|
References Ackman, J.B., Burbridge, T.J., and Crair, M.C. (2012). Retinal waves coordinate patterned activity throughout the developing visual system. Nature 490, 219-225. Antle, M.C., and Silver, R. (2005). Orchestrating time: arrangements of the brain circadian clock. Trends Neurosci 28, 145-151. Aton, S.J., Colwell, C.S., Harmar, A.J., Waschek, J., and Herzog, E.D. (2005). Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci 8, 476-483. Berson, D.M., Castrucci, A.M., and Provencio, I. (2010). Morphology and Mosaics of Melanopsin-Expressing Retinal Ganglion Cell Types in Mice. J Comp Neurol 518, 2405-2422. Berson, D.M., Dunn, F.A., and Takao, M. (2002). Phototransduction by retinal ganglion cells that set the circadian clock. Science 295, 1070-1073. Bingel, A.S., and Schwartz, N.B. (1969). Timing of LH release and ovulation in the cyclic mouse. J Reprod Fertil 19, 223-229. Brancaccio, M., Patton, A.P., Chesham, J.E., Maywood, E.S., and Hastings, M.H. (2017). Astrocytes Control Circadian Timekeeping in the Suprachiasmatic Nucleus via Glutamatergic Signaling. Neuron 93, 1420-1435 e1425. Bronson, F.H., and Vom Saal, F.S. (1979). Control of the preovulatory release of luteinizing hormone by steroids in the mouse. Endocrinology 104, 1247-1255. Brown, T.M., Colwell, C.S., Waschek, J.A., and Piggins, H.D. (2007). Disrupted neuronal activity rhythms in the suprachiasmatic nuclei of vasoactive intestinal polypeptide-deficient mice. Journal of Neurophysiology 97, 2553-2558. Cabrera-Vera, T.M., Vanhauwe, J., Thomas, T.O., Medkova, M., Preininger, A., Mazzoni, M.R., and Hamm, H.E. (2003). Insights into G protein structure, function, and regulation. Endocr Rev 24, 765-781. Chen, G., and van den Pol, A.N. (1998). Coexpression of multiple metabotropic glutamate receptors in axon terminals of single suprachiasmatic nucleus neurons. J Neurophysiol 80, 1932-1938. Chen, T.W., Wardill, T.J., Sun, Y., Pulver, S.R., Renninger, S.L., Baohan, A., Schreiter, E.R., Kerr, R.A., Orger, M.B., Jayaraman, V., et al. (2013). Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295-300. Clapham, D.E., Runnels, L.W., and Strubing, C. (2001). The TRP ion channel family. Nat Rev Neurosci 2, 387-396. Colwell, C.S. (2001). NMDA-evoked calcium transients and currents in the suprachiasmatic nucleus: gating by the circadian system. Eur J Neurosci 13, 1420-1428. Colwell, C.S., Foster, R.G., and Menaker, M. (1991). Nmda Receptor Antagonists Block the Effects of Light on Circadian Behavior in the Mouse. Brain Res 554, 105-110. Colwell, C.S., Michel, S., Itri, J., Rodriguez, W., Tam, J., Lelievre, V., Hu, Z., Liu, X., and Waschek, J.A. (2003). Disrupted circadian rhythms in VIP- and PHI-deficient mice. Am J Physiol-Reg I 285, R939-R949. Coulthard, M.G., Morgan, M., Woodruff, T.M., Arumugam, T.V., Taylor, S.M., Carpenter, T.C., Lackmann, M., and Boyd, A.W. (2012). Eph/Ephrin signaling in injury and inflammation. Am J Pathol 181, 1493-1503. Ecker, J.L., Dumitrescu, O.N., Wong, K.Y., Alam, N.M., Chen, S.K., LeGates, T., Renna, J.M., Prusky, G.T., Berson, D.M., and Hattar, S. (2010). Melanopsin-Expressing Retinal Ganglion-Cell Photoreceptors: Cellular Diversity and Role in Pattern Vision. Neuron 67, 49-60. Estevez, M.E., Fogerson, P.M., Ilardi, M.C., Borghuis, B.G., Chan, E., Weng, S.J., Auferkorte, O.N., Demb, J.B., and Berson, D.M. (2012). Form and Function of the M4 Cell, an Intrinsically Photosensitive Retinal Ganglion Cell Type Contributing to Geniculocortical Vision. J Neurosci 32, 13608-13620. Farah, M.H., and Easter, S.S., Jr. (2005). Cell birth and death in the mouse retinal ganglion cell layer. J Comp Neurol 489, 120-134. Fernandez, D.C., Chang, Y.T., Hattar, S., and Chen, S.K. (2016a). Architecture of retinal projections to