跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/21 09:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:金佩璇
研究生(外文):Pey-Shyuan,Chin
論文名稱:探討視網膜-上視神經交叉核的神經連結迴路
論文名稱(外文):Mapping the retina-suprachiasmatic nucleus functional circuitry
指導教授:陳示國
指導教授(外文):Shih-Kuo Chen
口試日期:2017-07-12
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:81
中文關鍵詞:上視神經交叉核精胺酸血管加壓素感知鈣離子濃度的螢光蛋白谷氨酸
外文關鍵詞:suprachiasmatic nucleusarginine vasopressin peptide (AVP)GCaMP6sglutamate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:436
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
哺乳動物位於下視丘的上視神經交叉核(SCN),是生理時鐘的主要控制中心。在哺乳動物的視網膜上,有一種特別的視神經細胞—內發性感光視網膜神經節細胞 (intrinsically photosensitive retinal ganglion cell, ipRGC),可以投射到上視神經交叉核。這種神經細胞,和視覺成像幾乎無關,但會影響其他非成像(non-image forming)的生理功能。這種神經細胞會將光線的訊息傳遞到上視神經交叉核,調節晝夜節律的同步(photoentrainment). 上視神經交叉核可被分成腹外側(ventral lateral) 和背內側(dorsal medial). 腹外側的上視神經交叉核,主要包含表現血管活性腸肽vascular intestinal peptide (VIP) 和胃泌素釋放肽gastrin releasing peptide (GRP) 的神經細胞。背內側的上視神經交叉核則主要包含表現精胺酸血管加壓素arginine vasopressin peptide (AVP)的神經細胞。根據過去對上視神經交叉核的研究,知道表現VIP的神經細胞負責接受來自ipRGCs所傳遞的光線訊息,而表現AVP的神經細胞負責將生理時鐘的訊息外傳到其他核區。但透過單一神經細胞追蹤的方法,發現ipRGCs可以到上視神經交叉核的所有位置, 而非只有表現VIP的神經細胞。為了知道ipRGCs和表現AVP的神經細胞之間的連結,我們使用一種可以感知鈣離子濃度的螢光蛋白--GCaMP6s,並將GCaMP6s表現在帶有AVP 的神經細胞,藉由螢光的變化,在有ipRGCs刺激的狀態之下觀察神經細胞的活動。我們發現表現AVP的神經細胞可以直接被ipRGCs使用的興奮性傳導物質—谷氨酸glutamate興奮。同時我們也發現,表現AVP的神經細胞使用N-甲基-D-天門冬胺酸受體 (NMDA receptor)接受glutamate後造成大幅度地鈣離子上升,而glutamate 作用在表現AVP 的神經細胞的代謝型受體 (metabotropic receptor),則會調控神經細胞電位變化的頻率。
In mammals, suprachiasmatic nucleus (SCN) located at the hypothalamus is the master clock to control daily activity pattern and influence many physiological functions. In mammalian retina, intrinsically photosensitive retinal ganglion cell (ipRGC) contributes to many light-dependent non-image forming functions. They directly project to suprachiasmatic nucleus (SCN) for circadian photoentrainment. The SCN can be separated into several regions, including the ventral lateral SCN (vlSCN), which contains VIP and GRP expressing neurons, and the dorsal medial SCN (dmSCN), which contains AVP neurons. Previous studies suggest that light input is only transmitted to VIP and GRP expressing neuron in the vlSCN, while the AVP expressing neurons in the dmSCN provide output from the SCN. However, our single cell tracing study indicated that ipRGCs innervate to whole SCN. In order to know whether AVP neurons can receive glutamate, which is the neurotransmitter released by ipRGCs to stimulate SCN neurons, we use GCaMP6s, a calcium sensor, to image the neural activity in SCN under glutamate stimulation. We found out that AVP neurons can be directly stimulated by glutamate. In addition, the AVP neurons would use both NMDA receptor and metabotropic glutamate receptor to receive the glutamate signal. Glutamate acts on the NMDA receptor would cause strong increase in calcium level to the AVP neuron, while acting on the metabotropic receptor would modulate the firing probability of AVP neuron.
