跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2024/12/08 17:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳長勳
研究生(外文):Chang-Hsun Wu
論文名稱:以磷酸化蛋白質體學剖析參與肺癌幹細胞特性之訊息傳遞
論文名稱(外文):Phosphoproteomics Reveals Signaling Pathways Involved in Stem Cell Properties of Lung Cancer
指導教授:阮雪芬阮雪芬引用關係
口試日期:2017-06-16
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:67
中文關鍵詞:肺癌癌症幹細胞磷酸化蛋白質體學絲裂原活化蛋白激酶致癌基因蛋白c-Fos
外文關鍵詞:lung cancercancer stem cellsphosphoproteomicsMAPKc-Fos
相關次數:
  • 被引用被引用:0
  • 點閱點閱:166
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
癌幹細胞(CSCs)是可能具有幹性特徵並引發腫瘤發生的癌細胞亞群。近期研究顯示,上皮間質轉化(epithelial-mesenchymal transition, EMT)不僅是腫瘤轉移中的關鍵步驟,且負責在各種癌細胞中產生幹性。骨髓間質幹細胞(bone marrow-derived mesenchymal stem cells, BM-MSCs)在腫瘤微環境中透過分泌旁分泌因子助長腫瘤進展,然而,參與響應於MSCs分泌因子的信號傳導途徑了解甚少。在本研究中,我們首先展現了間質幹細胞條件培養基(conditioned medium of Mesenchymal stem cells, MSC-CM)改變了上皮型肺癌細胞(LM cells)的一些EMT 標記蛋白表現量和球狀形成能力。另外,我們進行細胞因子陣列,發現MSC-CM包含了幾種細胞因子。為了進一步闡明參與肺部CSCs形成的MSC-CM調節信號傳導途徑,我們利用磷酸化蛋白質體學方法,並確定了在700個磷酸化蛋白上共1926個磷酸化位點。利用基因集富集分析,TGF-beta誘導的EMT和胚胎幹細胞基因集從磷酸化蛋白質體富集出來。此外,磷酸化蛋白和激酶的整合分析表明,MSC-CM通過LM細胞中的絲裂原活化蛋白激酶(MAPK)信號路徑增強了c-Fos的磷酸化。ERK抑制劑減少了經由MSC-CM所增強的c-Fos磷酸化與細胞移動力。我們的研究表明,MSC可以引發肺癌細胞的MAPK信號路徑,從而引發EMT的產生,這在研究肺癌幹細胞形成的領域中提供了一個有洞察力的了解。
Cancer stem cells (CSCs) is a subpopulation of cancer cells which might have stem-like characteristics and initiate tumorigenesis. Recent studies suggested that epithelial-mesenchymal transition (EMT) is not only as a crucial step in tumor metastasis, but also responsible for generating stemness properties in various cancer cells. Bone marrow-derived mesenchymal stem cells (BM-MSCs) contribute for tumor progression through paracrine factors secretion in tumor microenvironment, however, signaling pathways that involved in response to MSCs-secreting factors are poorly understood. Here, we first showed that conditioned medium of MSCs (MSC-CM) altered the expression of EMT markers and sphere-forming ability in epithelial-type lung cancer cells (LM cells). Furthermore, we performed cytokine array and found that MSC-CM contained several cytokines which might induce the signaling pathway. To further elucidate the MSC-CM-regulating signaling pathways that are involved in the formation of lung cancer stem cells, we performed phosphoproteomics and identified a total of 1926 phosphorylation sites on 700 phosphoproteins. By using gene set enrichment analysis, the gene sets of TGF-beta induced EMT and embryonic stem cell were enriched from pre-ranked phosphproteomic profiles. Moreover, integrative analysis of phosphoproteins and kinases suggested that MSC-CM enhanced phosphorylation of c-Fos through mitogen-activated protein kinase (MAPK) signaling pathway in LM cells. Phosphorylation of c-Fos on serine 374 and cell migration were decreased in LM cells treated with MSC-CM coupled with ERK1/2 inhibitor. Our studies implied that MSCs triggered the phosphorylation signal in MAPK pathway to generated EMT process in lung cancer cells which provide insight for formation of cancer stem cells.
