跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/15 03:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:程詠杰
研究生(外文):Weng-Kit Cheng
論文名稱:游離輻射在毛囊生長期造成的萎縮反應與早發性再生
論文名稱(外文):The effect of ionizing radiation on anagen hair follicle:Dystrophic response and premature regeneration
指導教授:林頌然
口試日期:2017-07-25
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:74
中文關鍵詞:放射性治射游離輻射落髮毛囊毛囊生長週期
外文關鍵詞:RadiotherapyIonizing radiationHair lossHair follicleHair cycle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
放射線治療是現代癌症醫學的常用的治療手法之一,利用具穿透性的游離輻射對體內的腫瘤進行非入侵性的治療。可是這種治療手法會同時對附近的正常組織造成傷害,從中帶來許多副作用,其中落髮為廣為人知的副作用之一,落髮為病人帶來外觀上的影響,使他們心理上造成壓力。毛髮週期包括生長期,衰退期及休止期,過去對小鼠注射化療藥物後對毛髮影響的研究中,根據注射的劑量會得到萎縮性生長期及萎縮性衰退期兩個路徑,前者出現短暫修復,後者則無,可是萎縮性衰退期會經過一短暫休止期後會提早進入下一個生長期。本研究主要分為兩部分,一.探討高劑量游離輻射在毛囊生長期造成的傷害;二.在輻射傷害下毛囊在生長週期的影響。實驗使用出生後32天的C57BL/6母鼠,在毛囊處於生長期時,以8.5Gy銫-137伽瑪射線照射小鼠背部,觀察毛髮掉落情形及收集背部皮膚,以出生後40天,處於自然衰退期的小鼠作為對照組,以組織切片及免疫螢光染色進行分析。實驗結果顯示,照射游離輻射後,小鼠在第7天毛髮完全掉落,在組織切片下可以觀察到毛囊在第10天時型態接近休止期。利用γH2AX免疫螢光染色可以發現在照射游離輻射後6小時,毛囊表現嚴重的DNA斷裂,在TUNEL及Cleaved caspase-3的染色中可以發現在24小時內,毛囊出現大量細胞凋亡,同時表現BrdU的細胞數目相對正常生長期有顯著減少。另一方面,毛囊在受輻射後的48小時內出現同源重組(HR)及非同源性末端接合(NHEJ)來修復斷裂的DNA,表現的位置主要為毛囊球,在48小時後因傷害過大無法修復的情況下開始萎縮,隨後進入短暫的休止期。在第二部分中,實驗採用細胞分選儀收集對照組及輻射組休止期的不同細胞群,以即時聚合酶鏈式反應的方式觀察在休止期中不同細胞群分析其基因表現,結果顯示在照射游離輻射後,在毛囊inner bulge的部分,抑制進入生長期的信號降低,在bulge及次級毛胚可以發現輻射組的休止期比正常的休止期更具有進入生長期的條件,可是在輻射傷害導致的休止期,細胞的信號傳遞功能可能受到干擾,所以毛囊需要一個短暫的時間進行調整,才可以進入下一個生長週期。
Radiotherapy is one of the commonly used in cancer treatment. By use of ionizing radiation(IR) for non-invasive treatment of tumors in the body. However, this treatment will also cause damage to the nearby normal tissue, resulting in many side effects. IR induced alopecia is one of well-known side effects, it will affect the patient’s life quality.
Hair cycle includes growth (anagen), regression (catagen) and quiescence (telogen). Mice were injected with chemotherapy drugs on the impact of hair research, it will induce dystrophic anagen or dystrophic catagen pathway; this has not a primary recovery, and that will. Otherwise, dystrophic catagen has a short telogen and early entry into next hair cycle. In this study divides into two parts: 1.The effect of IR on anagen hair follicle. 2.The effect of hair cycle after IR.
