,並進行序列比對。變異花蜱檢體中定序的五段立克次體基因序列與R. africae ESF-5有最高的相似度。各基因序列的相似度為rrs 基因 99.1%,gltA 基因 98.7% , 5’ 端ompA基因98.6%,ompB基因99.1%,以及sca4基因99.0%。上述基因序列的相似度均低於同種的判定數值,初步鑑定為新種立克次體。藉由血清流行病學以及分子學資料顯示,目前斑點熱立克次體在聖多美盛行,本研究結果將提供聖多美斑點熱立克次體感染的證據,提供公衛部門及醫師診治之參考。
Spotted fever group (SFG) rickettsioses are emerging and reemerging vector-borne disease around the world. Rickettsioses are caused by bacteria belonging to the genus Rickettsia, and are mainly transmitted by Ixodid ticks. In the tropic African country, Democratic Republic of Sao Tome and Principe (DRSTP), most residents live beside the jungles and farms and therefore contact frequently with animals and insects, which implicate a suitable environment for tick populations. The sero-prevalence of SFG rickettsioses in sub-Sahara Africa was about 0% to 91.4% in previous seroepidemiological studies. However, there are no reports in the DRSTP. Furthermore, the incidence of malaria there is decreasing significantly in recent years, but the number of patients with fever of unknown origin (FUO) was still high. Thus, there could be a high possibility of SFG rickettsiae infection that happens on local residents with FUO. Preliminary test was performed by ELISA against SFG IgG, and sero-positive rate was 8.9% in 124 serum samples from pregnant women. In further cross-sectional study, dried blood spots (DBS) samples from healthy people were collected from January 2016 to March 2016 in Agua Grande. The indirect immunofluorescence assay (IFA) was used to detect IgG antibodies against SFG rickettsiae in 240 DBS samples randomly chosen by age groups. The sero-positive rate was 1.7% (4/240), 6.7% (16/240), and 2.9% (7/240) in R. africae, R. conorii, and R. felis, respectively. And the total SFG sero-positive rate was 11.7% (28/240). In the 8 age groups, the sero-positive rate were 13.3%(4/30) in 0-5, 0% in 6-15, 20.0%(6/30) in 16-25, 16.7%(5/30) in 26-35, 0% in 36-45, 6.7%(2/30) in 46-55, 13.3%(4/30) in 56-65, and 23.3%(7/30) in age >65. The highest sero-positive rate was in age group >65. The highest sero-positive rate was found in older people. Ectoparasites were collected from cattles and goats directly in the Agua Casada animal farm located in the province of Lobata in northern sao tome in 2016 and in a farm located in southern sao tome in 2012. A total number of 102 ixodid ticks were identified based on morphological characteristics, 42 ticks collected in 2012 were morphologically identified as Amblyomma astrion, and 60 ticks collected in 2016 were identified as Amblyomma variegatum. The infection rate of rickettsiae in ticks was detected by using polymerase chain reaction targeting the gltA, ompA and ompB genes. The infection rate was 81.7% (49/60) and 52.4% (22/42) in A. variegatum and A. astrion, respectively. The Rickettsia species identification followed the guidelines proposed by Fournier and other (2003), sequences of rrs, gltA, ompA, ompB, and sca4 gene were sequenced and BLAST. The validated Rickettsia species R.africae ESF-5 (CP001612) was the most similar species among the identity of the five rickettsial gene sequences from A. variegatum. The identities with R. africae ESF-5 (CP001612.1) were 99.06% for rrs gene, 98.7% for gltA gene, 98.6% for 5’ end ompA gene, 99.1% for ompB gene, and 99.0% for sca4 gene. All the identities are not higher than the cut-off value for identification. Based on the criteria, the sequences obtained in this study should belong to a novel Rickettsia species. The serological and molecular evidence in this study supports that SFG rickettsiae were prevalent in the DRSTP. The evidence could provide the public health department and clinics for the risk of SFG exposure.