摘要 III
Abstract IV
Chapter I Introduction 1
1.1 Intrinsincally photosensitive retinal ganglion cell (ipRGC) 1
1.1.1 The properties of ipRGCs 1
1.1.2 Subtypes of the ipRGCs 3
1.1.3 The central projection of ipRGCs to the brain 3
1.2 Suprachiasmatic nucleus 4
1.2.1 The Structure of SCN 4
1.2.2 The coupling of SCN neurons 5
1.2.3 Molecular clock 6
1.2.4 ipRGCs and SCN 7
1.2.5 Development of the ipRGCs 8
1.2.6 The retinotopic map between retina and SCN 9
1.2.7 SCN output 10
1.3 GCaMP6s 11
1.4 Glutamate receptor 13
1.4.1 Suprachiasmatic nucleus and glutamate receptor 15
Statement of the Purpose 17
Chapter Ⅱ Material and Method 18
2.1 Animals 18
2.2 Genotyping 18
2.2.1 DNA isolation 18
2.2.2 Polymerase chain reaction (PCR) 19
2.3 EphA staining 19
2.3.1 Histology and immunohistochemistry 19
2.3.2 Analysis 20
2.4 In vitro calcium imaging 20
2.4.1 Brain slice preparation 20
2.4.2 Glutamate and glutamate agonist application 21
2.4.3 Images collection 22
2.4.4 Analysis 23
2.4.5 Baseline correction 23
2.4.5 Grayscale map 24
2.5 Optogenetics 24
2.5.1 Adeno-associated virus 2 package 24
2.5.2 Adeno-associated virus 2 infection 24
2.5.3 Image collection of the ChrimsonR infected retina and SCN 25
2.5.4 Optogenetics 25
Chapter Ⅲ Results 27
3.1There is no gradient of EphA in the SCN from dorsal to ventral 27
3.2 Most of the neurons in the SCN can be activated by glutamate directly 28
3.3 The AVP neurons in the SCN can be activated by ipRGCs directly 29
3.4 The AVP neurons in SCN used NMDA receptor as their glutamate receptor 31
3.5 The glutamate act on the metabotropic receptor may modulate the firing probability of the AVP neuron 32
Chapter Ⅳ Discussion 36
4.1 There is no EphA gradient in the SCN at P6 36
4.2 The AVP neuron can receive the glutamate signal directly 37
4.3 NMDA receptor is used for AVP neuron in SCN to receive the glutamate signal 39
4.4 The mGlu agonist modulate the firing probability of AVP neurons in SCN. 41
4.5 The limitation of slice calcium image by using GCaMP6s and future direction of this technology. 42
Chapter Ⅴ Significance of work 44
Chapter Ⅵ References 46
Figure 1.Schematic representation of the mouse genetic lines. 58
Figure 2.The representative EphA staining of P6 mice. 59
Figure 3.There is no gradient of EphA in the SCN along the dorsal-ventral line (the line is shown in figure 1) in P6 mice. 60
Figure 4.Most of the SCN neurons can receive the glutamate signal directly. 61
Figure 5.The AVP neurons can receive the glutamate signal directly. 62
Figure 6.The activity change of all the chosen AVP neurons. 63
Figure 8.The activity change of the AVP neurons before and after applying NMDA. 65
Figure 9.The response of the AVP neurons after applying Group 1 metabotropic glutamate receptor, DHPG. 66
Figure 10.The response of all the AVP neurons chosen to be analyzed after applying DHPG. 67
Figure. 11 The response of the AVP neurons after applying Group 2 metabotropic glutamate receptor agonist ,LY345740. 68
Figure 12.The response of all the AVP neurons chosen to be analyzed after applying LY345740. 69
Figure 13.The response of the AVP neurons after applying Group 3 metabotropic glutamate receptor agonist ,L-AP4. 70
Figure 15.Conclusion model. 72
Figure 16. The AAV- ChrimsonR infection of the retinal ganglion cells. The figure 73
Figure 17. The light source module for optogenetics 74
Figure 18. The response of SCN neuron under ChrimsonR activation. 75
Table 1. List of primers for genotyping 76
Table 2. List of the glutamate receptor agonist 77
Table 3. List of peptide and antibody used in this study 78
Appendix Abstract and poster 79
Abstract of neuroscience 2016 79
Poster of United Exhibition of College of Life Science, National Taiwan University 81
References
Ackman, J.B., Burbridge, T.J., and Crair, M.C. (2012). Retinal waves coordinate patterned activity throughout the developing visual system. Nature 490, 219-225.