In our experiment, C57BL/6 female mice were irradiated with gamma rays (8.5Gy) from radioactive isotope Cs-137 on the back skin when a hair follicle in the anagen stage, 40 days old B6 mice were used in the control group, the analysis was performed by H&E and immunofluorescence staining. The results showed that after irradiation of IR, the mice appeared alopecia at day 7 post irradiation. Histologically, the hair follicle structure was changed to telogen like phase after 10 days’ post irradiation. Immunofluorescence staining by γH2AX indicated serious DNA damage on the hair bulb at 6 hours post irradiation. In TUNEL and Cleaved caspase-3 staining can be found hair follicles appear a large number of apoptosis cells within 24 hours, the number of BrdU positive cells also decreased after IR treatment. On the other hand, homologous recombination (HR) and non-homologous terminal binding (NHEJ) repair marker Rad51 and DNAPkcs had occurred in the hair follicles after IR within 48 hours. Unfortunately, the repair would not success and hair follicles entered into dystrophic catagen.
In part two, we will discuss why dystrophic telogen has a short resting time. We sorted Inner bulge, bulge and hair germ cells from normal telogen (P49, P59) and the radiation group(IRd10, d17) by FACSCalibur. qPCR data suggest that radiation group inner bulge inhibition signal was reduced. In bulge and secondary hair germ, we found radiation group cells were more active than normal telogen cells, moreover, we found IRd10 telogen cells signaling function may be disturbed, so the hair follicles need a short time to revise before they enter the next hair cycle.
口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
目錄 vi
圖目錄 viii
表目錄 xi
第一章 緒論 - 1 -
1.1輻射介紹 - 1 -
1.2毛囊之結構與週期 - 2 -
1.3毛囊的生長週期 - 4 -
1.4游離輻射之臨床治療及副作用 - 6 -
1.5游離輻射對生物體的影響 - 8 -
1.6游離輻射對組織造成的傷害 - 10 -
1.7毛囊休止期到生長期之轉換 - 12 -
1.8 研究目的 - 14 -
第二章 實驗材料與方法 - 15 -
2.1實驗動物 - 15 -
2.2小鼠游離輻射照射 - 15 -
2.3小鼠背皮組織收集及處理 - 16 -
2.4蘇木精─伊紅(hematoxylin & eosin, H&E)染色 - 16 -
2.5免疫螢光(immunofluorescence, IF)染色 - 17 -
2.6雙重免疫螢光 - 18 -
2.7 TUNEL檢測 - 20 -
2.8增生細胞的定量 - 21 -
2.9自我凋亡細胞的定量 - 21 -
2.10 細胞分選(cell sorting) - 22 -
2.11 即時定量聚合酶連鎖反應(real-time quantitative polymerase chain reaction,qPCR) - 23 -
第三章 結果 - 25 -
3.1游離輻射造成小鼠背部毛髮掉髮 - 25 -
3.2游離輻射造成小鼠毛生長期囊結構受損及影響生長週期 - 27 -
3.3游離輻射造成小鼠毛囊細胞分化狀態的影響 - 30 -
3.4游離輻射造成毛囊自我凋亡的影響 - 33 -
3.5 游離輻射造成毛囊活化Caspase-3 - 36 -
3.6 游離輻射影響毛囊生長期增生 - 38 -
3.7 游離輻射造成毛囊細胞DNA受損 - 40 -
3.8 毛囊細胞對於8.5Gy游離輻射引發的DNA修復 - 43 -
3.9游離輻射對於毛囊生長週期的影響 - 46 -
3.10收集游離輻射造成的休止期與正常休止期之細胞群 - 49 -
3.11游離輻射造成毛囊Inner bulge抑制信號下降 - 53 -
3.12毛囊幹細胞在游離輻射後之基因表現 - 54 -
3.13毛囊次級毛胚細胞在游離輻射後之基因表現 - 56 -
第四章 討論 - 61 -
4.1輻射傷害對毛囊生長週期的影響 - 61 -
4.2游離輻射對毛囊細胞造成DNA傷害及凋亡 - 61 -
4.3游離輻射抑制毛囊細胞增生及改變次級毛胚組成 - 62 -
4.4萎縮性衰退期路徑影響毛髮週期 - 64 -
第五章結論 - 67 -
參考文獻 - 68 -
1.Balagamwala, E.H, et al., Introduction to Radiotherapy and Standard Teletherapy Techniques. Dev Ophthalmol. 2013;52:1-14.
