跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:1742:3a1e:c308:7608) 您好!臺灣時間:2024/12/08 09:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳昱銓
研究生(外文):Yu-Chuan Chen
論文名稱:探討第三型干擾素生成的分子機制
論文名稱(外文):Investigation of the Molecular Mechanism of Type III Interferon Expression
指導教授:江皓森
指導教授(外文):Hao-Sen Chiang
口試日期:2017-07-19
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生命科學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:46
中文關鍵詞:第三型干擾素第一型干擾素粒腺體抗病毒訊息蛋白鳥糞嘌呤交換因子H1
外文關鍵詞:type III interferonstype I interferonsMAVSGEF-H1
相關次數:
  • 被引用被引用:0
  • 點閱點閱:163
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
干擾素引起、刺激基因活化,在對抗病毒感染的過程中扮演很重要的角色。RNA病毒引起RLR、MAVS、TBK-1訊息下游的第一型干擾素和第三型干擾基因表現,差別在第一型干擾素幾乎對所有細胞都能起作用,而第三型干擾素只在特定黏膜表面有作用。MAVS在細胞內存在的位置,會決定細胞生成哪種干擾素。粒腺體上的MAVS能刺激第一型干擾素生成,而過氧化物酶體(peroxisome)上的MAVS則會引發第三型干擾素生成。在我們先前的研究發現,GEF-H1在MAVS引起第一型干擾素生成中扮演重要的角色,但仍不清楚GEF-H1是否對第三型干擾素的產生造成影響。為了探討此問題,我利用poly(I:C)刺激老鼠,GEF-H1缺陷老鼠不論是在腸道表皮細胞表現的第三型干擾素和在lamina propria細胞表現的第一型干擾素都相較野生型老鼠偏低。接著我探討這現象是否也會出現在病毒引起干擾素反應。我使用第三型里奧病毒(reovirus T3D)感染老鼠,發現GEF-H1缺陷老鼠對病毒的感受性較高,但不論第一型和第三型干擾素的表現皆未上升。為了找尋GEF-H1在第三型干擾素的詳細分子機制,我使用第三型干擾素的螢光酵素啟動子分析,發現GEF-H1提高了MAVS的第三型干擾素表現量。更進一步研究,接續的利用不同功能突變的GEF-1去分析哪些功能區是對這調節現象有影響,結果顯示GEF-H1的鳥糞嘌玲交換能力對這調節是很重要。總和以上結果,說明GEF-H1除了參與第一型干擾素生成,也在第三干擾素的生成扮演重要的角色。
Induction of interferons (IFNs) and activation of interferon-stimulated genes (ISGs) are critical to innate immunity against viral infection. Almost all cells respond to type I IFNs whereas type III IFN responses are primarily found at the mucosal surfaces. Like type I IFNs, type III IFNs expression induced by RNA virus infection is downstream of RIG-I-like receptors (RLR), MAVS and TBK1. However, the subcellular localization of MAVS determines which IFN species is produced. IFN-λ production is favored when MAVS is located at the peroxisome whereas IFN-β expression is preferred when MAVS is localized to the mitochondria. Our previous works have identified that GEF-H1, a central component of innate immunity, is required for MAVS-mediated type I IFNs expression in response to RNA virus infection.We therefore hypothesize that GEF-H1 could also mediate MAVS-mediated type III IFN production. To characterize the role of GEF-H1 in induction of type III IFN in vivo, WT or GEF-H1-deficient mice were stimulated with poly (I:C). Type III IFN expression of epithelial cells and type I IFN expression of lamina propria cellswere both reduced in GEF-H1-deficient mice after poly(I:C) stimulation. This result showed GEF-H1 is invovled in MAVS-mediated type III IFN expression. To identify the role of GEF-H1 in virus-induced type III IFN expression, WT and GEF-H1-deficient mice were infected with reovirus. The viral replication was measured by plaque assay, and then this result showed GEF-H1-deficient mice were more susceptible to reovirus. However, both type I IFN and type III IFN expressions seemed to be interfered by reovirus. To assess the molecular mechanism of GEF-H1 in induction of IFNL1 promoter activation, I utilized luciferase reporter assays in HEK293T cells in the absence or presence of GEF-H1. Expression of GEF-H1 significantly enhanced wild-type MAVS-induced activation of the IFNL1 promoter. To find out which function domain of GEF-H1 is critical for type III IFN expression, two different GEF-H1 mutant expressing plasmids were used for IFNL1 promoter luciferase assays. The result showed that the GEF function of GEF-H1 is critical for MAVS-mediated IFNL1 luciferase activation. Our dataprovide insight that GEF-H1 not only involves in type I IFNs expression but also takes part in type III IFN expression.