Antle, M.C., and Silver, R. (2005). Orchestrating time: arrangements of the brain circadian clock. Trends Neurosci 28, 145-151.
Aton, S.J., Colwell, C.S., Harmar, A.J., Waschek, J., and Herzog, E.D. (2005). Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci 8, 476-483.
Berson, D.M., Castrucci, A.M., and Provencio, I. (2010). Morphology and Mosaics of Melanopsin-Expressing Retinal Ganglion Cell Types in Mice. J Comp Neurol 518, 2405-2422.
Berson, D.M., Dunn, F.A., and Takao, M. (2002). Phototransduction by retinal ganglion cells that set the circadian clock. Science 295, 1070-1073.
Bingel, A.S., and Schwartz, N.B. (1969). Timing of LH release and ovulation in the cyclic mouse. J Reprod Fertil 19, 223-229.
Brancaccio, M., Patton, A.P., Chesham, J.E., Maywood, E.S., and Hastings, M.H. (2017). Astrocytes Control Circadian Timekeeping in the Suprachiasmatic Nucleus via Glutamatergic Signaling. Neuron 93, 1420-1435 e1425.
Bronson, F.H., and Vom Saal, F.S. (1979). Control of the preovulatory release of luteinizing hormone by steroids in the mouse. Endocrinology 104, 1247-1255.
Brown, T.M., Colwell, C.S., Waschek, J.A., and Piggins, H.D. (2007). Disrupted neuronal activity rhythms in the suprachiasmatic nuclei of vasoactive intestinal polypeptide-deficient mice. Journal of Neurophysiology 97, 2553-2558.
Cabrera-Vera, T.M., Vanhauwe, J., Thomas, T.O., Medkova, M., Preininger, A., Mazzoni, M.R., and Hamm, H.E. (2003). Insights into G protein structure, function, and regulation. Endocr Rev 24, 765-781.
Chen, G., and van den Pol, A.N. (1998). Coexpression of multiple metabotropic glutamate receptors in axon terminals of single suprachiasmatic nucleus neurons. J Neurophysiol 80, 1932-1938.
Chen, T.W., Wardill, T.J., Sun, Y., Pulver, S.R., Renninger, S.L., Baohan, A., Schreiter, E.R., Kerr, R.A., Orger, M.B., Jayaraman, V., et al. (2013). Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295-300.
Clapham, D.E., Runnels, L.W., and Strubing, C. (2001). The TRP ion channel family. Nat Rev Neurosci 2, 387-396.
Colwell, C.S. (2001). NMDA-evoked calcium transients and currents in the suprachiasmatic nucleus: gating by the circadian system. Eur J Neurosci 13, 1420-1428.
Colwell, C.S., Foster, R.G., and Menaker, M. (1991). Nmda Receptor Antagonists Block the Effects of Light on Circadian Behavior in the Mouse. Brain Res 554, 105-110.
Colwell, C.S., Michel, S., Itri, J., Rodriguez, W., Tam, J., Lelievre, V., Hu, Z., Liu, X., and Waschek, J.A. (2003). Disrupted circadian rhythms in VIP- and PHI-deficient mice. Am J Physiol-Reg I 285, R939-R949.
