跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2025/01/26 03:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴學仕
研究生(外文):Syue-Shih Lai
論文名稱:氧化透明質酸/己二酸二醯肼水膠作為卡鉑藥物載體以腫瘤內給藥的方式結合放射線治療小鼠神經膠質瘤之研究
論文名稱(外文):The study of Irradiation and Intratumoral Injection with Oxidized Hyaluronic Acid-based Hydrogel Complexed Carboplatin for Mice Glioma
指導教授:林峯輝
口試日期:2017-06-16
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:63
中文關鍵詞:透明質酸卡鉑神經膠質瘤腫瘤處給藥放射線治療
外文關鍵詞:Hyaluronic acidCarboplatinGliomaIntratumoral injectonRadiotherapy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:203
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
高度惡性神經膠質瘤是最常見侵略性高的原發性腦腫瘤,根據統計全球平均十萬人中有3到5名患者,即便接受各種治療,患者癒後存活率也無太大的改善,現今治療腦種瘤方式以外科手術切除為主,然而其神經膠質瘤的向外浸潤的特性,造成術後極高的復發風險。因此術後多會以輔助性化療抑制腦中殘留的腫瘤。然而經由口服或注射進入人體的藥物遇到最大的問題在於腦中有血腦屏障 ( blood brain barrier, BBB ) 的結構大幅限制藥物由血液循環滲透到腦組織,經過循環代謝難以維持以有效的藥物濃度,因此發展有別於傳統的給藥方式。近年來,利用生物可分解的生醫材料攜帶藥物,直接於手術後進行顱內給藥是重要的研究方向,如臨床上的 Gliadel® Wafer,該藥物載體將直接在腦中進行藥物控制釋放,使目標區域周邊能維持有效藥物濃度並長期存在,增加藥物的治療效果。
本研究,使用氧化透明質酸水膠(Oxidized hyaluronic acid-based hydrogel)做親水性藥物卡鉑(Carboplatin)的藥物載體結合放射線治療神經膠質瘤,探討釋放載卡鉑藥物過程中結合放射線治療神經膠質瘤,改善臨床產品遇到的問題提供新的選擇治療方式,提高存活率。
研究結果顯示,經過改質後的氧化透明質酸與己二酸二醯肼形成水膠,並從( fourier transform infrared spectroscopy, FTIR ) 光譜圖分析其官能基的變化,從 ( electronic data systems, EDS ) 元素分析中也可以得知藥物是存在於水膠當中,在流變儀分析中利用溫度的控制延長其成膠時間,在藥物的釋放中與治療的時間規劃符合,經由 IC50 確認給予藥物的濃度 2 mg/ml,其中在藥物釋放的過程中搭配劑量 10 Gy 的放射線治療,動物組別分為為治療組、水膠組、卡鉑組、卡鉑水膠組、放射組、卡鉑放射組、卡鉑水膠放射組,其中以卡鉑放射組、卡鉑水膠放射組具有治療的效果並將存活率提高至百分之五十。
綜合所述的實驗結果,比較了各組不同治療的方法,最後比較了卡鉑放射組與卡鉑水膠放射這兩種方法,卡鉑水膠簡化對小鼠神經膠質瘤的治療且同時保有放射協同效應,提供了術後注射後照放射的臨床應用。
High grade glioma is the most common aggressive type of brain tumors. According to statistics, 3 ~ 5 cases occur per 100,000 population per year. Even if the patients receive a variety of treatments, their survival rate is relatively low. The main reason is that glioma has diffuse infiltration properties that grow outwardly into normal brain tissue leading to a higher recurrence of the prognosis; hence, the objective of this study is to offer a way that may effectively inhibite tumor growing and prolong survival.
In the study, oxidized hyaluronic acid hydrogel as carboplatin carrier with radiotherapy are used to ttreat for mice with glioma, to evaluate the efficacy of the other animal experiments, and to improve Gliadel® Wafer problems by providing new options for treatment.
The results show that the modified oxidized hyaluronic acid and adipic acid dihydrazide form hydrogel, and its functional group change is evident through the application of FTIR. In addition, it was found carboplatin exsisted in the hydrogel by the EDS element analysis. In the rheometer analysis, we could utilize temperature to control gelling time. Moreover, the release profile and treatment schedule that the drug release with radiation therapy are consistent. In the treatment on mice with glioma, the survival rate increased to 50 percent.