2.Daryoush S.G, et al., A review on natural background radiation. Adv Biomed Res. 2013;30;2:65.
3.van Elmpt W, et al., Dual energy CT in radiotherapy: Current applications and future outlook. Radiother Oncol. 2016;119(1):137-44.
4.Fleta N. Bray, et al., Acute and Chronic Cutaneous Reactions to Ionizing Radiation Therapy. Dermatol Ther (Heidelb). 2016;6(2):185-206.
5.Catharine M West and Gillian C Barnett, Genetics and genomics of radiotherapy toxicity: towards prediction. Genome Med. 2011;23;3(8):52.
6.M. R. Schneider, et al., "The hair follicle as a dynamic miniorgan". Curr Biol. 2009;19(3):R132-42.
7.Osorio KM, et al., "Runx1 modulates developmental, but not injury-driven, hair follicle stem cell activation". Development. 2008;135(6):1059-68.
8.L. Alonso and E. Fuchs, The hair cycle. J Cell Sci. 2006;119(Pt 3):391-3.
9.Sven MuÈller-RoÈver, et al., A Comprehensive Guide for the Accurate Classi®cation of Murine Hair Follicles in Distinct Hair Cycle Stages J Invest Dermatol. 2001;117(1):3-15.
10.Everts HB , Endogenous retinoids in the hair follicle and sebaceous gland. Biochim Biophys Acta. 2012;1821(1):222-9.
11.Dr Syed Yousuf Ali, et al., Cutaneous effects of radiotherapy- a review article. Innovative Journal of Medical and Health Science. 2014;341-349.

12.W. A. Pusey, Roentgen-rays in the treatment of skin diseases and for the removal of hair. Journal of Cutaneous and Genitourinary Diseases, vol. 1900;18:302-318.
13.X George Xu, et al., A review of dosimetry studies on external-beam radiation treatment with respect to second cancer induction. Phys Med Biol. 2008;53(13): R193-R241..
14.Mr RS Stubbs and SK Wickremesekera, Selective internal radiation therapy (SIRT): a new modality for treating patients with colorectal liver metastases. HPB (Oxford). 2004;6(3):133-139.
15.Teh BS, et al., Intensity modulated radiation therapy (IMRT): a new promising technology in radiation oncology. Teh BS1, Woo SY, Butler EB, Oncologist. 1999;4(6):433-42.
16.Samant R. and Gooi AC., Radiotherapy basics for family physicians. Potent tool for symptom relief. Can Fam Physician. 2005;51:1496-501.
17.N. Carelle, et al., Changing patient perceptions of the side effects of cancer chemotherapy. Cancer. 2002;95(1):155-63.
18.Citrin D, et al., Radioprotectors and mitigators of radiation-induced normal tissue injury. Oncologist. 2010;15(4):360-71.
19.Lipinski B. Hydroxyl Radical and Its Scavengers in Health and Disease. Oxidative Medicine and Cellular Longevity. 2011;809696:1-9
20.Hubenak JR, et al., Mechanisms of injury to normal tissue after radiotherapy: a review. Plast Reconstr Surg. 2014;133(1):49e-56e.
21. Huen MS, Chen J. The DNA damage response pathways: at the crossroad of protein modifications. Cell Res. 2008;18:8-16.

22.Kurose A, et al., Effects of Hydroxyurea and Aphidicolin on Phosphorylation of Ataxia Telangiectasia Mutated on Ser 1981 and Histone H2AX on Ser 139 in Relation to Cell Cycle Phase and Induction of Apoptosis. Cytometry A. 2006;69A:212-221.