Coulthard, M.G., Morgan, M., Woodruff, T.M., Arumugam, T.V., Taylor, S.M., Carpenter, T.C., Lackmann, M., and Boyd, A.W. (2012). Eph/Ephrin signaling in injury and inflammation. Am J Pathol 181, 1493-1503.
Ecker, J.L., Dumitrescu, O.N., Wong, K.Y., Alam, N.M., Chen, S.K., LeGates, T., Renna, J.M., Prusky, G.T., Berson, D.M., and Hattar, S. (2010). Melanopsin-Expressing Retinal Ganglion-Cell Photoreceptors: Cellular Diversity and Role in Pattern Vision. Neuron 67, 49-60.
Estevez, M.E., Fogerson, P.M., Ilardi, M.C., Borghuis, B.G., Chan, E., Weng, S.J., Auferkorte, O.N., Demb, J.B., and Berson, D.M. (2012). Form and Function of the M4 Cell, an Intrinsically Photosensitive Retinal Ganglion Cell Type Contributing to Geniculocortical Vision. J Neurosci 32, 13608-13620.
Farah, M.H., and Easter, S.S., Jr. (2005). Cell birth and death in the mouse retinal ganglion cell layer. J Comp Neurol 489, 120-134.
Fernandez, D.C., Chang, Y.T., Hattar, S., and Chen, S.K. (2016a). Architecture of retinal projections to the central circadian pacemaker. P Natl Acad Sci USA 113, 6047-6052.
Fernandez, D.C., Chang, Y.T., Hattar, S., and Chen, S.K. (2016b). Architecture of retinal projections to the central circadian pacemaker. Proc Natl Acad Sci U S A 113, 6047-6052.
Fetcho, J.R., Cox, K.J., and O''Malley, D.M. (1998). Monitoring activity in neuronal populations with single-cell resolution in a behaving vertebrate. Histochem J 30, 153-167.
Gilbertson, T.A., Scobey, R., and Wilson, M. (1991). Permeation of Calcium-Ions through Non-Nmda Glutamate Channels in Retinal Bipolar Cells. Science 251, 1613-1615.
Gooley, J.J., Lu, J., Chou, T.C., Scammell, T.E., and Saper, C.B. (2001). Melanopsin in cells of origin of the retinohypothalamic tract. Nat Neurosci 4, 1165-1165.
Graham, D.M., Wong, K.Y., Shapiro, P., Frederick, C., Pattabiraman, K., and Berson, D.M. (2008). Melanopsin ganglion cells use a membrane-associated rhabdomeric phototransduction cascade. Journal of Neurophysiology 99, 2522-2532.
Green, D.J., and Gillette, R. (1982). Circadian-Rhythm of Firing Rate Recorded from Single Cells in the Rat Suprachiasmatic Brain Slice. Brain Res 245, 198-200.
Groos, G., and Hendriks, J. (1982). Circadian rhythms in electrical discharge of rat suprachiasmatic neurones recorded in vitro. Neurosci Lett 34, 283-288.
Guler, A.D., Ecker, J.L., Lall, G.S., Haq, S., Altimus, C.M., Liao, H.W., Barnard, A.R., Cahill, H., Badea, T.C., Zhao, H.Q., et al. (2008). Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature 453, 102-+.
Haak, L.L. (1999). Metabotropic glutamate receptor modulation of glutamate responses in the suprachiasmatic nucleus. J Neurophysiol 81, 1308-1317.
Hamada, T., Antle, M.C., and Silver, R. (2004). Temporal and spatial expression patterns of canonical clock genes and clock-controlled genes in the suprachiasmatic nucleus. European Journal of Neuroscience 19, 1741-1748.
Hartwick, A.T.E., Bramley, J.R., Yu, J., Stevens, K.T., Allen, C.N., Baldridge, W.H., Sollars, P.J., and Pickard, G.E. (2007). Light-evoked calcium responses of isolated melanopsin-expressing retinal ganglion cells. J Neurosci 27, 13468-13480.