the central circadian pacemaker. P Natl Acad Sci USA 113, 6047-6052. Fernandez, D.C., Chang, Y.T., Hattar, S., and Chen, S.K. (2016b). Architecture of retinal projections to the central circadian pacemaker. Proc Natl Acad Sci U S A 113, 6047-6052. Fetcho, J.R., Cox, K.J., and O''Malley, D.M. (1998). Monitoring activity in neuronal populations with single-cell resolution in a behaving vertebrate. Histochem J 30, 153-167. Gilbertson, T.A., Scobey, R., and Wilson, M. (1991). Permeation of Calcium-Ions through Non-Nmda Glutamate Channels in Retinal Bipolar Cells. Science 251, 1613-1615. Gooley, J.J., Lu, J., Chou, T.C., Scammell, T.E., and Saper, C.B. (2001). Melanopsin in cells of origin of the retinohypothalamic tract. Nat Neurosci 4, 1165-1165. Graham, D.M., Wong, K.Y., Shapiro, P., Frederick, C., Pattabiraman, K., and Berson, D.M. (2008). Melanopsin ganglion cells use a membrane-associated rhabdomeric phototransduction cascade. Journal of Neurophysiology 99, 2522-2532. Green, D.J., and Gillette, R. (1982). Circadian-Rhythm of Firing Rate Recorded from Single Cells in the Rat Suprachiasmatic Brain Slice. Brain Res 245, 198-200. Groos, G., and Hendriks, J. (1982). Circadian rhythms in electrical discharge of rat suprachiasmatic neurones recorded in vitro. Neurosci Lett 34, 283-288. Guler, A.D., Ecker, J.L., Lall, G.S., Haq, S., Altimus, C.M., Liao, H.W., Barnard, A.R., Cahill, H., Badea, T.C., Zhao, H.Q., et al. (2008). Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature 453, 102-+. Haak, L.L. (1999). Metabotropic glutamate receptor modulation of glutamate responses in the suprachiasmatic nucleus. J Neurophysiol 81, 1308-1317. Hamada, T., Antle, M.C., and Silver, R. (2004). Temporal and spatial expression patterns of canonical clock genes and clock-controlled genes in the suprachiasmatic nucleus. European Journal of Neuroscience 19, 1741-1748. Hartwick, A.T.E., Bramley, J.R., Yu, J., Stevens, K.T., Allen, C.N., Baldridge, W.H., Sollars, P.J., and Pickard, G.E. (2007). Light-evoked calcium responses of isolated melanopsin-expressing retinal ganglion cells. J Neurosci 27, 13468-13480. Hattar, S., Liao, H.W., Takao, M., Berson, D.M., and Yau, K.W. (2002). Melanopsin-containing retinal. ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science 295, 1065-1070. Hattar, S., Lucas, R.J., Takao, M., Berson, D.M., Foster, R.G., and Yau, K.W. (2003). Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Invest Ophth Vis Sci 44, U205-U205. Hermans, E., and Challiss, R.A. (2001). Structural, signalling and regulatory properties of the group I metabotropic glutamate receptors: prototypic family C G-protein-coupled receptors. Biochem J 359, 465-484. Honma, S., Shirakawa, T., Nakamura, W., and Honma, K. (2000). Synaptic communication of cellular oscillations in the rat suprachiasmatic neurons. Neurosci Lett 294, 113-116. Ibata, Y., Takahashi, Y., Okamura, H., Kawakami, F., Terubayashi, H., Kubo, T., and Yanaihara, N. (1989). Vasoactive Intestinal Peptide (Vip)-Like Immunoreactive Neurons Located in the Rat Suprachiasmatic Nucleus Receive a Direct Retinal Projection. Neuroscience Letters 97, 1-5. Kalsbeek, A., Fliers, E., Hofman, M.A., Swaab, D.F., and Buijs, R.M. (2010). Vasopressin and the output of the hypothalamic biological clock. J Neuroendocrinol 22, 362-372. Kalsbeek, A., Palm, I.F., La Fleur, S.E., Scheer, F.A.J.L., Perreau-Lenz, S., Ruiter, M., Kreier, F., Cailotto, C., and Buijs, R.M. (2006). SCN outputs and the hypothalamic balance of life. J Biol Rhythm 21, 458-469. Kania, A., and Klein, R. (2016). Mechanisms of ephrin-Eph signalling in development, physiology and disease. Nat Rev Mol Cell Biol 17, 240-256. Kiessling, S., Sollars, P.J., and Pickard, G.E. (2014). Light Stimulates the Mouse