23.Coates PJ, et al., Differential Contextual Responses of Normal Human Breast Epithelium to Ionizing Radiation in a Mouse Xenograft Model. Cancer Res. 2010;70:9808-9815.
24.G. Sulli, et al,. Crosstalk between chromatin state and DNA damage response in cellular senescence and cancer. Nat Rev Cancer. 2012;12(10):709-20.
25.M. F. Lavin, Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nat Rev Mol Cell Biol. 2008;9(10):759-69.
26.C. J. Lord and A. Ashworth, The DNA damage response and cancer therapy. Nature. 2012;481(7381):287-94.
27.T. Helleday, E, et al., DNA repair pathways as targets for cancer therapy. Nat Rev Cancer. 2008;8(3):193-204.
28.S. Postel-Vinay, et al., The potential of exploiting DNA-repair defects for optimizing lung cancer treatment. Nat Rev Clin Oncol. 2012;9(3):144-55.
29.Zhiyong Mao, et al., DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells Cell Cycle. 2008; 7(18): 2902–2906.
30.Maria Jasin and Rodney Rothstein, Repair of Strand Breaks by Homologous Recombination. Cold Spring Harb Perspect Biol. 2013;5(11):a012740.
31.Anthony J. Davis and David J. Chen, DNA double strand break repair via non-homologous end-joining. Transl Cancer Res. 2013;2(3):130-143.

32.Anuradha Thiagarajan and N Gopalakrishna Iyer, Radiation-induced sarcomas of the head and neck. World J Clin Oncol. 2014;5(5):973-981.
33.Pawlik TM and Keyomarsi., Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys. 2004;59(4):928-42.
34.Paus R, et al., Chemotherapy-induced alopecia in mice. Induction by cyclophosphamide, inhibition by cyclosporine A, and modulation by dexamethasone. Am J Pathol. 1994;144(4):719-34.
35.Sven Hendrix et al., A Guide to Assessing Damage Response Pathways of the Hair Follicle: Lessons From Cyclophosphamide-Induced Alopecia in Mice. J Invest Dermatol. 2005;125(1):42-51.
36.Paus R, et al., Pathobiology of chemotherapy-induced hair loss. Lancet Oncol. 2013;14(2):e50-9.
37.Genander M, et al., BMP signaling and its pSMAD1/5 target genes differentially regulate hair follicle stem cell lineages. Cell Stem Cell. 2014;15(5):619-33.
38.Chen G, et al., TGF-β and BMP Signaling in Osteoblast Differentiation and Bone Formation. Int J Biol Sci. 2012;8(2):272-88.
39.Festa E, et al., Adipocyte lineage cells contribute to the skin stem cell niche to drive hair cycling. Cell. 2011;146(5):761-71.
40.Maksim V. Plikus, et al., Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature. 2008;451(7176):340–344.
41.Ya-Chieh Hsu, et al., Dynamics Between Stem Cells, Niche and Progeny in the Hair Follicle. Cell. 2011;144(1):92-105.
42.Geyfman M, et al., Resting no more: re-defining telogen, the maintenance stage of the hair growth cycle. Biol Rev Camb Philos Soc. 2015;90(4):1179-96

43.Blanpain C, et al., Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche, Cell. 2004;118(5):635-48.
44.Hsu YC. and Fuchs E., A family business: stem cell progeny join the niche to regulate homeostasis. Nat Rev Mol Cell Biol. 2012;13(2):103-14.
45.Stenn KS, et al., Hair follicle growth controls. Dermatol Clin. 1996;14(4):543-58.
46.Peus D. and Pittelkow MR., Growth factors in hair organ development and the hair growth cycle. Dermatol Clin. 1996;14(4):559-72.
47.Lindner G, et al. Involvement of hepatocyte growth factor/scatter factor and met receptor signaling in hair follicle morphogenesis and cycling. FASEB J. 2000 ;14(2):319-32.
48.Yoon SY, et al., A role of placental growth factor in hair growth. J Dermatol Sci. 2014;74(2):125-34.