口試委員審定書 i
誌 謝 ii
摘 要 iii
ABSTRACT v
OUTLINE vii
LIST OF FIGURES ix
LIST OF TABLES xi
LIST OF APPENDIX xii
FLOW CHART xiii
Chapter 1 Introduction 1
1.1 Introduction of the Democratic Republic of Sao Tome and Principe 1
1.1.1 Malaria and febrile illness in the DRSTP 2
1.2 The Spotted Fever 3
1.2.1 Different groups of rickettsiae 4
1.2.2 The clinical profile and the treatment 5
1.2.3 Disease transmission and the vectors 5
1.2.4 Epidemiology in the area of sub-Sahara Africa 7
1.3 Study aim 8
Chapter 2 Materials and Methods 9
2.1 Ethic statement 9
2.2 Specimen collection 9
2.2.1 Serum from pregnant women 9
2.2.2 Dried blood spot 9
2.2.3 Ticks 10
2.3 Preparation of dried blood spot eluates 11
2.4 Sero-prevalence analysis 12
2.4.1 Enzyme-linked immunosorbent assay 12
2.4.2 Immunofluorescence assay 13
2.5 Tick species identification 15
2.6 Rickettsia infection rate in ticks 15
2.6.1 DNA extraction 15
2.6.2 Polymerase chain reaction 15
2.7 Novel Rickettsia species identification 17
Chapter 3 Results 18
3.1 Sero-prevalence of SFG rickettsioses 18
3.1.1 Enzyme-linked immnosorbent assay 18
3.1.2 Immunofluorescence assay 18
3.2 Ticks and Rickettsia species 19
Chapter 4 Discussions 28
REFERENCES 34
1.Tseng LF, Chang WC, Ferreira MC, Wu CH, Rampão HS, Lien JC. Rapid control of malaria by means of indoor residual spraying of alphacypermethrin in the Democratic Republic of Sao Tome and Principe. Am J Trop Med Hyg. 2008;78 2:248-50.
2.USCDC: Spotted Fever Rickettsiosis (Rickettsia spp.) 2010 Case Definition. vol. 2016: Centers for Disease Control and Prevention; 2010.
3.Mediannikov O, Trape JF, Diatta G, Parola P, Fournier PE, Raoult D. Rickettsia africae, western Africa. Emerging Infect Dis. 2010;16 3:571.
4.Jensenius M, Fournier PE, Vene S, Hoel T, Hasle G, Henriksen AZ, et al. African tick bite fever in travelers to rural sub-Equatorial Africa. Clin Infect Dis. 2003;36 11:1411-7.
5.Freedman DO, Weld LH, Kozarsky PE, Fisk T, Robins R, von Sonnenburg F, et al. Spectrum of disease and relation to place of exposure among ill returned travelers. New Engl J Med. 2006;354 2:119-30.
6.Parola P, Paddock CD, Socolovschi C, Labruna MB, Mediannikov O, Kernif T, et al. Update on tick-borne rickettsioses around the world: a geographic approach. Clin Microbiol Rev. 2013;26 4:657-702.
7.Pérez-Osorio CE, Zavala-Velázquez JE, León JJA, Zavala-Castro JE. Rickettsia felis as emergent global threat for humans Emerging Infect Dis. 2008;14 7:1019.
8.Fuxelius HH, Darby A, Min CK, Cho NH, Andersson SG. The genomic and metabolic diversity of Rickettsia. Res Microbiol. 2007;158 10:745-53.
9.Gillespie JJ, Beier MS, Rahman MS, Ammerman NC, Shallom JM, Purkayastha A, et al. Plasmids and rickettsial evolution: insight from Rickettsia felis. PLoS One. 2007;2 3:e266.
10.Eremeeva ME, Madan A, Shaw CD, Tang K, Dasch GA. New perspectives on rickettsial evolution from new genome sequences of rickettsia, particularly R. canadensis, and Orientia tsutsugamushi. Ann N Y Acad Sci. 2005;1063 1:47-63.
