(3.232.129.123) 您好!臺灣時間:2021/03/04 18:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林哲儀
研究生(外文):Che-Yi Lin
論文名稱:利用超音波影像評估小兒阻塞性睡眠呼吸中止症患者的上呼吸道結構
論文名稱(外文):Evaluation of Upper Airway Structures by Using Ultrasonography in Children with Obstructive Sleep Apnea
指導教授:許巍鐘許巍鐘引用關係
指導教授(外文):Wei-Chung Hsu
口試日期:2017-07-20
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:48
中文關鍵詞:兒童阻塞性睡眠呼吸中止症睡眠呼吸障礙超音波
外文關鍵詞:ChildObstructive Sleep Apnea (OSA)PediatricSleep-disordered breathing (SDB)Ultrasound
相關次數:
  • 被引用被引用:0
  • 點閱點閱:125
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
背景
阻塞性睡眠呼吸中止症是兒童常見的睡眠呼吸障礙之一,最常引起這疾病的原因為扁桃腺與腺樣體的過度增生,在睡眠中引起上呼吸道的塌陷,導致發生阻塞性的睡眠呼吸中止症。
近年許多研究顯示,上呼吸道相關的咽喉肌肉結構、脂肪堆積分布、扁桃腺等淋巴組織分布、舌根塌陷程度、側咽壁的厚度等等,在成人阻塞性睡眠呼吸中止症的患者與正常人比較,也有顯著增厚導致上呼吸道的塌陷以及內徑的縮小,但是,在小兒阻塞性睡眠呼吸中止症的相關研究並不多,也沒有明確的結論。
本試驗的目的為以耳鼻喉超音波檢查進行兒童之上呼吸道結構之測量,並尋找與小兒阻塞性睡眠呼吸中止症之嚴重度相關之上呼吸道結構之超音波影像參數,以及其之可能預測因子。

方法
這是一個前瞻性非侵入式的研究,患有睡眠障礙的兒童於接受手術前,接受耳鼻喉頭頸超音波檢查,針對上呼吸道軟組織結構做一測量,並以所獲得之超音波參數與睡眠生理檢查做一分析。

結果
從2016年一月至2017年二月,共有82位兒童(包含20位單純打鼾與62位睡眠呼吸中止症)接受超音波測量。兩組受試者間的年齡、性別、BMI、頸圍、扁桃腺與腺樣體之大小均無顯著差異。研究顯示,扁桃腺相關之超音波參數,包含大小與體積,在兩組間無差別。然而罹患阻塞性睡眠呼吸中止症的兒童,其在超音波所測得之靜止下與Müller法下所測得之側咽壁厚度,均比僅患單純打鼾之兒童來的厚,並達到顯著差異。(24.9±4.4 vs. 21.3±2.6 mm, p=0.001與29.9±5.5 vs. 24.1±2.9 mm, p<0.001)我們也發現,在靜止下與Müller法下所測得之側咽壁的厚度,均與AHI呈現相關,並達到顯著差異。在以邏輯式迴歸分析校正年齡、性別、BMI、扁桃腺與腺樣體大小後,我們發現無論是在靜止狀態或Müller法下所測得之側咽壁的厚度,均為兒童阻塞性睡眠呼吸中止症之危險因子。(OR 1.47, 1.09~1.96, p=0.011; OR 1.63, 1.14~2.34, p=0.007)

結論
超音波影像可以用來診斷兒童之上呼吸道週微軟組織結構,而扁桃腺的大小與體積,與兒童阻塞性睡眠呼吸中止症無顯著相關,然而,比起無阻塞性睡眠呼吸中止症之兒童,罹患阻塞性睡眠呼吸中止症之兒童呈現側咽壁較厚的情形,同時側咽壁也是兒童阻塞性呼吸中止症之一項危險因子。
Introduction:
Obstructive sleep apnea (OSA) in children includes a spectrum of respiratory disorders characterized by upper airway collapse during sleep. The pathophysiology is mainly due to adenotonsillar hypertrophy, neuromuscular disorder, craniofacial anomaly and genetic defect. Several studies had revealed that the dynamic anatomy in upper airway, including superior constriction sphincter, fat pad deposition, lymphoid tissue and muscle tone of pharyngeal wall were all related to the collapsibility of upper airway during sleep in adults. Especially, the thicknesses of lateral pharyngeal wall (LPW) in OSA subjects are significantly different from non-OSA ones. However, there is still limited study addressed the dynamic upper airway structures in children with OSA by ultrasonography. The aims of this study are to measure the upper airway structures by ENT head and neck ultrasonography in children with OSA, and to elucidate the association between the ultrasonographic and polysomnographic parameters in these children.

