|
[1]Eggins, B.R., Chemical sensors and biosensors. Vol. 28. 2008: John Wiley & Sons. [2]Fraden, J., Handbook of modern sensors : physics, designs, and applications, SpringerLink, Editor. 2016, Cham : Springer International Publishing : Imprint: Springer, 2016. [3]Georganopoulou, D.G., et al., Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer''s disease. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(7): p. 2273-2276. [4]Dubois, B., et al., Preclinical Alzheimer''s disease: Definition, natural history, and diagnostic criteria. Alzheimer''s & Dementia, 2016. 12(3): p. 292-323. [5] Murphy, M.P. and H. LeVine, Alzheimer’s Disease and the β-Amyloid Peptide. Journal of Alzheimer''s disease : JAD, 2010. 19(1): p. 311. [6]Aguilar, M.-I. and D.H. Small, Surface plasmon resonance for the analysis of β-amyloid interactions and fibril formation in Alzheimer’s disease research. Neurotoxicity research, 2005. 7(1): p. 17-27. [7]Sheridan, C., Exosome cancer diagnostic reaches market. Nat Biotech, 2016. 34(4): p. 359-360. [8]Im, H., et al., Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat Biotech, 2014. 32(5): p. 490-495. [9]U.S. Department of Health and Human Services, F.D.A., Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER), Guidelines for Industry: Quality Considerations in Demonstrating Biosimilarity of a Therapeutic Protein Product to a Reference Product. 2015. [10]Shen, H.T., Integrated Interface Circuit with Feedback Control Loop Compensation for Dielectric Spectroscopy Biosensor, in Institute of Biomedical Engineering. 2016, National Taiwan University: Taipei, Taiwan. p. 83. [11]Zhao, X., et al., Optical fiber sensor based on surface plasmon resonance for rapid detection of avian influenza virus subtype H6: Initial studies. Journal of Virological Methods, 2016. 233: p. 15-22. [12]Homola, J., Surface plasmon resonance sensors for detection of chemical and biological species. Chemical reviews, 2008. 108(2): p. 462-493. [13]Label-free interaction analysis Biacore™ 8K. 2016: GE Healthcare Bio-Sciences Corp. [14]Homola, J., Surface plasmon resonance based sensors, Springer series on chemical sensors and biosensor/Methods and Applications. Springer tracts in modern physics, Springer-Verlag Berlin ed., Heidelberg NY, 2006. 4: p. 7-8. [15]Sjölander, S. and C. Urbaniczky, Integrated fluid handling system for biomolecular interaction analysis. Analytical chemistry, 1991. 63(20): p. 2338-2345. [16]Atwater, H.A. and A. Polman, Plasmonics for improved photovoltaic devices. Nat Mater, 2010. 9(3): p. 205-213. [17]Echtermeyer, T., et al., Strong plasmonic enhancement of photovoltage in graphene. arXiv preprint arXiv:1107.4176, 2011. [18]Moskovits, M., Hot Electrons Cross Boundaries. Science, 2011. 332(6030): p. 676. [19]Maier, S.A., Plasmonics: fundamentals and applications. 2007: Springer Science & Business Media. [20]Clavero, C., Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nature Photonics, 2014. 8(2): p. 95-103. [21]Wood, R.W., XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Philosophical Magazine Series 6, 1902. 4(21): p. 396-402. [22]Fano, U., The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld’s Waves). Journal of the Optical Society of America, 1941. 31(3): p. 213-222. [23]Ritchie, R.H., Plasma Losses by Fast Electrons in Thin Films. Physical Review, 1957. 106(5): p. 874-881. [24]Ritchie, R.H., et al., Surface-Plasmon Resonance Effect in Grating Diffraction. Physical Review Letters, 1968. 21(22): p. 1530-1533. [25]Kretschmann, E. and H. Raether, Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light, in Zeitschrift für Naturforschung A. 1968. p. 2135. [26]Otto, A., Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Physik A Hadrons and nuclei, 1968. 