In conclusion, comparing with carboplatin and hydrogel carboplatin simplified the drug delivery for mice gliomas and remained the synergic effect with radiotherapy, which provides clinical application of intraoperative injection followed by radiotherapy.
致謝 i
中文摘要 ii
圖目錄 vii
表目錄 ix
第一章 前言 1
1.1 神經膠質瘤 1
1.2 神經膠質瘤的現今治療 3
1.2.1 手術治療 3
1.2.3 化學藥物治療 4
1.3 血腦屏障 ( blood-brain-barrier, BBB ) 5
1.4 局部藥物釋放 6
1.5 研究目的 9
第二章 理論基礎 10
2.1 卡鉑 10
2.2 高分子水膠做藥物載體 11
2.2.1 溶劑交換 11
2.2.2 光聚合反應 11
2.2.3 離子鍵交聯 11
2.2.4 pH值成膠 11
2.2.5 溫度成膠 12
2.3 透明質酸(Hyaluronic acid, HA) 13
2.4 氧化透明質酸 ( Oxidized hyaluronic acid, Oxi-HA )……....………….…..14
2.5 水膠的流變特性 16
第三章 材料與方法 17
3.1 實驗儀器與藥品 17
3.2 實驗流程與方法 20
3.3 實驗流程圖 20
3.4 材料製備 21
3.4.1 氧化透明質酸製備 21
3.4.2 氧化透明質酸/己二酸二醯肼/卡鉑水膠製備 21
3.5 材料分析 22
3.5.1 傅立葉轉換紅外線分析 22
3.5.2 氧化程度 23
3.5.3 能量散射光譜儀 24
3.5.4 流變儀分析 25
3.5.5 材料降解 25
3.5.6 藥物釋放曲線 25
3.6 生物安全性測試 26
3.6.1 材料的細胞毒性分析 26
3.6.2 卡鉑之安全劑量 31
3.7 動物實驗 32
3.7.1 體內動物模式 32
3.7.2 生物冷光影像分析 34
第四章 結果與討論 35
4.1 材料分析 35
4.1.1 傅立葉轉換紅外線分析 35
4.1.2 TNBS assay 偵測氧化程度 37
4.1.3 EDS元素分析 38
4.1.4 流變性質 39
4.1.5 材料降解 40
4.1.6 藥物釋放 41
4.2 生物相容性 42
4.2.1 WST-1 assy 42
4.2.2 LDH assay 43
4.2.3 Live & Dead staining 44
4.2.4 半抑制濃度 ( half maximal inhibitory concentration, IC50 ) 46
4.3 動物實驗 47
4.3.1 體重分析 47
4.3.2 腫瘤體積分析 48
4.3.3 冷光分析 49
4.3.4 存活分析 52
4.3.5 組織切片分析 53
4.3.6 血液分析 56
第五章 結論 57
第六章 參考文獻 58
1.吳國海等人,腦瘤之診斷與治療共識,國家衛生研究院 (NHRI),癌症研究組,台灣癌症臨床研究合作組織(TCOG),2004.75:p.29-31.
2.Laperriere, N., et al., Radiotherapy for newly diagnosed malignant glioma in adults: a systematic review, Radiother Oncol., 2002. 64(3): p. 259-73.
3.Dietz, R., et al., Malignant gliomas - glioblastoma multiforme and astrocytoma III-IV with extracranial metastases. Report of two cases, Acta Neurochir (Wien)., 1981.57(1-2):p. 99-105.
4.Fuller, G.N., The WHO Classification of Tumours of the Central Nervous System 4th edition,Arch Pathol Lab Med., 2008. 132(6): p. 906.
5.Wen, P.Y. and S. Kesari, Malignant gliomas in adults, N Engl J Med., 2008. 359(5): p. 492-507.
6.Rulseh, A.M., et al., Long-term survival of patients suffering from glioblastoma multiforme treated with tumor-treating fields, World J Surg Oncol., 2012.(10): p. 220.
7.Huse, J.T., et al. Targeting brain cancer: advances in the molecular pathology of malignant glioma and medulloblastoma, Nat Rev Cancer., 2010. 10(5): p. 319-31.
8.Louis, D.N., et al., The 2007 WHO classification of tumours of the central nervous system,Acta Neuropathol., 2007. 114(2): p. 97-109.
9.Ostrom, Q.T., et al., CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2007-2011,Neuro Oncol., 2014. 16(4): p. iv1-iv63.