Adrenal through a Retinohypothalamic Pathway Independent of an Effect on the Clock in the Suprachiasmatic Nucleus. Plos One 9. Klapoetke, N.C., Murata, Y., Kim, S.S., Pulver, S.R., Birdsey-Benson, A., Cho, Y.K., Morimoto, T.K., Chuong, A.S., Carpenter, E.J., Tian, Z.J., et al. (2014). Independent optical excitation of distinct neural populations (vol 11, pg 338, 2014). Nature Methods 11, 972-972. Knoll, B., Zarbalis, K., Wurst, W., and Drescher, U. (2001). A role for the EphA family in the topographic targeting of vomeronasal axons. Development 128, 895-906. Leak, R.K., Card, J.P., and Moore, R.Y. (1999). Suprachiasmatic pacemaker organization analyzed by viral transynaptic transport. Brain Res 819, 23-32. Leak, R.K., and Moore, R.Y. (2001). Topographic organization of suprachiasmatic nucleus projection neurons. J Comp Neurol 433, 312-334. Lokshin, M., LeSauter, J., and Silver, R. (2015). Selective Distribution of Retinal Input to Mouse SCN Revealed in Analysis of Sagittal Sections. J Biol Rhythms 30, 251-257. Long, M.A., Jutras, M.J., Connors, B.W., and Burwell, R.D. (2005). Electrical synapses coordinate activity in the suprachiasmatic nucleus. Nat Neurosci 8, 61-66. Lowrey, P.L., and Takahashi, J.S. (2004). Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet 5, 407-441. Lucas, R.J., Douglas, R.H., and Foster, R.G. (2001). Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nat Neurosci 4, 621-626. Lucas, R.J., Hattar, S., Takao, M., Berson, D.M., Foster, R.G., and Yau, K.W. (2003). Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science 299, 245-247. Mank, M., and Griesbeck, O. (2008). Genetically encoded calcium indicators. Chem Rev 108, 1550-1564. Mao, T., O''Connor, D.H., Scheuss, V., Nakai, J., and Svoboda, K. (2008). Characterization and subcellular targeting of GCaMP-type genetically-encoded calcium indicators. PLoS One 3, e1796. Mayer, M.L., Westbrook, G.L., and Guthrie, P.B. (1984). Voltage-Dependent Block by Mg-2+ of Nmda Responses in Spinal-Cord Neurons. Nature 309, 261-263. McCombs, J.E., and Palmer, A.E. (2008). Measuring calcium dynamics in living cells with genetically encodable calcium indicators. Methods 46, 152-159. McNeill, D.S., Sheely, C.J., Ecker, J.L., Badea, T.C., Morhardt, D., Guido, W., and Hattar, S. (2011). Development of melanopsin-based irradiance detecting circuitry. Neural Dev 6, 8. Meijer, J.H., and Schwartz, W.J. (2003). In search of the pathways for light-induced pacemaker resetting in the suprachiasmatic nucleus. J Biol Rhythms 18, 235-249. Meyer-Bernstein, E.L., Jetton, A.E., Matsumoto, S.I., Markuns, J.F., Lehman, M.N., and Bittman, E.L. (1999). Effects of suprachiasmatic transplants on circadian rhythms of neuroendocrine function in golden hamsters. Endocrinology 140, 207-218. Mohawk, J.A., Pargament, J.M., and Lee, T.M. (2007). Circadian dependence of corticosterone release to light exposure in the rat. Physiol Behav 92, 800-806. Moriya, T., Horikawa, K., Akiyama, M., and Shibata, S. (2000). Correlative association between N-methyl-D-aspartate receptor-mediated expression of period genes in the suprachiasmatic nucleus and phase shifts in behavior with photic entrainment of clock in hamsters. Mol Pharmacol 58, 1554-1562. Nicoletti, F., Bruno, V., Copani, A., Casabona, G., and Knopfel, T. (1996). Metabotropic glutamate receptors: a new target for the therapy of neurodegenerative disorders? Trends Neurosci 19, 267-271. Ning, X.R., Selesnick, I.W., and Duval, L. (2014). Chromatogram baseline estimation and denoising using sparsity (BEADS). Chemometr Intell Lab 139, 156-167. Noguchi, T., Watanabe, K., Ogura, A., and Yamaoka, S. (2004). The clock in the dorsal suprachiasmatic nucleus runs faster than that in the ventral. European Journal of Neuroscience 20, 3199-3202. Nowak, L., Bregestovski, P., Ascher, P., Herbet, A., and Prochiantz, A. (1984). Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307, 462-465. Palm, I.F., Van Der Beek, E.M., Wiegant, V.M., Buijs, R.M., and Kalsbeek, A. (1999). Vasopressin induces a luteinizing hormone surge in ovariectomized, estradiol-treated rats with lesions of the suprachiasmatic nucleus. Neuroscience 93, 659-666. Panda, S., Sato, T.K., Castrucci, A.M., Rollag, M.D., DeGrip, W.J., Hogenesch, J.B., Provencio, I., and Kay, S.A. (2002). Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science 298, 2213-2216. Perez-Leighton, C.E., Schmidt, T.M., Abramowitz, J., Birnbaumer, L., and Kofuji, P. (2011). Intrinsic phototransduction persists in melanopsin-expressing ganglion cells lacking diacylglycerol-sensitive TRPC subunits. European Journal of Neuroscience 33, 856-867. Pin, J.P., De Colle, C., Bessis, A.S., and Acher, F. (1999). New perspectives for the development of selective metabotropic glutamate receptor ligands. Eur J Pharmacol 375, 277-294. Pin, J.P., and Duvoisin, R. (1995). The metabotropic glutamate receptors: structure and functions. Neuropharmacology 34, 1-26. Provencio, I., Jiang, G., De Grip, W.J., Hayes, W.P., and Rollag, M.D. (1998). Melanopsin: An opsin in melanophores, brain, and eye. Proc Natl Acad Sci U S A 95, 340-345. Provencio, I., Rodriguez, I.R., Jiang, G.S., Hayes, W.P., Moreira, E.F., and Rollag, M.D. (2000). A novel human opsin in the inner retina. J Neurosci 20, 600-605. Provencio, I., Rollag, M.D., and Castrucci, A.M. (2002). Anatomy: Photoreceptive net in the mammalian retina - This mesh of cells may explain how some blind mice can still tell day from night. Nature 415, 493-493. Rachel, R.A., Dolen, G., Hayes, N.L., Lu, A., Erskine, L., Nowakowski, R.S., and Mason, C.A. (2002). Spatiotemporal features of early neuronogenesis differ in wild-type and albino mouse retina. J Neurosci 22, 4249-4263. Roecklein, K.A., Rohan, K.J., Duncan, W.C., Rollag, M.D., Rosenthal, N.E., Lipsky, R.H., and Provencio, I. (2009). A missense variant (P10L) of the melanopsin (OPN4) gene in seasonal affective disorder. J Affect Disorders 114, 279-285. Ruby, N.F., Brennan, T.J., Xie, X.M., Cao, V., Franken, P., Heller, H.C., and O''Hara, B.F. (2002). Role of melanopsin in circadian responses to light. Science 298, 2211-2213. Sato, T.K., Panda, S., Miraglia, L.J., Reyes, T.M., Rudic, R.D., McNamara, P., Naik, K.A., Fitzgerald, G.A., Kay, S.A., and Hogenesch, J.B. (2004). A functional genomics strategy reveals rora as a component of the mammalian circadian clock. Neuron 43, 527-537. Schmidt, T.M., and Kofuji, P. (2009). Functional and Morphological Differences among Intrinsically Photosensitive Retinal Ganglion Cells. J Neurosci 29, 476-482. Schmidt, T.M., and Kofuji, P. (2011). Structure and Function of Bistratified Intrinsically Photosensitive Retinal Ganglion Cells in the Mouse. J Comp Neurol 519, 1492-1504. Shibata, S., Watanabe, A., Hamada, T., Ono, M., and Watanabe, S. (1994). N-Methyl-D-Aspartate Induces Phase-Shifts in Circadian-Rhythm of Neuronal-Activity of Rat Scn in-Vitro. Am J Physiol 267, R360-R364. Shigeyoshi, Y., Taguchi, K., Yamamoto, S., Takekida, S., L., Y., H, T., T., M., S., S., JJ., L., JC., D., et al. (1997a). Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1 transcript. Cell 91. Shigeyoshi, Y., Taguchi, K., Yamamoto, S., Takekida, S., Yan, L., Tei, H., Moriya, T., Shibata, S., Loros, J.J., Dunlap, J.C., et al. (1997b). Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1 transcript. Cell 91, 1043-1053. Siepka, S.M., Yoo, S.H., Park, J., Lee, C., and Takahashi, J.S. (2007). Genetics and neurobiology of circadian clocks in mammals. Cold Spring Harb Symp Quant Biol 72, 251-259. Silver, R., Romero, M.T., Besmer, H.R., Leak, R., Nunez, J.M., and LeSauter, J. (1996). Calbindin-D28K cells in the hamster SCN express light-induced Fos. Neuroreport 7, 1224-1228. Stephan, F.K., and Zucker, I. (1972). Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A 69, 1583-1586. Stosiek, C., Garaschuk, O., Holthoff, K., and Konnerth, A. (2003). In vivo two-photon calcium imaging of neuronal networks. Proc Natl Acad Sci U S A 100, 7319-7324. Sun, X., Whitefield, S., Rusak, B., and Semba, K. (2001). Electrophysiological analysis of suprachiasmatic nucleus projections to the ventrolateral preoptic area in the rat. European Journal of Neuroscience 14, 1257-1274. Takahashi, J.S., Hong, H.K., Ko, C.H., and McDearmon, E.L. (2008). The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat Rev Genet 9, 764-775. Tanaka, M., Ichitani, Y., Okamura, H., Tanaka, Y., and Ibata, Y. (1993). The Direct Retinal Projection to Vip Neuronal Elements in the Rat Scn. Brain Res Bull 31, 637-640. Travnickova-Bendova, Z., Cermakian, N., Reppert, S.M., and Sassone-Corsi, P. (2002). Bimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK/BMAL1 activity. Proc Natl Acad Sci U S A 99, 7728-7733. Traynelis, S.F., Wollmuth, L.P., McBain, C.J., Menniti, F.S., Vance, K.M., Ogden, K.K., Hansen, K.B., Yuan, H., Myers, S.J., and Dingledine, R. (2010). Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62, 405-496. Triplett, J.W., and Feldheim, D.A. (2012). Eph and ephrin signaling in the formation of topographic maps. Semin Cell Dev Biol 23, 7-15. Truett, G.E., Heeger, P., Mynatt, R.L., Truett, A.A., Walker, J.A., and Warman, M.L. (2000). Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques 29, 52, 54. Tsai, J.W., Hannibal, J., Hagiwara, G., Colas, D., Ruppert, E., Ruby, N.F., Heller, H.C., Franken, P., and Bourgin, P. (2009). Melanopsin as a Sleep Modulator: Circadian Gating of the Direct Effects of Light on Sleep and Altered Sleep Homeostasis in Opn4(-/-) Mice. Plos Biol 7. Vanderbeek, E.M., Wiegant, V.M., Vanderdonk, H.A., Vandenhurk, R., and Buijs, R.M. (1993). Lesions of the Suprachiasmatic Nucleus Indicate the Presence of a Direct Vasoactive Intestinal Polypeptide-Containing Projection to Gonadotropin-Releasing-Hormone Neurons in the Female Rat. Journal of Neuroendocrinology 5, 137-144. Vindlacheruvu, R.R., Ebling, F.J., Maywood, E.S., and Hastings, M.H. (1992). Blockade of Glutamatergic Neurotransmission in the Suprachiasmatic Nucleus Prevents Cellular and Behavioural Responses of the Circadian System to Light. Eur J Neurosci 4, 673-679. Wagner, S., Castel, M., Gainer, H., and Yarom, Y. (1997). GABA in the mammalian suprachiasmatic nucleus and its role in diurnal rhythmicity. Nature 387, 598-603. Warren, E.J., Allen, C.N., Brown, R.L., and Robinson, D.W. (2006). The light-activated signaling pathway in SCN-projecting rat retinal ganglion cells. European Journal of Neuroscience 23, 2477-2487. Wiegand, S.J., Terasawa, E., Bridson, W.E., and Goy, R.W. (1980). Effects of discrete lesions of preoptic and suprachiasmatic structures in the female rat. Alterations in the feedback regulation of gonadotropin secretion. Neuroendocrinology 31, 147-157. Yamaguchi, S., Isejima, H., Matsuo, T., Okura, R., Yagita, K., Kobayashi, M., and Okamura, H. (2003). Synchronization of cellular clocks in the suprachiasmatic nucleus. Science 302, 1408-1412. Yoshihara, Y., Mizuno, T., Nakahira, M., Kawasaki, M., Watanabe, Y., Kagamiyama, H., Jishage, K., Ueda, O., Suzuki, H., Tabuchi, K., et al. (1999). A genetic approach to visualization of multisynaptic neural pathways using plant lectin transgene. Neuron 22, 33-41. Yuste, R., Peinado, A., and Katz, L.C. (1992). Neuronal domains in developing neocortex. Science 257, 665-669.
|