11.Pacheco RC, Horta MC, Moraes-Filho J, Ataliba AC, Pinter A, Labruna MB. Rickettsial infection in capybaras (Hydrochoerus hydrochaeris) from São Paulo, Brazil: serological evidence for infection by Rickettsia bellii and Rickettsia parkeri. Biomedica. 2007;27 3:364-71.
12.Ogata H, La Scola B, Audic S, Renesto P, Blanc G, Robert C, et al. Genome sequence of Rickettsia bellii illuminates the role of amoebae in gene exchanges between intracellular pathogens. PLoS Genet. 2006;2 5:e76.
13.Parola P, Raoult D. Ticks and tickborne bacterial diseases in humans: An emerging infectious threat. Clin Infect Dis. 2001;32 6:897-928.
14.Parola P, Paddock CD, Raoult D. Tick-borne rickettsioses around the world: Emerging diseases challenging old concepts. Clin Microbiol Rev. 2005;18 4:719-56.
15.Jensenius M, Fournier P-E, Kelly P, Myrvang B, Raoult D. African tick bite fever. The Lancet infectious diseases. 2003;3 9:557-64.
16.Dupont HT, Brouqui P, Faugere B, Raoult D. Prevalence of antibodies to Coxiella burnetii, Rickettsia conorii, and Rickettsia typhi in seven African countries. Clin Infect Dis. 1995;21 5:1126-33.
17.Bertherat E, Nabias R, Georges A, Renaut A. Seroprevalence of Rickettsia in a goldpanning population in north-eastern Gabon. Trans R Soc Trop Med Hyg. 1998;92 4:393-4.
18.Mediannikov O, Diatta G, Fenollar F, Sokhna C, Trape JF, Raoult D. Tick-borne rickettsioses, neglected emerging diseases in rural Senegal. PLoS Negl Trop Dis. 2010;4 9:e821.
19.Heinrich N, Dill T, Dobler G, Clowes P, Kroidl I, Starke M, et al. High seroprevalence for spotted fever group rickettsiae, is associated with higher temperatures and rural environment in Mbeya region, Southwestern Tanzania. PLoS Negl Trop Dis. 2015;9 4:e0003626.
20.Rakotonanahary RJ, Harrison A, Maina AN, Jiang J, Richards AL, Rajerison M, et al. Molecular and serological evidence of flea-associated typhus group and spotted fever group rickettsial infections in Madagascar. Parasit Vectors. 2017;10 1:125.
21.Keller C, Kruger A, Schwarz NG, Rakotozandrindrainy R, Rakotondrainiarivelo JP, Razafindrabe T, et al. High detection rate of Rickettsia africae in Amblyomma variegatum but low prevalence of anti-rickettsial antibodies in healthy pregnant women in Madagascar. Ticks Tick Borne Dis. 2016;7 1:60-5.
22.Ndip LM, Biswas HH, Nfonsam LE, LeBreton M, Ndip RN, Bissong MA, et al. Risk factors for African tick-bite fever in rural central Africa. Am J Trop Med Hyg. 2011;84 4:608-13.
23.Noden BH, Tshavuka FI, van der Colf BE, Chipare I, Wilkinson R. Exposure and risk factors to Coxiella burnetii, spotted fever group and typhus group Rickettsiae, and Bartonella henselae among volunteer blood donors in Namibia. PLoS One. 2014;9 9:e108674.
24.Ndip LM, Bouyer DH, Travassos Da Rosa A, Titanji V, Tesh RB, Walker DH. Acute spotted fever rickettsiosis among febrile patients, Cameroon. Emerg Infect Dis. 2004;10 3:432-7.
25.Maina AN, Farris CM, Odhiambo A, Jiang J, Laktabai J, Armstrong J, et al. Q Fever, scrub typhus, and rickettsial diseases in children, Kenya, 2011-2012. Emerg Infect Dis. 2016;22 5:883-6.