Hattar, S., Liao, H.W., Takao, M., Berson, D.M., and Yau, K.W. (2002). Melanopsin-containing retinal. ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science 295, 1065-1070.
Hattar, S., Lucas, R.J., Takao, M., Berson, D.M., Foster, R.G., and Yau, K.W. (2003). Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Invest Ophth Vis Sci 44, U205-U205.
Hermans, E., and Challiss, R.A. (2001). Structural, signalling and regulatory properties of the group I metabotropic glutamate receptors: prototypic family C G-protein-coupled receptors. Biochem J 359, 465-484.
Honma, S., Shirakawa, T., Nakamura, W., and Honma, K. (2000). Synaptic communication of cellular oscillations in the rat suprachiasmatic neurons. Neurosci Lett 294, 113-116.
Ibata, Y., Takahashi, Y., Okamura, H., Kawakami, F., Terubayashi, H., Kubo, T., and Yanaihara, N. (1989). Vasoactive Intestinal Peptide (Vip)-Like Immunoreactive Neurons Located in the Rat Suprachiasmatic Nucleus Receive a Direct Retinal Projection. Neuroscience Letters 97, 1-5.
Kalsbeek, A., Fliers, E., Hofman, M.A., Swaab, D.F., and Buijs, R.M. (2010). Vasopressin and the output of the hypothalamic biological clock. J Neuroendocrinol 22, 362-372.
Kalsbeek, A., Palm, I.F., La Fleur, S.E., Scheer, F.A.J.L., Perreau-Lenz, S., Ruiter, M., Kreier, F., Cailotto, C., and Buijs, R.M. (2006). SCN outputs and the hypothalamic balance of life. J Biol Rhythm 21, 458-469.
Kania, A., and Klein, R. (2016). Mechanisms of ephrin-Eph signalling in development, physiology and disease. Nat Rev Mol Cell Biol 17, 240-256.
Kiessling, S., Sollars, P.J., and Pickard, G.E. (2014). Light Stimulates the Mouse Adrenal through a Retinohypothalamic Pathway Independent of an Effect on the Clock in the Suprachiasmatic Nucleus. Plos One 9.
Klapoetke, N.C., Murata, Y., Kim, S.S., Pulver, S.R., Birdsey-Benson, A., Cho, Y.K., Morimoto, T.K., Chuong, A.S., Carpenter, E.J., Tian, Z.J., et al. (2014). Independent optical excitation of distinct neural populations (vol 11, pg 338, 2014). Nature Methods 11, 972-972.
Knoll, B., Zarbalis, K., Wurst, W., and Drescher, U. (2001). A role for the EphA family in the topographic targeting of vomeronasal axons. Development 128, 895-906.
Leak, R.K., Card, J.P., and Moore, R.Y. (1999). Suprachiasmatic pacemaker organization analyzed by viral transynaptic transport. Brain Res 819, 23-32.
Leak, R.K., and Moore, R.Y. (2001). Topographic organization of suprachiasmatic nucleus projection neurons. J Comp Neurol 433, 312-334.
Lokshin, M., LeSauter, J., and Silver, R. (2015). Selective Distribution of Retinal Input to Mouse SCN Revealed in Analysis of Sagittal Sections. J Biol Rhythms 30, 251-257.
Long, M.A., Jutras, M.J., Connors, B.W., and Burwell, R.D. (2005). Electrical synapses coordinate activity in the suprachiasmatic nucleus. Nat Neurosci 8, 61-66.
Lowrey, P.L., and Takahashi, J.S. (2004). Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet 5, 407-441.
Lucas, R.J., Douglas, R.H., and Foster, R.G. (2001). Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nat Neurosci 4, 621-626.
Lucas, R.J., Hattar, S., Takao, M., Berson, D.M., Foster, R.G., and Yau, K.W. (2003). Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science 299, 245-247.