Methods:
In this prospective cohort study, children with symptoms of sleep-disordered breathing received overnight sleep study (polysomnography, PSG) were invited to join this research after written informed consents obtained from each child or their parents. ENT head and neck ultrasonography were performed before surgery on the first date of admission. All the ultrasonographic and PSG parameters were compared and analyzed.

Results:
From January 2016 to February 2017, eighty-two children, including twenty primary snorer and sixty-two OSA subjects, received the ultrasound measurement pre-operatively. There were no significant differences in age, gender, BMI, neck circumference, tonsillar and adenoid grades between these two groups. Among the ultrasonographic parameters of upper airway structures, there were no differences in tonsil-related dimensions and volumes. However, the total LPW thickness was significantly higher in OSA children than primary snorers in both resting position (24.9±4.4 vs. 21.3±2.6 mm, p=0.001) and under Müller’s maneuver (29.9±5.5 vs. 24.1±2.9 mm, p<0.001). There was also significant correlation between the thickness of LPW and AHI in both resting and under Müller’s status. The total LPW thickness in resting and Müller’s status were independent factors of OSA severity in children by logistic regression analysis after adjusted with age, gender, BMI percentile, tongue position, tonsillar grade, and adenoidal size (OR 1.47, 1.09~1.96, p=0.011; OR 1.63, 1.14~2.34, p=0.007).

Conclusions:
Ultrasonography is a useful diagnostic tool to evaluate the dynamic upper airway structures in children with sleep-disordered breathing. By ultrasonography, the tonsil-related parameters dose not significantly relate to childhood OSA. However, LPW is significantly thicker in OSA children than non-OSA ones, and the thickness of LPW is significantly increasing under Müller’s maneuver in OSA children when comparing to non-OSA ones.
口試委員會審定書 1
誌謝 4
中文摘要 5
英文摘要 7
碩士論文內容
第一章 緒論 9
1.1 背景說明 9
1.2 阻塞性睡眠呼吸中止症:成人vs. 兒童 9
1.3 兒童阻塞性睡眠呼吸中止症之上呼吸道結構臨床評估工具 11
1.4 研究目的 12

第二章 研究方法與材料 14
2.1 受試者選取標準與排除條件 14
2.2 睡眠生理檢查 14
2.3 試驗設計與流程 15
2.4 耳鼻喉頭頸部超音波檢查 16
2.5 資料之蒐集處理評估及統計分析方法 19

第三章 研究結果 21
3.1 受試者之分布 21
3.2 睡眠生理檢查之結果比較 21
3.3 上呼吸道超音波影像參數之結果比較 21
3.4 獨立因子分析 22
3.5 再現性檢定 23

第四章 討論 24
4.1 兒童阻塞性睡眠呼吸中止症診斷方法 24
4.2 兒童上呼吸道解剖構造 25
4.3 超音波影像在OSA的應用 25
4.4 超音波影像於兒童OSA的角色 26
4.5 超音波影像於口咽結構之測量 27
4.6 側咽壁和頸部厚度與OSA的相關 28
4.7 側咽壁影響兒童OSA的機制 29
4.8 與其他影像學檢查之比較 31
4.9 限制 31

第五章 結論與展望 32
5.1 結論 32
5.2 未來展望 32

表一:比較成人與兒童阻塞性睡眠呼吸中止症 35
表二:睡眠生理檢查結果 36
表三:扁桃腺與口咽部之超音波影像測量 37
表四:側咽壁之超音波影像測量 38
表五:以邏輯式迴歸分析上呼吸道超音波影像參數 39
圖一:扁桃腺於耳鼻喉理學檢查之大小分級 40
圖二:以 cephalometry 測量腺樣體-鼻咽部比(AN ratio) 40
圖三:Toshiba Aplio 300 41
圖四:受試兒童接受超音波之檢查姿勢 41
圖五:扁桃腺與口咽部超音波影像檢查 42
圖六:側咽壁之超音波檢查 42
圖七:AHI 與側咽壁(LPW)之 Spearman 相關性 43