10.C. Bastiancich, P. Danhier, V. Préat , F. Danhier,Anticancer drug-loaded hydrogels as drug delivery systems for the local treatment of glioblastoma, J. Control. Release.,2016.243(10): p29-42.
11.Harald Sontheimer, Diseases of the Nervous System, 2015, p.259-288.
12.R. Stupp, M., Pentheroudakis,High-grade glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up, Ann Oncol., 2014.25(3): p.iii93–ii101.
13.P.D. Delgado-Lopez, E.M., et al.,Survival in glioblastoma: a review on the impact of treatment modalities,Clin. Transl. Oncol.,2016.18(11):p.1062-1071.
14.M. Jansen, S., et al. ,Molecular pathology in adult neuro-oncology: an update on diagnostic, prognostic and predictive markers,Lancet Neurol., 2010.9(7): p.717-726.
15.K.L. Chaichana., et al.,Delivery of local therapeutics to the brain: working toward advancing treatment for malignant gliomas,Ther. Deliv., 2015.6(3):p.353-369.
16.Kroll, R.A., et al., Outwitting the blood-brain barrier for therapeutic purposes: osmotic opening and other means, Neurosurgery., 1998.42(5): p.1083-99.
17.Abbott, N.J., Astrocyte-endothelial interactions and blood-brain barrier permeability, J Anat., 2002.200(6): p.629-38.
18.Abbott, N.J.,et al., Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci., 2006.7(1): p.41-53.
19.Ballabh, P.,et al., The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis., 2004. 16(1): p.1-13.
20.Xie, F., et al., Effects of transcranial ultrasound and intravenous microbubbles on blood brain barrier permeability in a large animal model,Ultrasound Med Biol., 2008. 34(12): p.2028-34.
21.M. Singh., et al., Injectable small molecule hydrogel as a potential nanocarrier for localized and sustained in vivo delivery of doxorubicin,Nanoscale., 2014.6 :p. 12849-12855.
22.S.A. Grossman., et al.,Current management of glioblastoma multiforme,Semin. Oncol., 2004.31(5), p. 635-644.
23.F.B. Furnari., et al.,Malignant astrocytic glioma: genetics, biology, and paths to treatment,Genes Dev., 2007.21(21), p. 2683-2710.
24.M. Westphal., et al.,A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma, Neuro Oncol.,2003.5(2):p.79-88.
25.B.K. Hendricks., et al.,Novel delivery methods bypassing the blood-brain and blood-tumor barriers,Neurosurg. Focus., 2015.38(3), Article E10.
26.M.L. Brady, et al.,The relation between catheter occlusion and backflow during intraparenchymal cerebral infusions,Stereotact Funct. Neurosurg., 2015.93(2):p. 102-109.
27.J.B. Wolinsky., et al., Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric films, rods, and wafers,J. Control. Release., 2012.159(1):p.14-26.
28.Nagpal, S.,et al., The role of BCNU polymer wafers (Gliadel) in the treatment of malignant glioma, Neurosurg Clin N Am., 2012. 23(2): p.289-95.
29.Westphal, M., et al., Gliadel wafer in initial surgery for malignant glioma: long-term follow-up of a multicenter controlled trial. Acta Neurochir (Wien)., 2006. 148(3): p. 269-75.
30.Attenello, F.J., et al., Use of Gliadel (BCNU) wafer in the surgical treatment of malignant glioma: a 10-year institutional experience. Ann Surg Oncol., 2008. 15(10): p. 2887-93.
31.Panigrahi, M., P.K. Das, and P.M. Parikh, Brain tumor and Gliadel wafer treatment. Indian Journal of Cancer., 2011. 48(1): p. 11-17.
32.Menei, P., et al., Biodegradable Carmustine Wafers (Gliadel) Alone or in Combination with Chemoradiotherapy: The French Experience. Annals of Surgical Oncology., 2010.17(7): p.1740-1746.
33.D.M. Patel, N. Agarwal, K.L. Tomei, D.R. Hansberry, I.M. Goldstein,Optimal timing of whole-brain radiation therapy following craniotomy for cerebral malignancies,World Neurosurg., 2015.84(2): p.412-419.
34.Rosenberg B,Camp LV.Krigas T. Inhibition of Cell Division in Escherichiacoli by Electrolysis Products form a Platinum Electrode , Nature.,1965.205:p.698-699.