致謝 i
摘要 ii
Abstract iii
Contents v
List of Figure vii
Chapter 1 Introduction 1
1.1 Antiviral response in gastrointestinal tract 1
1.1.1 Reoviridae 1
1.1.2 Mammalian orthoreovirus 1
1.1.3 Reovirus replication cycle 2
1.1.4 Nucleic acid-sensing receptors 2
1.1.5 RLR–MAVS-mediated signal transduction pathway 3
1.1.6 Type I IFN response 4
1.1.7 Transcription regulators of Type I IFN expression 5
1.1.8 Type III IFN response 6
1.1.9 The transcription regulator of type III IFN 6
1.1.10 Antiviral Response of Type III IFN 7
1.2 Rho-related small GTPase 8
1.2.1 Guanine nucleotide exchange factor (GEF) of Rho GTPase 8
1.2.2 GEF-H1 with Rho-independent function 9
Chapter 2 Materials and Methods 11
2.1 Mice 11
2.2 Cell 11
2.3 Virus 11
2.4 Plasmids 12
2.5 Plaque assay 13
2.6 In vivo treatment 14
2.7 Isolation of intestine epithelial cells and lamina propria leukocytes 14
2.8 Gene expression assay 15
Chapter 3 Result 17
3.1 GEF-H1 was required in type III IFN expression via dsRNA-RLR pathway in vivo. 17
3.2 GEF-H1-deficient mice were more susceptible to reovirus infection 17
3.3 GEF-H1 enhancing MAVS-mediated IFNL1 luciferase activity was not affected by repressor-binding region. 18
3.4 GEF-activity of GEF-H1 is required for enhancing MAVS-mediated IFNL1 luciferase activity. 18
3.5 GFP in N-terminal of MAVS interfered the GEF-H1 enhancing effect. 19
Chapter 4 Discussion 21
References 24
Table 46
Table 1. Primers used for RT-qPCR 46
1.Ramani S, Kang G. Viruses causing childhood diarrhoea in the developing world. Curr Opin Infect Dis 2009; 22:477-82.
2.Joklik WK. Structure and function of the reovirus genome. MicrobiolRev 1981; 45: 483-501.
3.Day JM. The diversity of the orthoreoviruses: molecular taxonomy and phylogentic divides. Infect Genet Evol 2009; 9:390-400.
4.Forrest JC, Dermody TS. Reovirus receptors and pathogenesis. J Virol 2003; 77:9109-15.
5.Barton ES, Connolly JL, Forrest JC, Chappell JD, Dermody TS. Utilization of sialic acid as a coreceptor enhances reovirus attachment by multistep adhesion strengthening. J Biol Chem 2001; 276:2200-11.
6.Barton ES, Forrest JC, Connolly JL, Chappell JD, Liu Y, Schnell FJ, et al. Junction adhesion molecule is a receptor for reovirus. Cell 2001; 104:441-51.
7.Maginnis MS, Forrest JC, Kopecky-Bromberg SA, Dickeson SK, Santoro SA, Zutter MM, et al. Beta1 integrin mediates internalization of mammalian reovirus. J Virol 2006; 80:2760-70.
