|
1.Siegel, R. L., Miller, K. D., and Jemal, A. (2017) Cancer Statistics, 2017. CA Cancer J Clin 67, 7-30. 2.Crino, L., Weder, W., van Meerbeeck, J., Felip, E., and Group, E. G. W. (2010) Early stage and locally advanced (non-metastatic) non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 21 Suppl 5, v103-115. 3.Chan, B. A., and Coward, J. I. (2013) Chemotherapy advances in small-cell lung cancer. J Thorac Dis 5 Suppl 5, S565-578. 4.Molina, J. R., Yang, P., Cassivi, S. D., Schild, S. E., and Adjei, A. A. (2008) Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 83, 584-594. 5.Frank, N. Y., Schatton, T., and Frank, M. H. (2010) The therapeutic promise of the cancer stem cell concept. J Clin Invest 120, 41-50. 6.Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., Brooks, M., Reinhard, F., Zhang, C. C., Shipitsin, M., Campbell, L. L., Polyak, K., Brisken, C., Yang, J., and Weinberg, R. A. (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704-715. 7.Joyce, J. A., and Pollard, J. W. (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9, 239-252. 8.Li, H. J., Reinhardt, F., Herschman, H. R., and Weinberg, R. A. (2012) Cancer-stimulated mesenchymal stem cells create a carcinoma stem cell niche via prostaglandin E2 signaling. Cancer Discov 2, 840-855. 9.Spaeth, E., Klopp, A., Dembinski, J., Andreeff, M., and Marini, F. (2008) Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther 15, 730-738. 10.Atanasova, M., and Whitty, A. (2012) Understanding cytokine and growth factor receptor activation mechanisms. Crit Rev Biochem Mol Biol 47, 502-530. 11.Miyajima, A., Kitamura, T., Harada, N., Yokota, T., and Arai, K. (1992) Cytokine receptors and signal transduction. Annu Rev Immunol 10, 295-331. 12.Hubbard, M. J., and Cohen, P. (1993) On target with a new mechanism for the regulation of protein phosphorylation. Trends Biochem Sci 18, 172-177. 13.Humphrey, S. J., James, D. E., and Mann, M. (2015) Protein Phosphorylation: A Major Switch Mechanism for Metabolic Regulation. Trends Endocrinol Metab 26, 676-687. 14.Draznin, B. (2006) Molecular mechanisms of insulin resistance: serine phosphorylation of insulin receptor substrate-1 and increased expression of p85alpha: the two sides of a coin. Diabetes 55, 2392-2397. 15.Kaidi, A., and Jackson, S. P. (2013) KAT5 tyrosine phosphorylation couples chromatin sensing to ATM signalling. Nature 498, 70-74. 16.Li, X., Huang, Y., Jiang, J., and Frank, S. J. (2008) ERK-dependent threonine phosphorylation of EGF receptor modulates receptor downregulation and signaling. Cell Signal 20, 2145-2155. 17.Hu, C. W., Hsu, C. L., Wang, Y. C., Ishihama, Y., Ku, W. C., Huang, H. C., and Juan, H. F. (2015) Temporal Phosphoproteome Dynamics Induced by an ATP Synthase Inhibitor Citreoviridin. Mol Cell Proteomics 14, 3284-3298. 18.Wolschin, F., Wienkoop, S., and Weckwerth, W. (2005) Enrichment of phosphorylated proteins and peptides from complex mixtures using metal oxide/hydroxide affinity chromatography (MOAC). Proteomics 5, 4389-4397. 19.Sugiyama, N., Masuda, T., Shinoda, K., Nakamura, A., Tomita, M., and Ishihama, Y. (2007) Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications. Mol Cell Proteomics 6, 1103-1109. 20.Larsen, M. R., Thingholm, T. E., Jensen, O. N., Roepstorff, P., and Jorgensen, T. J. (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4, 873-886. 21.Maroni, P. D., Koul, S., Meacham, R. B., and Koul, H. K. (2004) Mitogen Activated Protein kinase signal transduction pathways in the prostate. Cell Commun Signal 2, 5. 22.Cargnello, M., and Roux, P. P. (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75, 50-83. 23.Long, X., Ye, Y., Zhang, L., Liu, P., Yu, W., Wei, F., Ren, X., and Yu, J. (2016) IL-8, a novel messenger to cross-link inflammation and tumor EMT via autocrine and paracrine pathways (Review). Int J Oncol 48, 5-12. 24.Knall, C., Young, S., Nick, J. A., Buhl, A. M., Worthen, G. S., and Johnson, G. L. (1996) Interleukin-8 regulation of the Ras/Raf/mitogen-activated protein kinase pathway in human neutrophils. J Biol Chem 271, 2832-2838. 