參考文獻 44
Abdel Razek, A. A. (2015). Diagnostic Role of Magnetic Resonance Imaging in Obstructive Sleep Apnea Syndrome. J Comput Assist Tomogr, 39(4), 565-571. doi: 10.1097/rct.0000000000000243
Arens, R., McDonough, J. M., Costarino, A. T., Mahboubi, S., Tayag-Kier, C. E., Maislin, G., . . . Pack, A. I. (2001). Magnetic resonance imaging of the upper airway structure of children with obstructive sleep apnea syndrome. Am J Respir Crit Care Med, 164(4), 698-703. doi: 10.1164/ajrccm.164.4.2101127
Bhattacharjee, R., Kheirandish-Gozal, L., Spruyt, K., Mitchell, R. B., Promchiarak, J., Simakajornboon, N., . . . Gozal, D. (2010). Adenotonsillectomy outcomes in treatment of obstructive sleep apnea in children: a multicenter retrospective study. Am J Respir Crit Care Med, 182(5), 676-683. doi: 10.1164/rccm.200912-1930OC
Brodsky, L., Moore, L., & Stanievich, J. F. (1987). A comparison of tonsillar size and oropharyngeal dimensions in children with obstructive adenotonsillar hypertrophy. Int J Pediatr Otorhinolaryngol, 13(2), 149-156.
Cahali, M. B. (2003). Lateral pharyngoplasty: a new treatment for obstructive sleep apnea hypopnea syndrome. Laryngoscope, 113(11), 1961-1968.
Chen, J. W., Chang, C. H., Wang, S. J., Chang, Y. T., & Huang, C. C. (2014). Submental ultrasound measurement of dynamic tongue base thickness in patients with obstructive sleep apnea. Ultrasound Med Biol, 40(11), 2590-2598. doi: 10.1016/j.ultrasmedbio.2014.06.019
Downey III, R., & DABSM, F. (2014). Obstructive Sleep Apnea. Medscape Reference. Retrieved from http://emedicine. medscape. com/article/295807-overview.
Enciso, R., Nguyen, M., Shigeta, Y., Ogawa, T., & Clark, G. T. (2010). Comparison of cone-beam CT parameters and sleep questionnaires in sleep apnea patients and control subjects. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 109(2), 285-293. doi: 10.1016/j.tripleo.2009.09.033
Fishman, G., Zemel, M., DeRowe, A., Sadot, E., Sivan, Y., & Koltai, P. J. (2013). Fiber-optic sleep endoscopy in children with persistent obstructive sleep apnea: inter-observer correlation and comparison with awake endoscopy. Int J Pediatr Otorhinolaryngol, 77(5), 752-755. doi: 10.1016/j.ijporl.2013.02.002
Franco Jr, R. A., Rosenfeld, R. M., & Rao, M. (2000). Quality of life for children with obstructive sleep apnea. Otolaryngology–Head and Neck Surgery, 123(1), 9-16.
Fregosi, R. F., Quan, S. F., Kaemingk, K. L., Morgan, W. J., Goodwin, J. L., Cabrera, R., & Gmitro, A. (2003). Sleep-disordered breathing, pharyngeal size and soft tissue anatomy in children. J Appl Physiol (1985), 95(5), 2030-2038. doi: 10.1152/japplphysiol.00293.2003
Friedman, M., Hamilton, C., Samuelson, C. G., Lundgren, M. E., & Pott, T. (2013). Diagnostic value of the Friedman tongue position and Mallampati classification for obstructive sleep apnea: a meta-analysis. Otolaryngology--Head and Neck Surgery, 148(4), 540-547.
Friedman, M., Wilson, M., Lin, H.-C., & Chang, H.-W. (2009). Updated systematic review of tonsillectomy and adenoidectomy for treatment of pediatric obstructive sleep apnea/hypopnea syndrome. Otolaryngology—Head and Neck Surgery, 140(6), 800-808.
Fujioka, M., Young, L. W., & Girdany, B. R. (1979). Radiographic evaluation of adenoidal size in children: adenoidal-nasopharyngeal ratio. AJR Am J Roentgenol, 133(3), 401-404. doi: 10.2214/ajr.133.3.401