8.Nibert ML, Chappell JD, Dermody TS. Infectious subvirion particles of reovirus type 3 dearing exhibit a loss in infectivity and contain a cleaved sigma1 protein. J Virol 1995; 69:5057–67.
9.Madren JA, Sarkar P, Danthi P. Cell entry-associated conformational changes in reovirus particles are controlled by host protease activity. J Virol 2012; 86:3466-73.
10.Takeda K, Akira S. Toll-like receptors in innate immunity. Int Immunol 2005; 17:1-14.
11.Cai X, Chiu YH, Chen ZJ. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Mol Cell 2014; 54:289-96.
12.Williams BR. PKR; a sentinel kinase for cellular stress. Oncogene 1999; 18:6112-20.
13.Chan YK, Gack MU. Viral evasion of intracellular DNA and RNA sensing. Nat Rev Microbiol 2016; 14:360-73.
14.Peisley A, Wu B, Xu H, Chen ZJ, Hur S. Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I. Nature 2014; 509:110-4.
15.Loo YM, Fornek J, Crochet N, Bajwa G, Perwitasari O, Martinez-Sobrido L, et al. Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J Virol 2008; 82:335-45.
16.Wies E, Wang MK, Maharaj NP, Chen K, Zhou S, Finberg RW, et al. Dephosphorylation of the RNA sensors RIG-I and MDA5 by the phosphatase PP1 is essential for innate immune signaling. Immunity 2013; 38:437-49.
17.Gack MU, Shin YC, Joo CH, Urano T, Liang C, Sun L, et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 2007; 446:916-20.
18.Oshiumi H, Miyashita M, Inoue N, Okabe M, Matsumoto M, Seya T. The ubiquitin ligase Riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection. Cell Host Microbe 2010; 8:496-509.
19.Dixit E, Boulant S, Zhang Y, Lee AS, Odendall C, Shum B, et al. Peroxisomes are signaling platforms for antiviral innate immunity. Cell 2010; 141:668-81.
20.Liu HM, Loo YM, Horner SM, Zornetzer GA, Katze MG, Gale M, Jr. The mitochondrial targeting chaperone 14-3-3epsilon regulates a RIG-I translocon that mediates membrane association and innate antiviral immunity. Cell Host Microbe 2012; 11:528-37.
21.Berke IC, Yu X, Modis Y, Egelman EH. MDA5 assembles into a polar helical filament on dsRNA. Proc Natl Acad Sci U S A 2012; 109:18437-41.
22.Seth RB, Sun L, Ea CK, Chen ZJ. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 2005; 122:669-82.
23.Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-gamma: an overview of signals, mechanisms and functions. J Leukoc Biol 2004; 75:163-89.
24.Ivashkiv LB, Donlin LT. Regulation of type I interferon responses. Nat Rev Immunol 2014; 14:36-49.
25.Schneider WM, Chevillotte MD, Rice CM. Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol 2014; 32:513-45.
26.McNab F, Mayer-Barber K, Sher A, Wack A, O''Garra A. Type I interferons in infectious disease. Nat Rev Immunol 2015; 15:87-103.
27.Honda K, Taniguchi, T. IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat Rev Immunol 2006; 6:644-58.
28.Taniguchi T, Oqasawara K,Takaoka A, Tanaka N. IRF family of transcription factors as regulators of host defense. Annu Rev Immunol 2001.; 19: 623–55.
29.Fujita T, Sakakibara J, Sudo Y, Miyamoto M, Kimura Y, Taniguchi T. Evidence for a nuclear factor(s), IRF-1, mediating induction and silencing properties to human IFN-beta gene regulatory elements. EMBO J 1988; 7:3397 - 405.
30.Kano A, Haruyama T, Akaike T, Watanabe Y. IRF-1 is an essential mediator in IFN-γ-induced cell cycle arrest and apoptosis of primary cultured hepatocytes. Biochem Biophys Res Commun 1999; 257:672-77.