26.Sothmann P, Keller C, Krumkamp R, Kreuels B, Aldrich C, Sarpong N, et al. Rickettsia felis infection in febrile children, Ghana. Am J Trop Med Hyg. 2017:16-0754.
27.Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, et al. Global trends in emerging infectious diseases. Nature. 2008;451 7181:990-3.
28.Fournier PE, Dumler JS, Greub G, Zhang J, Wu Y, Raoult D. Gene sequence-based criteria for identification of new rickettsia isolates and description of Rickettsia heilongjiangensis sp. nov. J Clin Microbiol. 2003;41 12:5456-65.
29.Gruner N, Stambouli O, Ross RS. Dried blood spots--preparing and processing for use in immunoassays and in molecular techniques. J Vis Exp. 2015; 97.
30.Strauss W, O''Neill SM, Parkinson M, Angles R, Dalton JP. Short report: Diagnosis of human fascioliasis: detection of anti-cathepsin L antibodies in blood samples collected on filter paper. Am J Trop Med Hyg. 1999;60 5:746-8.
31.McDade TW. Development and validation of assay protocols for use with dried blood spot samples. Am J Hum Biol. 2014;26 1:1-9.
32.Smit PW, Elliott I, Peeling RW, Mabey D, Newton PN. An overview of the clinical use of filter paper in the diagnosis of tropical diseases. Am J Trop Med Hyg. 2014;90 2:195-210.
33.Cassol S, Weniger BG, Babu PG, Salminen MO, Zheng X, Htoon MT, et al. Detection of HIV type 1 env subtypes A, B, C, and E in Asia using dried blood spots: a new surveillance tool for molecular epidemiology. AIDS Res Hum Retroviruses. 1996;12 15:1435-41.
34.Therrell BL, Hannon WH, Pass KA, Lorey F, Brokopp C, Eckman J, et al. Guidelines for the retention, storage, and use of residual dried blood spot samples after newborn screening analysis: statement of the Council of Regional Networks for Genetic Services. Biochem Mol Med. 1996;57 2:116-24.
35.Fenollar F, Raoult D. Diagnosis of rickettsial diseases using samples dried on blotting paper. Clin Diagn Lab Immunol. 1999;6 4:483-8.
36.Olney RS, Moore CA, Ojodu JA, Lindegren ML, Hannon WH. Storage and use of residual dried blood spots from state newborn screening programs. J Pediatr. 2006;148 5:618-22.
37.McNulty A, Jennings C, Bennett D, Fitzgibbon J, Bremer JW, Ussery M, et al. Evaluation of dried blood spots for human immunodeficiency virus type 1 drug resistance testing. J Clin Microbiol. 2007;45 2:517-21.
38.Phetsouvanh R, Blacksell SD, Jenjaroen K, Day NP, Newton PN. Comparison of indirect immunofluorescence assays for diagnosis of scrub typhus and murine typhus using venous blood and finger prick filter paper blood spots. Am J Trop Med Hyg. 2009;80 5:837-40.
39.Rogier E, Wiegand R, Moss D, Priest J, Angov E, Dutta S, et al. Multiple comparisons analysis of serological data from an area of low Plasmodium falciparum transmission. Malar J. 2015;14:436.
40.Poiteau L, Soulier A, Rosa I, Roudot-Thoraval F, Hezode C, Pawlotsky JM, et al. Performance of rapid diagnostic tests for the detection of antibodies to hepatitis C virus in whole blood collected on dried blood spots. J Viral Hepat. 2016;23 5:399-401.
41.Organization WH. WHO manual for HIV drug resistance testing using dried blood spot specimens, March, 2010 update July, 2012. 2012.
42.Babalis T, Dupont HT, Tselentis Y, Chatzichristodoulou C, Raoult D. Rickettsia conorii in Greece: comparison of a microimmunofluorescence assay and western blotting for seroepidemiology. Am J Trop Med Hyg. 1993;48 6:784-92.