49.Tao Tong, et al., Topical Application of Oleuropein Induces Anagen Hair Growth in Telogen Mouse Skin. PLoS One. 2015;10(6):e0129578.
50.Greco V, et al., A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell. 2009;4(2):155-69.
51.Plikus MV, et al., Analyses of regenerative wave patterns in adult hair follicle populations reveal macro-environmental regulation of stem cell activity. Int J Dev Biol. 2009;53(5-6):857-68.
52.Susan Elmore. Apoptosis: A Review of Programmed Cell Death. Toxicol Pathol. 2007; 35(4): 495-516.
53.Porter AG and Jänicke RU, Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 1999;6(2):99-104.

54.David R. McIlwain, et al., Caspase Functions in Cell Death and Disease. Cold Spring Harb Perspect Biol. 2013;5(4):a008656.
55.Kurose A, et al., Effects of Hydroxyurea and Aphidicolin on Phosphorylation of Ataxia Telangiectasia Mutated on Ser 1981 and Histone H2AX on Ser 139 in Relation to Cell Cycle Phase and Induction of Apoptosis. Cytometry A. 2006; 69A:212-221.
56.Rogakou EP, et al., DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem. 1998;273:5858-68.
57.Julien Vignard, et al., Ionizing-radiation induced DNA double-strand breaks: A direct and indirect lighting up. Radiother Oncol. 2013;108(3):362-9.
58.Nowak JA. and Fuchs E., Isolation and Culture of Epithelial Stem Cells. Methods Mol Biol. 2009;482:215-32.
59.Chiung-Ying Chang, et al., NFIB is a governor of epithelial–melanocyte stem cell behaviour in a shared niche. Nature. 2013; 495(7439): 98–102.
60.Yeon Sook Choi, et al., Distinct functions for Wnt/β-catenin in hair follicle stem cell proliferation and survival and interfollicular epidermal homeostasis. Cell Stem Cell. 2013;13(6):720-733.
61.Naoki Oshimori and Elaine Fuchs., Paracrine TGF-β Signaling Counterbalances BMP-Mediated Repression in Hair Follicle Stem Cell Activation., Cell Stem Cell.2012;10:63-75
62.VanDussen KL, et al., Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells. Development. 2012;139(3):488-97.
63.Grotek B, et al., Notch signaling coordinates cellular proliferation with differentiation during zebrafish fin regeneration. Development. 2013;140(7):1412-23.
64.Sennett R. and Rendl M., Mesenchymal–epithelial interactions during hair follicle morphogenesis andcycling. Semin Cell Dev Biol. 2012;23(8):917-27.
65.Paladini RD, et al., Modulation of Hair Growth with Small Molecule Agonists of the Hedgehog Signaling Pathway. J Invest Dermatol. 2005;125(4):638-46.
66.G. Lindner, et al., Analysis of apoptosis during hair follicle regression (catagen). Am J Pathol. 1997;151(6):1601-1617.
67.Lasorella A, et al., The ID proteins: master regulators of cancer stem cells and tumour aggressiveness. Nat Rev Cancer. 2014;14(2):77-91.
68.Niola F, et al., Id proteins synchronize stemness and anchorage to the niche of neural stem cells. Nat Cell Biol. 2012;14(5):477-87
69.Peters F, et al., Ceramide Synthase 4 Regulates Stem Cell Homeostasis and Hair Follicle Cycling. J Invest Dermatol. 2015;135(6):1501-9.
70.Lai EC, Notch signaling: control of cell communication and cell fate. Development. 2004;131(5):965-73.
71.Powell BC, et al., The Notch signalling pathway in hair growth. Mechanisms of Development. 1998;78(1-2):189-92.
72.Langlands K, et al., Differential interactions of Id proteins with basic-helix-loop-helix transcription factors. J Biol Chem. 1997;272(32):19785-93.
73.Tomokatsu Ikawa, et al., E proteins and Notch signaling cooperate to promote T cell lineage specifi cation and commitment. J Exp Med. 2006;203(5):1329-1342.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top