Mank, M., and Griesbeck, O. (2008). Genetically encoded calcium indicators. Chem Rev 108, 1550-1564.
Mao, T., O''Connor, D.H., Scheuss, V., Nakai, J., and Svoboda, K. (2008). Characterization and subcellular targeting of GCaMP-type genetically-encoded calcium indicators. PLoS One 3, e1796.
Mayer, M.L., Westbrook, G.L., and Guthrie, P.B. (1984). Voltage-Dependent Block by Mg-2+ of Nmda Responses in Spinal-Cord Neurons. Nature 309, 261-263.
McCombs, J.E., and Palmer, A.E. (2008). Measuring calcium dynamics in living cells with genetically encodable calcium indicators. Methods 46, 152-159.
McNeill, D.S., Sheely, C.J., Ecker, J.L., Badea, T.C., Morhardt, D., Guido, W., and Hattar, S. (2011). Development of melanopsin-based irradiance detecting circuitry. Neural Dev 6, 8.
Meijer, J.H., and Schwartz, W.J. (2003). In search of the pathways for light-induced pacemaker resetting in the suprachiasmatic nucleus. J Biol Rhythms 18, 235-249.
Meyer-Bernstein, E.L., Jetton, A.E., Matsumoto, S.I., Markuns, J.F., Lehman, M.N., and Bittman, E.L. (1999). Effects of suprachiasmatic transplants on circadian rhythms of neuroendocrine function in golden hamsters. Endocrinology 140, 207-218.
Mohawk, J.A., Pargament, J.M., and Lee, T.M. (2007). Circadian dependence of corticosterone release to light exposure in the rat. Physiol Behav 92, 800-806.
Moriya, T., Horikawa, K., Akiyama, M., and Shibata, S. (2000). Correlative association between N-methyl-D-aspartate receptor-mediated expression of period genes in the suprachiasmatic nucleus and phase shifts in behavior with photic entrainment of clock in hamsters. Mol Pharmacol 58, 1554-1562.
Nicoletti, F., Bruno, V., Copani, A., Casabona, G., and Knopfel, T. (1996). Metabotropic glutamate receptors: a new target for the therapy of neurodegenerative disorders? Trends Neurosci 19, 267-271.
Ning, X.R., Selesnick, I.W., and Duval, L. (2014). Chromatogram baseline estimation and denoising using sparsity (BEADS). Chemometr Intell Lab 139, 156-167.
Noguchi, T., Watanabe, K., Ogura, A., and Yamaoka, S. (2004). The clock in the dorsal suprachiasmatic nucleus runs faster than that in the ventral. European Journal of Neuroscience 20, 3199-3202.
Nowak, L., Bregestovski, P., Ascher, P., Herbet, A., and Prochiantz, A. (1984). Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307, 462-465.
Palm, I.F., Van Der Beek, E.M., Wiegant, V.M., Buijs, R.M., and Kalsbeek, A. (1999). Vasopressin induces a luteinizing hormone surge in ovariectomized, estradiol-treated rats with lesions of the suprachiasmatic nucleus. Neuroscience 93, 659-666.
Panda, S., Sato, T.K., Castrucci, A.M., Rollag, M.D., DeGrip, W.J., Hogenesch, J.B., Provencio, I., and Kay, S.A. (2002). Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science 298, 2213-2216.
Perez-Leighton, C.E., Schmidt, T.M., Abramowitz, J., Birnbaumer, L., and Kofuji, P. (2011). Intrinsic phototransduction persists in melanopsin-expressing ganglion cells lacking diacylglycerol-sensitive TRPC subunits. European Journal of Neuroscience 33, 856-867.
Pin, J.P., De Colle, C., Bessis, A.S., and Acher, F. (1999). New perspectives for the development of selective metabotropic glutamate receptor ligands. Eur J Pharmacol 375, 277-294.