35.Gwo Yaw Ho, Natasha Woodward, Jermaine I.G. Coward, Cisplatin versus carboplatin: comparative review of therapeutic management in solid malignancies,Critical Reviews in Oncology/Hematology., 2016.102:p.37–46.
36.Graziele Fonseca de Sousa, Samarina Rodrigues Wlodarczyk, Gisele Monteiro*, Carboplatin: molecular mechanisms of action associated with chemoresistance, Braz. J. Pharm. Sci., 2014,50,2175-9790.
37.N.A. Peppas, P. Bures, W. Leobandung, H. Ichikawa,Hydrogels in pharmaceutical formulations,Eur. J. Pharm. Biopharm., 2000.50(1):p.27-46.
38.N.A. Peppas, R. Langer,New challenges in biomaterials , Science.,1994.263(5154):p.1715-1720.
39.A.S. Hoffman, B.D. Ratner.,Synthetic hydrogels for biomedical applications,A.S. Series (Ed.), Hydrogels for Medical and Related Applications, American Chemical Society., 1976.31:p.1-36.
40.C.C. Lin, A.T. Metters,Hydrogels in controlled release formulations: network design and mathematical modeling,Adv. Drug Deliv. Rev., 2006.58(12-13): p.1379-1408.
41.S.R. Van Tomme, G. Storm, W.E. Hennink,In situ gelling hydrogels for pharmaceutical and biomedical applications,Int. J. Pharm., 2008.355(1-2): p. 1-18.
42.Bai S, Nguyen TL, Mulvaney P, Wang D.. Using hydrogels to accommodate hydrophobic nanoparticles in aqueous media via solvent exchange, Adv Mater.,2010.22(30):p.3247-50.
43.B. Baroli, et al.,Photopolymerization of biomaterials: issues and potentialities in drug delivery, tissue engineering, and cell encapsulation applications,J. Chem. Technol. Biotechnol., 2006.81(4):p. 491-499.
44.K.T. Nguyen, J.L. West,Photopolymerizable hydrogels for tissue engineering applications,Biomaterials., 2002.23(22): p.4307-4314.
45.Shengzhong Zhou,Alexander Bismarck,Joachim H. G. Steink, Ion-responsive alginate based macroporous injectable hydrogel scaffolds prepared by emulsion templating, Journal of Materials Chemistry B.,2013.1(37):p.4703-4866.
46.Andreas Richter, Georgi Paschew,Stephan Klatt, Jens Lienig, Karl-Friedrich Arndt, and Hans-Jürgen P. Adler,,Review on Hydrogel-based pH Sensors and Microsensors,Sensors (Basel)., 2008.8(1):p.561–581.
47.Junqiu Liu , Yanzhen Yin,Temperature Responsive Hydrogels: Construction and Applications, Polymer Sceiences, 2015.1(13):p.2471-9935.
48.Levangie CC ,Norkin PK, Joint structure and function : a comprehensive analysis 3rd, FA Davis., 2001.55(358):p.49-83.
49.Meyer, K. Palmer, J.W., The polysaccharide of the vitreous humor, J Bio. Chem, 1934.107:p.629-634.
50.Grigorij Kogan, et al., Hyaluronic Acid: Its Function and Degradation in in vivo Systems, Studies in Natural Products Chemistry, 2008(34):p.789-882.
51.K.S. Girish, K. Kemparaju,The magic glue of hyaluronan and its eraser hyaluronidase: a biological overview,Life Sci., 2007.80(21):p.1921-1943.
52.I. Feigin,The mucopolysaccharides of the ground substance of the human brain,J Neuropathol Exp Neurol., 1980.39(1):p.1-12.
53.Dosio F, Arpicco S, Stella B, Fattal E.,Hyaluronic acid for anticancer drug and nucleic acid delivery, Adv Drug Deliv Rev., 2016.97:p.204-236.
54.M.J. Jedrzejas, R. Stern,Structures of vertebrate hyaluronidases and their unique enzymatic mechanism of hydrolysis,Proteins., 2005.61(2): p.227-238.
55.Z. Lurie, T. Offer, A. Russo, A. Samuni, D. Nitzan,Do stable notroxide radicals catalyze or inhibit the degradation of hyaluronic acid?,Free Radic. Biol. Med., 2003.35(2):p.169-178.
56.G. Leone, M. Consumi, S. Lamponi, A. Magnani,New hyaluronan derivative with prolonged half-life for ophthalmogical formulation,Carbohydr. Polym., 2012.88(3): p.799-808.