中文摘要…………………………………………………………………………………i
ABSTRACT………………………………………………………………………….ii
LIST OF FIGURES…………………………...………………………………………vii
LIST OF TABLE….…………………………………………………………………viii
Chapter 1 Introduction……………………………….…………..…………………….1
1.1 Cancer stem cells in lung cancer………….……………………………………..1
1.2 Tumor microenvironment………………………………………………………2
1.3 Protein phosphorylation…………..…………………………………………….2
1.4 MAPK pathway………………………………………………………………3
1.5 Aims……………………………………………………………………………4
Chapter 2 Materials and methods……………………………………………………5
2.1 Cell culture……………………………………………….………………..…...5
2.2 Sphere-forming assay……………………………………………………….6
2.3 Protein extraction for MS analysis……………….……………………………6
2.4 Dimethyl labeling of peptides………………………………………………7
2.5 Phosphopeptide enrichment……………………………………………………8
2.6 NanoLC-MS/MS Analysis……………………………………………………9
2.7 Protein identification and quantification……………………………………...10
2.8 Gene set enrichment analysis………….………………………………………11
2.9 Analysis of predicted kinases……………………………………………….12
2.10 Immunoblotting…………………………………………………………....12
2.11 SCH772984 treatment of LM cells………………………………………….13
2.12 Wound healing assays……………………………………………………….14
Chapter 3 Results…………………………..………………………………………….15
3.1 EMT markers and stem cell properties of lung cancer cells were altered by MSC-CM……………………………………………………………………...…………15
3.2 Quantitative analysis of phosphoproteome profiles in epithelial-type lung cancer cells treated with MSC-CM……………………….........................………………16
3.3 Stem-like property and TGF-beta induced EMT were enriched by using phosphoproteomic profiles.……………………..……………...............................17
3.4 Motif analysis revealed that MAPK pathways were involved in response to MSC-CM in LM cells……………………….……………………………………17
3.5 MSC-CM enhanced phosphorylation of c-Fos on serine 374 through ERK1/2………………………………………………………….................……18
3.6 Cell motility were increased by MSC-CM through activation of ERK1/2…......20
Chapter 4 Discussion………………………………………………………………..…22
REFERENCE………………………………………………………………….…….26
FIGURES…………………………………………………………………………….37
TABLE………………………...………………………...……………………………..49
APPENDIX..……………………..………………………………………………….66
1.Siegel, R. L., Miller, K. D., and Jemal, A. (2017) Cancer Statistics, 2017. CA Cancer J Clin 67, 7-30.
2.Crino, L., Weder, W., van Meerbeeck, J., Felip, E., and Group, E. G. W. (2010) Early stage and locally advanced (non-metastatic) non-small-cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 21 Suppl 5, v103-115.
3.Chan, B. A., and Coward, J. I. (2013) Chemotherapy advances in small-cell lung cancer. J Thorac Dis 5 Suppl 5, S565-578.
4.Molina, J. R., Yang, P., Cassivi, S. D., Schild, S. E., and Adjei, A. A. (2008) Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 83, 584-594.
5.Frank, N. Y., Schatton, T., and Frank, M. H. (2010) The therapeutic promise of the cancer stem cell concept. J Clin Invest 120, 41-50.
6.Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., Brooks, M., Reinhard, F., Zhang, C. C., Shipitsin, M., Campbell, L. L., Polyak, K., Brisken, C., Yang, J., and Weinberg, R. A. (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704-715.
7.Joyce, J. A., and Pollard, J. W. (2009) Microenvironmental regulation of metastasis. Nat Rev Cancer 9, 239-252.
8.Li, H. J., Reinhardt, F., Herschman, H. R., and Weinberg, R. A. (2012) Cancer-stimulated mesenchymal stem cells create a carcinoma stem cell niche via prostaglandin E2 signaling. Cancer Discov 2, 840-855.
9.Spaeth, E., Klopp, A., Dembinski, J., Andreeff, M., and Marini, F. (2008) Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells. Gene Ther 15, 730-738.
10.Atanasova, M., and Whitty, A. (2012) Understanding cytokine and growth factor receptor activation mechanisms. Crit Rev Biochem Mol Biol 47, 502-530.
11.Miyajima, A., Kitamura, T., Harada, N., Yokota, T., and Arai, K. (1992) Cytokine receptors and signal transduction. Annu Rev Immunol 10, 295-331.
12.Hubbard, M. J., and Cohen, P. (1993) On target with a new mechanism for the regulation of protein phosphorylation. Trends Biochem Sci 18, 172-177.