Pin, J.P., and Duvoisin, R. (1995). The metabotropic glutamate receptors: structure and functions. Neuropharmacology 34, 1-26.
Provencio, I., Jiang, G., De Grip, W.J., Hayes, W.P., and Rollag, M.D. (1998). Melanopsin: An opsin in melanophores, brain, and eye. Proc Natl Acad Sci U S A 95, 340-345.
Provencio, I., Rodriguez, I.R., Jiang, G.S., Hayes, W.P., Moreira, E.F., and Rollag, M.D. (2000). A novel human opsin in the inner retina. J Neurosci 20, 600-605.
Provencio, I., Rollag, M.D., and Castrucci, A.M. (2002). Anatomy: Photoreceptive net in the mammalian retina - This mesh of cells may explain how some blind mice can still tell day from night. Nature 415, 493-493.
Rachel, R.A., Dolen, G., Hayes, N.L., Lu, A., Erskine, L., Nowakowski, R.S., and Mason, C.A. (2002). Spatiotemporal features of early neuronogenesis differ in wild-type and albino mouse retina. J Neurosci 22, 4249-4263.
Roecklein, K.A., Rohan, K.J., Duncan, W.C., Rollag, M.D., Rosenthal, N.E., Lipsky, R.H., and Provencio, I. (2009). A missense variant (P10L) of the melanopsin (OPN4) gene in seasonal affective disorder. J Affect Disorders 114, 279-285.
Ruby, N.F., Brennan, T.J., Xie, X.M., Cao, V., Franken, P., Heller, H.C., and O''Hara, B.F. (2002). Role of melanopsin in circadian responses to light. Science 298, 2211-2213.
Sato, T.K., Panda, S., Miraglia, L.J., Reyes, T.M., Rudic, R.D., McNamara, P., Naik, K.A., Fitzgerald, G.A., Kay, S.A., and Hogenesch, J.B. (2004). A functional genomics strategy reveals rora as a component of the mammalian circadian clock. Neuron 43, 527-537.
Schmidt, T.M., and Kofuji, P. (2009). Functional and Morphological Differences among Intrinsically Photosensitive Retinal Ganglion Cells. J Neurosci 29, 476-482.
Schmidt, T.M., and Kofuji, P. (2011). Structure and Function of Bistratified Intrinsically Photosensitive Retinal Ganglion Cells in the Mouse. J Comp Neurol 519, 1492-1504.
Shibata, S., Watanabe, A., Hamada, T., Ono, M., and Watanabe, S. (1994). N-Methyl-D-Aspartate Induces Phase-Shifts in Circadian-Rhythm of Neuronal-Activity of Rat Scn in-Vitro. Am J Physiol 267, R360-R364.
Shigeyoshi, Y., Taguchi, K., Yamamoto, S., Takekida, S., L., Y., H, T., T., M., S., S., JJ., L., JC., D., et al. (1997a). Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1 transcript. Cell 91.
Shigeyoshi, Y., Taguchi, K., Yamamoto, S., Takekida, S., Yan, L., Tei, H., Moriya, T., Shibata, S., Loros, J.J., Dunlap, J.C., et al. (1997b). Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1 transcript. Cell 91, 1043-1053.
Siepka, S.M., Yoo, S.H., Park, J., Lee, C., and Takahashi, J.S. (2007). Genetics and neurobiology of circadian clocks in mammals. Cold Spring Harb Symp Quant Biol 72, 251-259.
Silver, R., Romero, M.T., Besmer, H.R., Leak, R., Nunez, J.M., and LeSauter, J. (1996). Calbindin-D28K cells in the hamster SCN express light-induced Fos. Neuroreport 7, 1224-1228.
Stephan, F.K., and Zucker, I. (1972). Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A 69, 1583-1586.
Stosiek, C., Garaschuk, O., Holthoff, K., and Konnerth, A. (2003). In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci U S A 100, 7319-7324.