31.Levy DE, Kessler DS, Pine R, Darnell JE, Jr. Cytoplasmic activation of ISGF3, the positive regulator of interferon-alpha-stimulated transcription, reconstituted in vitro. Genes Dev 1989; 3:1362-71.
32.Kotenko SV, Gallagher G, Baurin VV, Lewis-Antes A, Shen M, Shah NK, et al. IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nat Immunol 2003; 4:69-77.
33.Sheppard P, Kindsvogel W, Xu W, Henderson K, Schlutsmeyer S, Whitmore TE, et al. IL-28, IL-29 and their class II cytokine receptor IL-28R. Nat Immunol 2003; 4:63-8.
34.Prokunina-Olsson L, Muchmore B, Tang W, Pfeiffer RM, Park H, Dickensheets H, et al. A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nat Genet 2013; 45:164-71.
35.Wack A, Terczynska-Dyla E, Hartmann R. Guarding the frontiers: the biology of type III interferons. Nat Immunol 2015; 16:802-9.
36.Lazear HM, Nice TJ, Diamond MS. Interferon-lambda: immune functions at barrier surfaces and beyond. Immunity 2015; 43:15-28.
37.Pott J,Mahlakõiv T, Mordstein M, Duerr CU, Michiels T, Stockinger S, et al. IFN-λ determines the intestinal epithelial antiviral host defense. Proc Natl Acad Sci U S A 2011; 108:7944-9.
38.Odendall C, Dixit E, Stavru F, Bierne H, Franz KM, Durbin AF, et al. Diverse intracellular pathogens activate type III interferon expression from peroxisomes. Nat Immunol 2014; 15:717-26.
39.Swider A, Siegel R, Eskdale J, Gallagher G. Regulation of interferon lambda-1 (IFNL1/IFN-lambda1/IL-29) expression in human colon epithelial cells. Cytokine 2014; 65:17-23.
40.Montufar-Solis D, Klein JR. Experimental intestinal reovirus infection of mice-What we know, what we need to know. Immunologic Research 2005; 33:257–65.
41.Mahlakoiv T, Hernandez P, Gronke K, Diefenbach A, Staeheli P. Leukocyte-derived IFN-alpha/beta and epithelial IFN-lambda constitute a compartmentalized mucosal defense system that restricts enteric virus infections. PLoS Pathog 2015; 11:e1004782.
42.Nice TJ, Baldridge MT, McCune BT, Norman JM , Lazear HM, Artyomov M, et al. Interferon-λ cures persistent murine norovirus infection in the absence of adaptive immunity. Science 2015; 347:269-73.
43.Lee HC, Narayanan S, Park SJ, Seong SY, Hahn YS. Transcriptional regulation of IFN-lambda genes in hepatitis C virus-infected hepatocytes via IRF-3.IRF-7.NF-kappaB complex. J Biol Chem 2014; 289:5310-9.
44.Coccia EM, Severa M, Giacomini E, Monneron D, Remoli ME, Julkunen I, et al. Viral infection and Toll-like receptor agonistsinduce a differential expression of type I and lambda interferons in human plasmacytoid and monocyte-derived dendritic cells. Eur J Immunol 2004; 34:796–805.
45.Krendel M, Zenke FT, Bokoch GM. Nucleotide exchange factor GEF-H1 mediates cross-talk between microtubules and the actin cytoskeleton. Nat Cell Biol 2002; 4:294-301.
46.Hodge RG, Ridley AJ. Regulating Rho GTPases and their regulators. Nat Rev Mol Cell Biol 2016; 17:496-510.
47.Bos JL, Rehmann H, Wittinghofer A. GEFs and GAPs: critical elements in the control of small G proteins. Cell 2007; 129:865-77.