13.Humphrey, S. J., James, D. E., and Mann, M. (2015) Protein Phosphorylation: A Major Switch Mechanism for Metabolic Regulation. Trends Endocrinol Metab 26, 676-687.
14.Draznin, B. (2006) Molecular mechanisms of insulin resistance: serine phosphorylation of insulin receptor substrate-1 and increased expression of p85alpha: the two sides of a coin. Diabetes 55, 2392-2397.
15.Kaidi, A., and Jackson, S. P. (2013) KAT5 tyrosine phosphorylation couples chromatin sensing to ATM signalling. Nature 498, 70-74.
16.Li, X., Huang, Y., Jiang, J., and Frank, S. J. (2008) ERK-dependent threonine phosphorylation of EGF receptor modulates receptor downregulation and signaling. Cell Signal 20, 2145-2155.
17.Hu, C. W., Hsu, C. L., Wang, Y. C., Ishihama, Y., Ku, W. C., Huang, H. C., and Juan, H. F. (2015) Temporal Phosphoproteome Dynamics Induced by an ATP Synthase Inhibitor Citreoviridin. Mol Cell Proteomics 14, 3284-3298.
18.Wolschin, F., Wienkoop, S., and Weckwerth, W. (2005) Enrichment of phosphorylated proteins and peptides from complex mixtures using metal oxide/hydroxide affinity chromatography (MOAC). Proteomics 5, 4389-4397.
19.Sugiyama, N., Masuda, T., Shinoda, K., Nakamura, A., Tomita, M., and Ishihama, Y. (2007) Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications. Mol Cell Proteomics 6, 1103-1109.
20.Larsen, M. R., Thingholm, T. E., Jensen, O. N., Roepstorff, P., and Jorgensen, T. J. (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4, 873-886.
21.Maroni, P. D., Koul, S., Meacham, R. B., and Koul, H. K. (2004) Mitogen Activated Protein kinase signal transduction pathways in the prostate. Cell Commun Signal 2, 5.
22.Cargnello, M., and Roux, P. P. (2011) Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 75, 50-83.
23.Long, X., Ye, Y., Zhang, L., Liu, P., Yu, W., Wei, F., Ren, X., and Yu, J. (2016) IL-8, a novel messenger to cross-link inflammation and tumor EMT via autocrine and paracrine pathways (Review). Int J Oncol 48, 5-12.
24.Knall, C., Young, S., Nick, J. A., Buhl, A. M., Worthen, G. S., and Johnson, G. L. (1996) Interleukin-8 regulation of the Ras/Raf/mitogen-activated protein kinase pathway in human neutrophils. J Biol Chem 271, 2832-2838.
25.Nagarajan, D., Melo, T., Deng, Z., Almeida, C., and Zhao, W. (2012) ERK/GSK3beta/Snail signaling mediates radiation-induced alveolar epithelial-to-mesenchymal transition. Free Radic Biol Med 52, 983-992.
26.Weiss, M. B., Abel, E. V., Mayberry, M. M., Basile, K. J., Berger, A. C., and Aplin, A. E. (2012) TWIST1 is an ERK1/2 effector that promotes invasion and regulates MMP-1 expression in human melanoma cells. Cancer Res 72, 6382-6392.
27.Huntington, J. T., Shields, J. M., Der, C. J., Wyatt, C. A., Benbow, U., Slingluff, C. L., Jr., and Brinckerhoff, C. E. (2004) Overexpression of collagenase 1 (MMP-1) is mediated by the ERK pathway in invasive melanoma cells: role of BRAF mutation and fibroblast growth factor signaling. J Biol Chem 279, 33168-33176.
28.Su, Y. J., Lai, H. M., Chang, Y. W., Chen, G. Y., and Lee, J. L. (2011) Direct reprogramming of stem cell properties in colon cancer cells by CD44. EMBO J 30, 3186-3199.
29.Masuda, T., Tomita, M., and Ishihama, Y. (2008) Phase transfer surfactant-aided trypsin digestion for membrane proteome analysis. J Proteome Res 7, 731-740.
30.Rappsilber, J., Mann, M., and Ishihama, Y. (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2, 1896-1906.
31.Boersema, P. J., Raijmakers, R., Lemeer, S., Mohammed, S., and Heck, A. J. (2009) Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protoc 4, 484-494.