43.Walker D, Fishbein D. Epidemiology of rickettsial diseases. Eur J Epidemiol. 1991;7 3:237-45.
44.Balows A, William Jr J, Ohashi M, Turano A. Laboratory diagnosis of infectious diseases: principles and practice. Springer Science & Business Media; 2012.
45.Raoult D, Dasch GA. Line blot and western blot immunoassays for diagnosis of Mediterranean spotted fever. J Clin Microbiol. 1989;27 9:2073-9.
46.Volcit O, Keirans JE. A review of African Amblyomma species (Acari, Ixodida, Ixodidae). 2003.
47.Guillemi EC, Tomassone L, Farber MD. Tick-borne Rickettsiales: Molecular tools for the study of an emergent group of pathogens. J Microbiol Methods. 2015;119:87-97.
48.Roux V, Raoult D. Phylogenetic analysis of the genus Rickettsia by 16S rDNA sequencing. Res Microbiol. 1995;146 5:385-96.
49.Roux V, Rydkina E, Eremeeva M, Raoult D. Citrate synthase gene comparison, a new tool for phylogenetic analysis, and its application for the rickettsiae†. Int J Syst Evol Microbiol. 1997;47 2:252-61.
50.Fournier PE, Roux V, Raoult D. Phylogenetic analysis of spotted fever group rickettsiae by study of the outer surface protein rOmpA. Int J Syst Evol Microbiol. 1998;48 3:839-49.
51.Roux V, Raoult D. Phylogenetic analysis of members of the genus Rickettsia using the gene encoding the outer-membrane protein rOmpB (ompB). Int J Syst Evol Microbiol. 2000;50 4:1449-55.
52.Sekeyova Z, Roux V, Raoult D. Phylogeny of Rickettsia spp. inferred by comparing sequences of''gene D'', which encodes an intracytoplasmic protein. Int J Syst Evol Microbiol. 2001;51 4:1353-60.
53.Abdel-Shafy S, Allam NA, Mediannikov O, Parola P, Raoult D. Molecular detection of spotted fever group rickettsiae associated with ixodid ticks in Egypt. Vector Borne Zoonotic Dis. 2012;12 5:346-59.
54.Narasimhan S, Fikrig E. Tick microbiome: the force within. Trends Parasitol. 2015;31 7:315-23.
55.Yen TY, dos Santos MdJT, Tseng LF, Chang SF, Cheng CF, de Assunção Carvalho AV, et al. Seroprevalence of antibodies against dengue virus among pregnant women in the Democratic Republic of Sao Tome and Principe. Acta Trop. 2016;155:58-62.
56.Reis S, Cornel AJ, Melo M, Pereira H, Loiseau C. First record of Aedes albopictus (Skuse 1894) on São tomé island. Acta Trop. 2017;171:86-9.
57.Reddy EA, Shaw AV, Crump JA. Community-acquired bloodstream infections in Africa: a systematic review and meta-analysis. Lancet Infect Dis. 2010;10 6:417-32.
58.O''Meara WP, Mott JA, Laktabai J, Wamburu K, Fields B, Armstrong J, et al. Etiology of pediatric fever in western Kenya: a case–control study of falciparum malaria, respiratory viruses, and streptococcal pharyngitis. Am J Trop Med Hyg. 2015;92 5:1030-7.
59.Uilenberg G, Hoogstraal H, Klein J-M. Les tiques (Ixodoidea) de Madagascar et leur rôle vecteur. 1979.
60.Walker JB, Olwage A. The tick vectors of Cowdria ruminantium (Ixodoidea, Ixodidae, genus Amblyomma) and their distribution. 1987.
61.Uilenberg G, Corten J, Dwinger R. Heartwater (Cowdria ruminantium infection) on Sao Tome. Veterinary Quarterly. 1982;4 3:106-7.