Hsu, W. C., Kang, K. T., Weng, W. C., & Lee, P. L. (2013). Impacts of body weight after surgery for obstructive sleep apnea in children. Int J Obes (Lond), 37(4), 527-531. doi: 10.1038/ijo.2012.194
Iber, C., Ancoli-Israel, S., Chesson, A., & Quan, S. F. (2007). The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications (Vol. 1): American Academy of Sleep Medicine Westchester, IL.
Kang, K.-T., Weng, W.-C., Yeh, T.-H., Lee, P.-L., & Hsu, W.-C. (2014). Validation of the Chinese version OSA-18 quality of life questionnaire in Taiwanese children with obstructive sleep apnea. Journal of the Formosan Medical Association, 113(7), 454-462.
Kang, K. T., Chou, C. H., Weng, W. C., Lee, P. L., & Hsu, W. C. (2013). Associations between adenotonsillar hypertrophy, age, and obesity in children with obstructive sleep apnea. PLoS One, 8(10), e78666. doi: 10.1371/journal.pone.0078666
Kang, K. T., & Hsu, W. C. (2012). Adenotonsillectomy outcomes in treatment of obstructive sleep apnea in children: a multicenter retrospective study. Am J Respir Crit Care Med, 186(9), 927; author reply 927-928. doi: 10.1164/ajrccm.186.9.927a
Katz, E. S., & D''Ambrosio, C. M. (2008). Pathophysiology of pediatric obstructive sleep apnea. Proc Am Thorac Soc, 5(2), 253-262. doi: 10.1513/pats.200707-111MG
Kuna, S. T., & Smickley, J. S. (1997). Superior pharyngeal constrictor activation in obstructive sleep apnea. Am J Respir Crit Care Med, 156(3 Pt 1), 874-880. doi: 10.1164/ajrccm.156.3.9702053
Lahav, Y., Rosenzweig, E., Heyman, Z., Doljansky, J., Green, A., & Dagan, Y. (2009). Tongue base ultrasound: a diagnostic tool for predicting obstructive sleep apnea. Ann Otol Rhinol Laryngol, 118(3), 179-184.
Lan, M. C., Liu, S. Y., Lan, M. Y., Modi, R., & Capasso, R. (2015). Lateral pharyngeal wall collapse associated with hypoxemia in obstructive sleep apnea. Laryngoscope, 125(10), 2408-2412. doi: 10.1002/lary.25126
Lee, C.-H., Kang, K.-T., Weng, W.-C., Lee, P.-L., & Hsu, W.-C. (2015). Quality of life after adenotonsillectomy in children with obstructive sleep apnea: short-term and long-term results. Int J Pediatr Otorhinolaryngol, 79(2), 210-215.
Li, A. M., Wong, E., Kew, J., Hui, S., & Fok, T. F. (2002). Use of tonsil size in the evaluation of obstructive sleep apnoea. Arch Dis Child, 87(2), 156-159.
Li, H. Y., & Lee, L. A. (2009). Sleep-disordered breathing in children. Chang Gung Med J, 32(3), 247-257.
Lin, A. C., & Koltai, P. J. (2012). Sleep endoscopy in the evaluation of pediatric obstructive sleep apnea. Int J Pediatr, 2012, 576719. doi: 10.1155/2012/576719
Liu, K., Chu, W. C., To, K., Ko, F. W., Tong, M. W., Chan, J. W., & Hui, D. S. (2007). Sonographic measurement of lateral parapharyngeal wall thickness in patients with obstructive sleep apnea. SLEEP-NEW YORK THEN WESTCHESTER-, 30(11), 1503.
Major, M. P., Flores-Mir, C., & Major, P. W. (2006). Assessment of lateral cephalometric diagnosis of adenoid hypertrophy and posterior upper airway obstruction: a systematic review. American journal of orthodontics and dentofacial orthopedics, 130(6), 700-708.
Morrison, D., Launois, S., Isono, S., Feroah, T., Whitelaw, W., & Remmers, J. (1993). Pharyngeal narrowing and closing pressures in patients with obstructive sleep apnea. American Review of Respiratory Disease, 148(3), 606-611.