32.Kyono, Y., Sugiyama, N., Imami, K., Tomita, M., and Ishihama, Y. (2008) Successive and selective release of phosphorylated peptides captured by hydroxy acid-modified metal oxide chromatography. J Proteome Res 7, 4585-4593.
33.Cox, J., and Mann, M. (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26, 1367-1372.
34.Cox, J., Neuhauser, N., Michalski, A., Scheltema, R. A., Olsen, J. V., and Mann, M. (2011) Andromeda: a peptide search engine integrated into the MaxQuant environment. J Proteome Res 10, 1794-1805.
35.Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M. Y., Geiger, T., Mann, M., and Cox, J. (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13, 731-740.
36.Martens, L., Hermjakob, H., Jones, P., Adamski, M., Taylor, C., States, D., Gevaert, K., Vandekerckhove, J., and Apweiler, R. (2005) PRIDE: the proteomics identifications database. Proteomics 5, 3537-3545.
37.Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., and Mesirov, J. P. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102, 15545-15550.
38.Hsu, C. L., Wang, J. K., Lu, P. C., Huang, H. C., and Juan, H. F. (2017) DynaPho: a web platform for inferring the dynamics of time-series phosphoproteomics. Bioinformatics
39.Huang da, W., Sherman, B. T., and Lempicki, R. A. (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4, 44-57.
40.Huang da, W., Sherman, B. T., and Lempicki, R. A. (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37, 1-13.
41.Zhao, Y., Bjorbaek, C., and Moller, D. E. (1996) Regulation and interaction of pp90(rsk) isoforms with mitogen-activated protein kinases. J Biol Chem 271, 29773-29779.
42.Zhou, Y., Yamada, N., Tanaka, T., Hori, T., Yokoyama, S., Hayakawa, Y., Yano, S., Fukuoka, J., Koizumi, K., Saiki, I., and Sakurai, H. (2015) Crucial roles of RSK in cell motility by catalysing serine phosphorylation of EphA2. Nat Commun 6, 7679.
43.Lang, F., Strutz-Seebohm, N., Seebohm, G., and Lang, U. E. (2010) Significance of SGK1 in the regulation of neuronal function. J Physiol 588, 3349-3354.
44.Lang, F., and Shumilina, E. (2013) Regulation of ion channels by the serum- and glucocorticoid-inducible kinase SGK1. FASEB J 27, 3-12.
45.Lang, F., Bohmer, C., Palmada, M., Seebohm, G., Strutz-Seebohm, N., and Vallon, V. (2006) (Patho)physiological significance of the serum- and glucocorticoid-inducible kinase isoforms. Physiol Rev 86, 1151-1178.
46.Barthet, G., Carrat, G., Cassier, E., Barker, B., Gaven, F., Pillot, M., Framery, B., Pellissier, L. P., Augier, J., Kang, D. S., Claeysen, S., Reiter, E., Baneres, J. L., Benovic, J. L., Marin, P., Bockaert, J., and Dumuis, A. (2009) Beta-arrestin1 phosphorylation by GRK5 regulates G protein-independent 5-HT4 receptor signalling. EMBO J 28, 2706-2718.
47.Gupta, S., Campbell, D., Derijard, B., and Davis, R. J. (1995) Transcription factor ATF2 regulation by the JNK signal transduction pathway. Science 267, 389-393.
48.Okazaki, K., and Sagata, N. (1995) The Mos/MAP kinase pathway stabilizes c-Fos by phosphorylation and augments its transforming activity in NIH 3T3 cells. EMBO J 14, 5048-5059.
49.Hu, J., Rho, H. S., Newman, R. H., Zhang, J., Zhu, H., and Qian, J. (2014) PhosphoNetworks: a database for human phosphorylation networks. Bioinformatics 30, 141-142.
50.Roberts, P. J., and Der, C. J. (2007) Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene 26, 3291-3310.
51.Akbulut, T., Regner, K. R., Roman, R. J., Avner, E. D., Falck, J. R., and Park, F. (2009) 20-HETE activates the Raf/MEK/ERK pathway in renal epithelial cells through an EGFR- and c-Src-dependent mechanism. Am J Physiol Renal Physiol 297, F662-670.