Sun, X., Whitefield, S., Rusak, B., and Semba, K. (2001). Electrophysiological analysis of suprachiasmatic nucleus projections to the ventrolateral preoptic area in the rat. European Journal of Neuroscience 14, 1257-1274.
Takahashi, J.S., Hong, H.K., Ko, C.H., and McDearmon, E.L. (2008). The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet 9, 764-775.
Tanaka, M., Ichitani, Y., Okamura, H., Tanaka, Y., and Ibata, Y. (1993). The Direct Retinal Projection to Vip Neuronal Elements in the Rat Scn. Brain Res Bull 31, 637-640.
Travnickova-Bendova, Z., Cermakian, N., Reppert, S.M., and Sassone-Corsi, P. (2002). Bimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK/BMAL1 activity. Proc Natl Acad Sci U S A 99, 7728-7733.
Traynelis, S.F., Wollmuth, L.P., McBain, C.J., Menniti, F.S., Vance, K.M., Ogden, K.K., Hansen, K.B., Yuan, H., Myers, S.J., and Dingledine, R. (2010). Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62, 405-496.
Triplett, J.W., and Feldheim, D.A. (2012). Eph and ephrin signaling in the formation of topographic maps. Semin Cell Dev Biol 23, 7-15.
Truett, G.E., Heeger, P., Mynatt, R.L., Truett, A.A., Walker, J.A., and Warman, M.L. (2000). Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques 29, 52, 54.
Tsai, J.W., Hannibal, J., Hagiwara, G., Colas, D., Ruppert, E., Ruby, N.F., Heller, H.C., Franken, P., and Bourgin, P. (2009). Melanopsin as a Sleep Modulator: Circadian Gating of the Direct Effects of Light on Sleep and Altered Sleep Homeostasis in Opn4(-/-) Mice. Plos Biol 7.
Vanderbeek, E.M., Wiegant, V.M., Vanderdonk, H.A., Vandenhurk, R., and Buijs, R.M. (1993). Lesions of the Suprachiasmatic Nucleus Indicate the Presence of a Direct Vasoactive Intestinal Polypeptide-Containing Projection to Gonadotropin-Releasing-Hormone Neurons in the Female Rat. Journal of Neuroendocrinology 5, 137-144.
Vindlacheruvu, R.R., Ebling, F.J., Maywood, E.S., and Hastings, M.H. (1992). Blockade of Glutamatergic Neurotransmission in the Suprachiasmatic Nucleus Prevents Cellular and Behavioural Responses of the Circadian System to Light. Eur J Neurosci 4, 673-679.
Wagner, S., Castel, M., Gainer, H., and Yarom, Y. (1997). GABA in the mammalian suprachiasmatic nucleus and its role in diurnal rhythmicity. Nature 387, 598-603.
Warren, E.J., Allen, C.N., Brown, R.L., and Robinson, D.W. (2006). The light-activated signaling pathway in SCN-projecting rat retinal ganglion cells. European Journal of Neuroscience 23, 2477-2487.
Wiegand, S.J., Terasawa, E., Bridson, W.E., and Goy, R.W. (1980). Effects of discrete lesions of preoptic and suprachiasmatic structures in the female rat. Alterations in the feedback regulation of gonadotropin secretion. Neuroendocrinology 31, 147-157.
Yamaguchi, S., Isejima, H., Matsuo, T., Okura, R., Yagita, K., Kobayashi, M., and Okamura, H. (2003). Synchronization of cellular clocks in the suprachiasmatic nucleus. Science 302, 1408-1412.
Yoshihara, Y., Mizuno, T., Nakahira, M., Kawasaki, M., Watanabe, Y., Kagamiyama, H., Jishage, K., Ueda, O., Suzuki, H., Tabuchi, K., et al. (1999). A genetic approach to visualization of multisynaptic neural pathways using plant lectin transgene. Neuron 22, 33-41.
Yuste, R., Peinado, A., and Katz, L.C. (1992). Neuronal domains in developing neocortex. Science 257, 665-669.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top