Nandalike, K., Shifteh, K., Sin, S., Strauss, T., Stakofsky, A., Gonik, N., . . . Arens, R. (2013). Adenotonsillectomy in obese children with obstructive sleep apnea syndrome: magnetic resonance imaging findings and considerations. Sleep, 36(6), 841-847. doi: 10.5665/sleep.2708
Nieminen, P., Tolonen, U., Löppönen, H., Löppönen, T., Luotonen, J., & Jokinen, K. (1997). Snoring children: factors predicting sleep apnea. Acta oto-laryngologica, 117(sup529), 190-194.
Nolan, J., & Brietzke, S. E. (2011). Systematic review of pediatric tonsil size and polysomnogram-measured obstructive sleep apnea severity. Otolaryngol Head Neck Surg, 144(6), 844-850. doi: 10.1177/0194599811400683
Prasad, A., Yu, E., Wong, D. T., Karkhanis, R., Gullane, P., & Chan, V. W. (2011). Comparison of sonography and computed tomography as imaging tools for assessment of airway structures. J Ultrasound Med, 30(7), 965-972.
Ryan, C. M., & Bradley, T. D. (2005). Pathogenesis of obstructive sleep apnea. Journal of Applied Physiology, 99(6), 2440-2450.
Schellenberg, J. B., Maislin, G., & Schwab, R. J. (2000). Physical findings and the risk for obstructive sleep apnea: the importance of oropharyngeal structures. Am J Respir Crit Care Med, 162(2), 740-748.
Schwab, R. J., Gupta, K. B., Gefter, W. B., Metzger, L. J., Hoffman, E. A., & Pack, A. I. (1995). Upper airway and soft tissue anatomy in normal subjects and patients with sleep-disordered breathing. Significance of the lateral pharyngeal walls. Am J Respir Crit Care Med, 152(5 Pt 1), 1673-1689. doi: 10.1164/ajrccm.152.5.7582313
Shu, C.-C., Lee, P., Lin, J.-W., Huang, C.-T., Chang, Y.-C., Yu, C.-J., & Wang, H.-C. (2013). The use of sub-mental ultrasonography for identifying patients with severe obstructive sleep apnea. PLoS One, 8(5), e62848.
Siegel, H., Sonies, B., Graham, B., McCutchen, C., Hunter, K., Vega–Bermudez, F., & Sato, S. (2000). Obstructive sleep apnea: A study by simultaneous polysomnography and ultrasonic imaging. Neurology, 54(9), 1872-1872.
Tauman, R., Gulliver, T. E., Krishna, J., Montgomery-Downs, H. E., O''Brien, L. M., Ivanenko, A., & Gozal, D. (2006). Persistence of obstructive sleep apnea syndrome in children after adenotonsillectomy. J Pediatr, 149(6), 803-808. doi: 10.1016/j.jpeds.2006.08.067
Truong, M. T., Woo, V. G., & Koltai, P. J. (2012). Sleep endoscopy as a diagnostic tool in pediatric obstructive sleep apnea. Int J Pediatr Otorhinolaryngol, 76(5), 722-727. doi: 10.1016/j.ijporl.2012.02.028
Ugur, K. S., Ark, N., Kurtaran, H., Kizilbulut, G., Cakir, B., Ozol, D., & Gunduz, M. (2011). Subcutaneous fat tissue thickness of the anterior neck and umbilicus in patients with obstructive sleep apnea. Otolaryngology--Head and Neck Surgery, 145(3), 505-510.
Wing, Y., Hui, S., Pak, W., Ho, C., Cheung, A., Li, A., & Fok, T. (2003). A controlled study of sleep related disordered breathing in obese children. Arch Dis Child, 88(12), 1043-1047.
Wu, M.-J., Ho, C.-Y., Tsai, H.-H., Huang, H.-M., Lee, P.-L., & Tan, C.-T. (2011). Retropalatal Müller grade is associated with the severity of obstructive sleep apnea in non-obese Asian patients. Sleep and Breathing, 15(4), 799-807.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