52.Morris, E. J., Jha, S., Restaino, C. R., Dayananth, P., Zhu, H., Cooper, A., Carr, D., Deng, Y., Jin, W., Black, S., Long, B., Liu, J., Dinunzio, E., Windsor, W., Zhang, R., Zhao, S., Angagaw, M. H., Pinheiro, E. M., Desai, J., Xiao, L., Shipps, G., Hruza, A., Wang, J., Kelly, J., Paliwal, S., Gao, X., Babu, B. S., Zhu, L., Daublain, P., Zhang, L., Lutterbach, B. A., Pelletier, M. R., Philippar, U., Siliphaivanh, P., Witter, D., Kirschmeier, P., Bishop, W. R., Hicklin, D., Gilliland, D. G., Jayaraman, L., Zawel, L., Fawell, S., and Samatar, A. A. (2013) Discovery of a novel ERK inhibitor with activity in models of acquired resistance to BRAF and MEK inhibitors. Cancer Discov 3, 742-750.
53.Chang, Y. W., Su, Y. J., Hsiao, M., Wei, K. C., Lin, W. H., Liang, C. L., Chen, S. C., and Lee, J. L. (2015) Diverse Targets of beta-Catenin during the Epithelial-Mesenchymal Transition Define Cancer Stem Cells and Predict Disease Relapse. Cancer Res 75, 3398-3410.
54.De Craene, B., and Berx, G. (2013) Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 13, 97-110.
55.Mertins, P., Mani, D. R., Ruggles, K. V., Gillette, M. A., Clauser, K. R., Wang, P., Wang, X., Qiao, J. W., Cao, S., Petralia, F., Kawaler, E., Mundt, F., Krug, K., Tu, Z., Lei, J. T., Gatza, M. L., Wilkerson, M., Perou, C. M., Yellapantula, V., Huang, K. L., Lin, C., McLellan, M. D., Yan, P., Davies, S. R., Townsend, R. R., Skates, S. J., Wang, J., Zhang, B., Kinsinger, C. R., Mesri, M., Rodriguez, H., Ding, L., Paulovich, A. G., Fenyo, D., Ellis, M. J., Carr, S. A., and Nci, C. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534, 55-62.
56.Guo, H., Isserlin, R., Chen, X., Wang, W., Phanse, S., Zandstra, P. W., Paddison, P. J., and Emili, A. (2013) Integrative network analysis of signaling in human CD34(+) hematopoietic progenitor cells by global phosphoproteomic profiling using TiO2 enrichment combined with 2D LC-MS/MS and pathway mapping. Proteomics 13, 1325-1333.
57.Oppermann, F. S., Gnad, F., Olsen, J. V., Hornberger, R., Greff, Z., Keri, G., Mann, M., and Daub, H. (2009) Large-scale proteomics analysis of the human kinome. Mol Cell Proteomics 8, 1751-1764.
58.Hess, J., Angel, P., and Schorpp-Kistner, M. (2004) AP-1 subunits: quarrel and harmony among siblings. J Cell Sci 117, 5965-5973.
59.Eferl, R., and Wagner, E. F. (2003) AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3, 859-868.
60.Chiu, R., Boyle, W. J., Meek, J., Smeal, T., Hunter, T., and Karin, M. (1988) The c-Fos protein interacts with c-Jun/AP-1 to stimulate transcription of AP-1 responsive genes. Cell 54, 541-552.
61.Kawasaki, H., Schiltz, L., Chiu, R., Itakura, K., Taira, K., Nakatani, Y., and Yokoyama, K. K. (2000) ATF-2 has intrinsic histone acetyltransferase activity which is modulated by phosphorylation. Nature 405, 195-200.
62.Hu, E., Mueller, E., Oliviero, S., Papaioannou, V. E., Johnson, R., and Spiegelman, B. M. (1994) Targeted disruption of the c-fos gene demonstrates c-fos-dependent and -independent pathways for gene expression stimulated by growth factors or oncogenes. EMBO J 13, 3094-3103.
63.Lamb, R. F., Hennigan, R. F., Turnbull, K., Katsanakis, K. D., MacKenzie, E. D., Birnie, G. D., and Ozanne, B. W. (1997) AP-1-mediated invasion requires increased expression of the hyaluronan receptor CD44. Mol Cell Biol 17, 963-976.
64.Chen, R. H., Juo, P. C., Curran, T., and Blenis, J. (1996) Phosphorylation of c-Fos at the C-terminus enhances its transforming activity. Oncogene 12, 1493-1502.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