57.P. Ghosh, D. Guidolin,Potential mechanism of action of intra-articular hyaluronan therapy in osteoarthritis: are the effects molecular weights dependent?,Semin. Arthritis Rheum., 2002.32(1):p.10-37.
58.R. Stern, A. Asari, K. Sugaraha,Hyalorynan fragments: an information-rich system,Eur. J. Cell Biol., 2006.85(8): p.699-715.
59.C.E. Schante, G. Zuber, C. Herlin, T.F. Vandamme,Improvement of hyaluronic acid enzymatic stability by the grafting of amino-acids,Carbohydr. Polym., 2012.87(3) :p.2211-2216.
60.Carole E. Schanté, Guy Zubera, Corinne Herlinb, Thierry F. Vandamme, “Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications,” Carbohydrate Polymers., 2011.85(3): p.469-489.
61.Wang DA, Varghese S, Sharma B, Strehin I, Fermanian S, Gorham J, Multifunctional chondroitin sulphate for cartilage tissue–biomaterial integration, Nat Mater, 2007.6(5) p.385-392.
62.Chung-Hung Cheng, In vitro Evaluation of Chondrocyte on Dialdehyde- Starch-Crosslinked Gelatin Hydrogel, master, National Taiwan University, Taipei, 2008.
63.Cho ML, Heo YJ, Park MK, Oh HJ, Park JS, Woo YJ, Ju JH, Park SH, Kim HY, Min JK, “Grape seed proanthocyanidin extract (GSPE) attenuates collagen-induced arthritis,” Immunol Lett., 2009.124(2):p.102-110.
64.Bulpitt P, Aeschlimann D, “New strategy for chemical modification of hyaluronic acid: preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels,” J Biomed Mater Res., 1999.47(2):p.152-169.
65.Kuen Yong Lee , Kamal H. Bouhadir, and David J. Mooney, “Degradation Behavior of Covalently Cross-Linked Poly(aldehyde guluronate) Hydrogels,” Macromolecules., 2000.33(1): p.97-101.
66.E.A. Balazs, J.L. Denlinger,Visco suplimentation: a new concept in the treatment of osteoarthritis, J. Rheumatol., 1993.39:p.3-9.
67.S. Mortimer,A. J. Ryan, and J. L. Stanford,Rheological Behavior and Gel-Point Determination for a Model Lewis Acid-Initiated Chain Growth Epoxy Resin , Macromolecules., 2001.34(9):p2973-2980.
68.Yu-Chun Chen , Wen-Yu Su, Shu-Hua Yang , Amit Gefen , Feng-Huei Lin.,In situ forming hydrogels composed of oxidized high molecular weight hyaluronic acid and gelatin for nucleus pulposus regeneration, Acta Biomaterialia., 2013.9:p.5181–5193.
69.Wen-Yu Su, Yu-Chun Chen, Feng-Huei Lin , Injectable oxidized hyaluronic acid/adipic acid dihydrazide hydrogel for nucleus pulposus regeneration, Acta Biomaterialia., 2010.6: p.3044–3055.
70.鍾易龍, 己二酸二醯肼交聯氧化透明質酸水膠結合明膠微粒應用於軟骨組織工程之研究 ,國立臺北科技大學,2014,6月
71.W. Shen, J. Luan, L. Cao, J. Sun, L. Yu, J. Ding, Thermogelling polymer-platinum(IV) conjugates for long-term delivery of cisplatin, Biomacromolecules., 2015.16(1):p. 105-15.
72.E.J. Cho, B. Sun, K.O. Doh, E.M. Wilson, S. Torregrosa-Allen, B.D. Elzey, Y. Yeo, Intraperitoneal delivery of platinum with in-situ crosslinkable hyaluronic acid gel for local therapy of ovarian cancer, Biomaterials., 2015.37:p. 312-9.
73.Jing Li , Laizhong Chen , Lupei Du and Minyong Li ,Cage the firefly luciferin! – a strategy for developing bioluminescent probes, Chem. Soc. Rev., 2013.42:p.662-676.
74.Ed Wilson Santos,Dalila Cunha de Oliveira,Araceli Hastreiter, Hematological and biochemical reference values for C57BL/6, Swiss Webster and BALB/c mice,Braz. J. Vet. Res. Anim. Sci., 2016.53(2): p.138-145.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top