62.Ndip LM, Fokam EB, Bouyer DH, Ndip RN, Titanji VP, Walker DH, et al. Detection of Rickettsia africae in patients and ticks along the coastal region of Cameroon. Am J Trop Med Hyg. 2004;71 3:363-6.
63.Lorusso V, Gruszka KA, Majekodunmi A, Igweh A, Welburn SC, Picozzi K. Rickettsia africae in Amblyomma variegatum ticks, Uganda and Nigeria. Emerging Infect Dis. 2013;19 10:1705.
64.Mtshali K, Nakao R, Sugimoto C, Thekisoe O. Occurrence of Coxiella burnetii, Ehrlichia canis, Rickettsia species and Anaplasma phagocytophilum-like bacterium in ticks collected from dogs and cats in South Africa. Journal of the South African Veterinary Association. 2017;88:6 pages.
65.Robinson JB, Eremeeva ME, Olson PE, Thornton SA, Medina MJ, Sumner JW, et al. New approaches to detection and identification of Rickettsia africae and Ehrlichia ruminantium in Amblyomma variegatum (Acari: Ixodidae) ticks from the Caribbean. J Med Entomol. 2009;46 4:942-51.
66.Kamani J, Baneth G, Apanaskevich DA, Mumcuoglu KY, Harrus S. Molecular detection of Rickettsia aeschlimannii in Hyalomma spp. ticks from camels (Camelus dromedarius) in Nigeria, West Africa. Med Vet Entomol. 2015;29 2:205-9.
67.Proboste T, Kalema-Zikusoka G, Altet L, Solano-Gallego L, Fernandez de Mera IG, Chirife AD, et al. Infection and exposure to vector-borne pathogens in rural dogs and their ticks, Uganda. Parasit Vectors. 2015;8:306.
68.Mwamuye MM, Kariuki E, Omondi D, Kabii J, Odongo D, Masiga D, et al. Novel Rickettsia and emergent tick-borne pathogens: A molecular survey of ticks and tick-borne pathogens in Shimba Hills National Reserve, Kenya. Ticks Tick Borne Dis. 2017;8 2:208-18.
69.de la Fuente J, Estrada-Pena A, Venzal JM, Kocan KM, Sonenshine DE. Overview: Ticks as vectors of pathogens that cause disease in humans and animals. Front Biosci. 2008;13 13:6938-46.
70.Li H, Cui X-M, Cui N, Yang Z-D, Hu J-G, Fan Y-D, et al. Human infection with novel spotted fever group Rickettsia genotype, China, 2015. Emerging Infect Dis. 2016;22 12:2153.
71.Ogrzewalska M, Nieri-Bastos FA, Marcili A, Nava S, Gonzalez-Acuna D, Munoz-Leal S, et al. A novel spotted fever group Rickettsia infecting Amblyomma parvitarsum (Acari: Ixodidae) in highlands of Argentina and Chile. Ticks Tick Borne Dis. 2016;7 3:439-42.
72.Tsai K-H, Wang H-C, Chen C-H, Huang J-H, Lu H-Y, Su C-L, et al. Isolation and identification of a novel spotted fever group rickettsia, strain IG-1, from Ixodes granulatus ticks collected on Orchid Island (Lanyu), Taiwan. Am J Trop Med Hyg. 2008;79 2:256-61.
73.Spolidorio MG, Labruna MB, Mantovani E, Brandao PE, Richtzenhain LJ, Yoshinari NH. Novel spotted fever group rickettsiosis, Brazil. Emerg Infect Dis. 2010;16 3:521-3.
74.Pacheco RC, Arzua M, Nieri-Bastos FA, Moraes-Filho J, Marcili A, Richtzenhain LJ, et al. Rickettsial infection in ticks (Acari: Ixodidae) collected on birds in southern Brazil. J Med Entomol. 2012;49 3:710-6.
75.Walker DH, Ismail N. Emerging and re-emerging rickettsioses: endothelial cell infection and early disease events. Nat Rev Microbiol. 2008;6 5:375.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top