25.Nagarajan, D., Melo, T., Deng, Z., Almeida, C., and Zhao, W. (2012) ERK/GSK3beta/Snail signaling mediates radiation-induced alveolar epithelial-to-mesenchymal transition. Free Radic Biol Med 52, 983-992. 26.Weiss, M. B., Abel, E. V., Mayberry, M. M., Basile, K. J., Berger, A. C., and Aplin, A. E. (2012) TWIST1 is an ERK1/2 effector that promotes invasion and regulates MMP-1 expression in human melanoma cells. Cancer Res 72, 6382-6392. 27.Huntington, J. T., Shields, J. M., Der, C. J., Wyatt, C. A., Benbow, U., Slingluff, C. L., Jr., and Brinckerhoff, C. E. (2004) Overexpression of collagenase 1 (MMP-1) is mediated by the ERK pathway in invasive melanoma cells: role of BRAF mutation and fibroblast growth factor signaling. J Biol Chem 279, 33168-33176. 28.Su, Y. J., Lai, H. M., Chang, Y. W., Chen, G. Y., and Lee, J. L. (2011) Direct reprogramming of stem cell properties in colon cancer cells by CD44. EMBO J 30, 3186-3199. 29.Masuda, T., Tomita, M., and Ishihama, Y. (2008) Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J Proteome Res 7, 731-740. 30.Rappsilber, J., Mann, M., and Ishihama, Y. (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2, 1896-1906. 31.Boersema, P. J., Raijmakers, R., Lemeer, S., Mohammed, S., and Heck, A. J. (2009) Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protoc 4, 484-494. 32.Kyono, Y., Sugiyama, N., Imami, K., Tomita, M., and Ishihama, Y. (2008) Successive and selective release of phosphorylated peptides captured by hydroxy acid-modified metal oxide chromatography. J Proteome Res 7, 4585-4593. 33.Cox, J., and Mann, M. (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26, 1367-1372. 34.Cox, J., Neuhauser, N., Michalski, A., Scheltema, R. A., Olsen, J. V., and Mann, M. (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10, 1794-1805. 35.Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M. Y., Geiger, T., Mann, M., and Cox, J. (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13, 731-740. 36.Martens, L., Hermjakob, H., Jones, P., Adamski, M., Taylor, C., States, D., Gevaert, K., Vandekerckhove, J., and Apweiler, R. (2005) PRIDE: the proteomics identifications database. Proteomics 5, 3537-3545. 37.Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., and Mesirov, J. P. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102, 15545-15550. 38.Hsu, C. L., Wang, J. K., Lu, P. C., Huang, H. C., and Juan, H. F. (2017) DynaPho: a web platform for inferring the dynamics of time-series phosphoproteomics. Bioinformatics 39.Huang da, W., Sherman, B. T., and Lempicki, R. A. (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4, 44-57. 40.Huang da, W., Sherman, B. T., and Lempicki, R. A. (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37, 1-13. 41.Zhao, Y., Bjorbaek, C., and Moller, D. E. (1996) Regulation and interaction of pp90(rsk) isoforms with mitogen-activated protein kinases. J Biol Chem 271, 29773-29779. 42.Zhou, Y., Yamada, N., Tanaka, T., Hori, T., Yokoyama, S., Hayakawa, Y., Yano, S., Fukuoka, J., Koizumi, K., Saiki, I., and Sakurai, H. (2015) Crucial roles of RSK in cell motility by catalysing serine phosphorylation of EphA2. Nat Commun 6, 7679. 43.Lang, F., Strutz-Seebohm, N., Seebohm, G., and Lang, U. E. (2010) Significance of SGK1 in the regulation of neuronal function. J Physiol 588, 3349-3354. 44.Lang, F., and Shumilina, E. (2013) Regulation of ion channels by the serum- and glucocorticoid-inducible kinase SGK1. FASEB J 27, 3-12. 45.Lang, F., Bohmer, C., Palmada, M., Seebohm, G., Strutz-Seebohm, N., and Vallon, V. (2006) (Patho)physiological significance of the serum- and glucocorticoid-inducible kinase isoforms. Physiol Rev 86, 1151-1178. 46.Barthet, G., Carrat, G., Cassier, E., Barker, B., Gaven, F., Pillot, M., Framery, B., Pellissier, L. P., Augier, J., Kang, D. S., Claeysen, S., Reiter, E., Baneres, J. L., Benovic, J. L., Marin, P., Bockaert, J., and Dumuis, A. (2009) Beta-arrestin1 phosphorylation by GRK5 regulates G protein-independent 5-HT4 receptor signalling. EMBO J 28, 2706-2718. 47.Gupta, S., Campbell, D., Derijard, B., and Davis, R. J. (1995) Transcription factor ATF2 regulation by the JNK signal transduction pathway. Science 267, 389-393. 