48.Johnson JL, Erickson JW, Cerione RA. New insights into how the Rho guanine nucleotide dissociation inhibitor regulates the interaction of Cdc42 with membranes. J Biol Chem 2009; 284:23860-71.
49.Ren Y, Li R, Zheng Y, Busch H. Cloning and characterization of GEF-H1, a microtubule-associated guanine nucleotide exchange factor for Rac and Rho GTPases. J Bio Chem 1998; 273: 34954–60.
50.Glaven JA, Whitehead I, Bagrodia S, Kay R, Cerione RA. The Dbl-related protein, Lfc, localizes to microtubules and mediates the activation of Rac signaling pathways in cells. J Bio Chem 1998; 274:2279–85.
51.Birkenfeld J, Nalbant P, Yoon SH, Bokoch GM. Cellular functions of GEF-H1, a microtubule-regulated Rho-GEF: is altered GEF-H1 activity a crucial determinant of disease pathogenesis? Trends Cell Biol 2008; 18:210-9.
52.Yoshimura Y, Miki H. Dynamic regulation of GEF-H1 localization at microtubules by Par1b/MARK2. Biochem Biophys Res Commun 2011; 408:322-8.
53.Pathak R, Delorme-Walker VD, Howell MC, Anselmo AN, White MA, Bokoch GM, et al. The microtubule-associated Rho activating factor GEF-H1 interacts with exocyst complex to regulate vesicle traffic. Dev Cell 2012; 23:397-411.
54.Maffucci T,Falasca M. Specifcity in pleckstrin homology (PH) domain membrane targeting: a role for a phosphoinositide protein co-operative mechanism. FEBS Lett 2001; 506:173-9.
55.Aijaz S, D''Atri F, Citi S, Balda MS, Matter K. Binding of GEF-H1 to the tight junction-associated adaptor cingulin results in inhibition of Rho signaling and G1/S phase transition. Dev Cell 2005; 8:777-86.
56.Cullis J, Meiri D, Sandi MJ, Radulovich N, Kent OA, Medrano M, et al. The RhoGEF GEF-H1 is required for oncogenic RAS signaling via KSR-1. Cancer Cell 2014; 25:181-95.
57.Fukazawa A, Alonso C, Kurachi K, Gupta S, Lesser CF, McCormick BA, et al. GEF-H1 mediated control of NOD1 dependent NF-kappaB activation by Shigella effectors. PLoS Pathog 2008; 4:e1000228.
58.Chiang HS, Zhao Y, Song JH, Liu S, Wang N, Terhorst C, et al. GEF-H1 controls microtubule-dependent sensing of nucleic acids for antiviral host defenses. Nat Immunol 2014; 15:63-71.
59.Berard A, Coombs KM. Mammalian reoviruses: propagation, quantification, and storage. Curr Protoc Microbiol 2009; Chapter 15:Unit15C 1.
60.Geem D, Medina-Contreras O, Kim W, Huang CS, Denning TL. Isolation and characterization of dendritic cells and macrophages from the mouse intestine. 2012:e4040.
61.Zurney J, Kobayashi T, Holm GH, Dermody TS, Sherry B. Reovirus mu2 protein inhibits interferon signaling through a novel mechanism involving nuclear accumulation of interferon regulatory factor 9. J Virol 2009; 83:2178-87.
62.Balachandran S,Roberts PC, Kipperman T, Bhalla KN, Compans RW, Archer DR, et al. Alpha/Beta interferons potentiate virus-induced apoptosis through activation of the FADD/Caspase-8 death signaling pathway. J Virol 2000; 74:p. 1513–23.
63.Knowlton JJ, Dermody TS, Holm GH. Apoptosis induced by mammalian reovirus is beta interferon (IFN) independent and enhanced by IFN regulatory factor 3- and NF-kappaB-dependent expression of Noxa. J Virol 2012; 86:1650-60.
64.Oda E,Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, et al. Noxa, a BH3-Only Member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 2000; 288: 1053-8.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top