216(4): p. 398-410. [27]Barnes, W.L., A. Dereux, and T.W. Ebbesen, Surface plasmon subwavelength optics. Nature, 2003. 424(6950): p. 824-830. [28]Liedberg, B., C. Nylander, and I. Lunström, Surface plasmon resonance for gas detection and biosensing. Sensors and Actuators, 1983. 4: p. 299-304. [29]Zayats, A.V., I.I. Smolyaninov, and A.A. Maradudin, Nano-optics of surface plasmon polaritons. Physics Reports, 2005. 408(3–4): p. 131-314. [30]Science, G.L., Principle of Surface Plasmon resonance (SPR) used in Biacore™ systems. 2013. [31]Sze, S.M. and K.K. Ng, Physics of semiconductor devices. 2006: John wiley & sons. [32]Zheng, B.Y., et al., Distinguishing between plasmon-induced and photoexcited carriers in a device geometry. Nat Commun, 2015. 6: p. 7797. [33]Chalabi, H., D. Schoen, and M.L. Brongersma, Hot-electron photodetection with a plasmonic nanostripe antenna. Nano Lett, 2014. 14(3): p. 1374-80. [34]Gall, D., Electron mean free path in elemental metals. Journal of Applied Physics, 2016. 119(8): p. 085101. [35]Shimizu, Y., et al., High H2 sensing performance of anodically oxidized TiO2 film contacted with Pd. Sensors and Actuators B: Chemical, 2002. 83(1–3): p. 195-201. [36]Crowell, C.R. and S.M. Sze, Current transport in metal-semiconductor barriers. Solid-State Electronics, 1966. 9(11): p. 1035-1048. [37]Hu, C., Modern semiconductor devices for integrated circuits. 2010: Prentice Hall. [38]Padovani, F.A. and R. Stratton, Field and thermionic-field emission in Schottky barriers. Solid-State Electronics, 1966. 9(7): p. 695-707. [39]Smith, D.R. The Surface Plasmon. Available from: http://people.ee.duke.edu/~drsmith/plasmonics/enhancement.htm. [40]Schider, G., et al., Plasmon dispersion relation of Au and Ag nanowires. Physical Review B, 2003. 68(15): p. 155427. [41]Nowotny, M.K., et al., Observations of p-type semiconductivity in titanium dioxide at room temperature. Materials Letters, 2010. 64(8): p. 928-930. [42]Du, L., et al., Ultrafast plasmon induced electron injection mechanism in gold–TiO2 nanoparticle system. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2013. 15: p. 21-30. [43]Qiu, W., et al., An electron beam evaporated TiO 2 layer for high efficiency planar perovskite solar cells on flexible polyethylene terephthalate substrates. Journal of Materials Chemistry A, 2015. 3(45): p. 22824-22829. [44]Siefke, T., et al., Materials Pushing the Application Limits of Wire Grid Polarizers further into the Deep Ultraviolet Spectral Range. Advanced Optical Materials, 2016. 4(11): p. 1780-1786. [45]Stelling, C., et al., Plasmonic nanomeshes: their ambivalent role as transparent electrodes in organic solar cells. Scientific Reports, 2017. 7: p. 42530. [46]Johnson, P.B. and R.W. Christy, Optical Constants of the Noble Metals. Physical Review B, 1972. 6(12): p. 4370-4379. [47]Sellers, M.C.K. and E.G. Seebauer, Measurement method for carrier concentration in TiO2 via the Mott–Schottky approach. Thin Solid Films, 2011. 519(7): p. 2103-2110. [48]Knight, M.W., et al., Photodetection with Active Optical Antennas. Science, 2011. 332(6030): p. 702. [49]Bradshaw, G. and A.J. Hughes, Etching methods for indium oxide/tin oxide films. Thin Solid Films, 1976. 33(2): p. L5-L8. [50]Model 6485 Picoammeter, Model 6487 Picoammeter/Voltage Source User’s Manual. 2011, www.keithley.com: Keithley Instrument, Inc. [51]Yunus, W.M.b.M. and A.b.A. Rahman, Refractive index of solutions at high concentrations. Applied Optics, 1988. 27(16): p. 3341-3343. [52]Tan, C.-Y. and Y.-X. Huang, Dependence of Refractive Index on Concentration and Temperature in Electrolyte Solution, Polar Solution, Nonpolar Solution, and Protein Solution. Journal of Chemical & Engineering Data, 2015. 60(10): p. 2827-2833.
|