48.Okazaki, K., and Sagata, N. (1995) The Mos/MAP kinase pathway stabilizes c-Fos by phosphorylation and augments its transforming activity in NIH 3T3 cells. EMBO J 14, 5048-5059. 49.Hu, J., Rho, H. S., Newman, R. H., Zhang, J., Zhu, H., and Qian, J. (2014) PhosphoNetworks: a database for human phosphorylation networks. Bioinformatics 30, 141-142. 50.Roberts, P. J., and Der, C. J. (2007) Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26, 3291-3310. 51.Akbulut, T., Regner, K. R., Roman, R. J., Avner, E. D., Falck, J. R., and Park, F. (2009) 20-HETE activates the Raf/MEK/ERK pathway in renal epithelial cells through an EGFR- and c-Src-dependent mechanism. Am J Physiol Renal Physiol 297, F662-670. 52.Morris, E. J., Jha, S., Restaino, C. R., Dayananth, P., Zhu, H., Cooper, A., Carr, D., Deng, Y., Jin, W., Black, S., Long, B., Liu, J., Dinunzio, E., Windsor, W., Zhang, R., Zhao, S., Angagaw, M. H., Pinheiro, E. M., Desai, J., Xiao, L., Shipps, G., Hruza, A., Wang, J., Kelly, J., Paliwal, S., Gao, X., Babu, B. S., Zhu, L., Daublain, P., Zhang, L., Lutterbach, B. A., Pelletier, M. R., Philippar, U., Siliphaivanh, P., Witter, D., Kirschmeier, P., Bishop, W. R., Hicklin, D., Gilliland, D. G., Jayaraman, L., Zawel, L., Fawell, S., and Samatar, A. A. (2013) Discovery of a novel ERK inhibitor with activity in models of acquired resistance to BRAF and MEK inhibitors. Cancer Discov 3, 742-750. 53.Chang, Y. W., Su, Y. J., Hsiao, M., Wei, K. C., Lin, W. H., Liang, C. L., Chen, S. C., and Lee, J. L. (2015) Diverse Targets of beta-Catenin during the Epithelial-Mesenchymal Transition Define Cancer Stem Cells and Predict Disease Relapse. Cancer Res 75, 3398-3410. 54.De Craene, B., and Berx, G. (2013) Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 13, 97-110. 55.Mertins, P., Mani, D. R., Ruggles, K. V., Gillette, M. A., Clauser, K. R., Wang, P., Wang, X., Qiao, J. W., Cao, S., Petralia, F., Kawaler, E., Mundt, F., Krug, K., Tu, Z., Lei, J. T., Gatza, M. L., Wilkerson, M., Perou, C. M., Yellapantula, V., Huang, K. L., Lin, C., McLellan, M. D., Yan, P., Davies, S. R., Townsend, R. R., Skates, S. J., Wang, J., Zhang, B., Kinsinger, C. R., Mesri, M., Rodriguez, H., Ding, L., Paulovich, A. G., Fenyo, D., Ellis, M. J., Carr, S. A., and Nci, C. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62. 56.Guo, H., Isserlin, R., Chen, X., Wang, W., Phanse, S., Zandstra, P. W., Paddison, P. J., and Emili, A. (2013) Integrative network analysis of signaling in human CD34(+) hematopoietic progenitor cells by global phosphoproteomic profiling using TiO2 enrichment combined with 2D LC-MS/MS and pathway mapping. Proteomics 13, 1325-1333. 57.Oppermann, F. S., Gnad, F., Olsen, J. V., Hornberger, R., Greff, Z., Keri, G., Mann, M., and Daub, H. (2009) Large-scale proteomics analysis of the human kinome. Mol Cell Proteomics 8, 1751-1764. 58.Hess, J., Angel, P., and Schorpp-Kistner, M. (2004) AP-1 subunits: quarrel and harmony among siblings. J Cell Sci 117, 5965-5973. 59.Eferl, R., and Wagner, E. F. (2003) AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3, 859-868. 60.Chiu, R., Boyle, W. J., Meek, J., Smeal, T., Hunter, T., and Karin, M. (1988) The c-Fos protein interacts with c-Jun/AP-1 to stimulate transcription of AP-1 responsive genes. Cell 54, 541-552. 61.Kawasaki, H., Schiltz, L., Chiu, R., Itakura, K., Taira, K., Nakatani, Y., and Yokoyama, K. K. (2000) ATF-2 has intrinsic histone acetyltransferase activity which is modulated by phosphorylation. Nature 405, 195-200. 62.Hu, E., Mueller, E., Oliviero, S., Papaioannou, V. E., Johnson, R., and Spiegelman, B. M. (1994) Targeted disruption of the c-fos gene demonstrates c-fos-dependent and -independent pathways for gene expression stimulated by growth factors or oncogenes. EMBO J 13, 3094-3103. 63.Lamb, R. F., Hennigan, R. F., Turnbull, K., Katsanakis, K. D., MacKenzie, E. D., Birnie, G. D., and Ozanne, B. W. (1997) AP-1-mediated invasion requires increased expression of the hyaluronan receptor CD44. Mol Cell Biol 17, 963-976. 64.Chen, R. H., Juo, P. C., Curran, T., and Blenis, J. (1996) Phosphorylation of c-Fos at the C-terminus enhances its transforming activity. Oncogene 12, 1493-1502.
|