(18.210.12.229) 您好!臺灣時間:2021/03/03 17:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:熊彥傑
研究生(外文):Yan-Jye Shyong
論文名稱:多孔性的氫氧基磷灰石作為憂鬱症長效治療藥物載體和刺激外吐小體釋放之研究
論文名稱(外文):Mesoporous Hydroxyapatite as Drug Carrier for Long-acting Antidepression Treatment and Stimulation of Exosome
指導教授:林峯輝
指導教授(外文):Feng-Huei Lin
口試委員:劉華昌王盈錦姚俊旭張至宏張淑真
口試委員(外文):Hwa-Chang LiuYing-Jiin WangChun-Hsu YaoChih-Hung ChangShwu-Jen Chang
口試日期:2017-04-27
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:131
中文關鍵詞:氫氧基磷灰石奥氮平藥物載體血清素巨噬細胞行為表現記憶與學習能力外吐小體磷酸鈣粒子
外文關鍵詞:HydroxyapatiteOlanzapineDrug carrierSerotoninMacrophageLocomotor activitiesLearning and memory abilitiesExosomeCalcium phosphate particles
相關次數:
  • 被引用被引用:0
  • 點閱點閱:172
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用多孔性的氫氧基磷灰石作為憂鬱症藥物的載體,並利用巨噬細胞的細胞特性來達成藥物釋放。經由一針劑的肌肉注射,本載體可以達到兩週以上的穩定藥物釋放。本研究利用共沉澱法製造出有適當大小的多孔性氫氧基磷灰石(mesoHAP);再經由一系列的疏水性表面改質,使的抗憂鬱症藥物奥氮平(OLZ)透過物力吸附進入材料的多孔洞表面。由於具有疏水特性,奥氮平在親水的生物體內並不會從載體內釋放出來。但當材料被巨噬細胞吞噬後,會在溶酶體(lysosome)內被分解並釋放大量的鈣磷離子,使滲透壓上升,並最終撐破溶酶體,同時使奥氮平釋放到細胞質中。此時從材料釋放出來的鈣離子也會釋放到細胞之中,提升細胞內的鈣離子濃度,並啟動細胞內的外吞作用(exocytosis),把奥氮平釋放到細胞外間質中,最終擴散到血液循環內。
在動物實驗中,我們從三個不同的角度來評估多孔性的氫氧基磷灰石-奥氮平的療效;動物行為,生理激素,跟記憶力和學習能力。憂鬱症老鼠在經由孔性的氫氧基磷灰石-奥氮平的治療後,可以長時間的提升曠場試驗和強迫游泳試驗的行為數值。血清素(serotonin)是大腦內管理情緒的激素,經由孔性的氫氧基磷灰石-奥氮平的治療後,在憂鬱症老鼠大腦內也有明顯的提升。同時經由功能性磁振造影的觀察,憂鬱症老鼠腦內的海馬迴(hippocampus)的活性也有明顯的提升。多孔性氫氧基磷灰石-奥氮平也可以提升憂鬱症老鼠在莫里斯水迷宮實驗中的記憶和學習能力。本研究提供了一個可靠的藥物釋放機制,可以經由一個一針劑的肌肉注射達到長時間的憂鬱症治療效果,希望可以解決在憂鬱症治療上,病人因經常性的忘記服藥導致療程中斷的問題。
在第二部分的研究中,我們更進一步利用含鈣離子的材料來刺激新一代的藥物載體外吐小體(exosome)的釋放。外吐小體是一種具有潛力的藥物載體,因為近期研究發現他是生物體內細胞與細胞間溝通的工具。但是在臨床的使用上卻碰到了一個問題,就是外吐小體的細胞產量太低無法達到使用上的要求。本研究發現利用磷酸鈣(calcium phosphate)材料可以刺激小鼠巨噬細胞(RAW264.7)跟人類的單核細胞(THP-1)的外吐小體產量。磷酸鈣粒子被細胞吞噬後會在溶酶體內被分解並釋放大量的鈣磷離子,使滲透壓上升,撐破溶酶體,並提高細胞質內的鈣離子濃度。同時我們發現,這些吞噬磷酸鈣粒子的細胞所釋放出的外吐小體內的鈣離子濃度並沒有顯著的提升,證明外吐小體並不會遭到磷酸鈣粒子汙染。本研究希望可以提供一個利用磷酸鈣粒子來有效提升細胞外吐小體產量的方法
An antidepressant carrier was designed to maintain over two weeks of constant medication release. The carrier was injected into muscle where cellular activity was involved to achieve the goal of constant release. Meso-porous hydroxyapatite (mesoHAP) was synthesized into an adequate size by co-precipitation method; and then gone through a series of hydrophobic surface modification for olanzapine (OLZ) loading by physical absorption to produce mesoHAP-OLZ. Owing to its hydrophobic nature, OLZ is not effectively released from mesoHAP-OLZ in aqueous environment. However, once engulfed by macrophage, lysosome/endosome hybrid was ruptured due to osmotic pressure alteration, resulting in the release of OLZ into cytoplasma. OLZ was then exocytosed to the extracellular space due to high calcium ion (Ca2+) concentration, and finally circulated in the blood.
In the in vivo study, the efficiency of the treatment was evaluated from 3 perspectives; locomotor activities, biomarkers, and learning and memory ability. MesoHAP-OLZ can increase the locomotor activity in rats with induced depression determined by open field test (OFT) and forced swim test (FST). Serotonin (5-HT), one of the most important biomarker in depression can also be increased by mesoHAP-OLZ, leading to increased hippocampus activity as measured by functional magnetic resonance imaging (fMRI). MesoHAP-OLZ can also improve learning and memory ability in rats with induced depression using Morris water maze (MWM) test. Our findings provide a useful treatment strategy to achieve long-term drug release with a single intramuscular (IM) injection and solve the non-compliant medication intake that often occurred in antidepressant therapy.
In the second part of study, we further used Ca2+-containing material to stimulate the release of exosome, a possible next generation drug carrier, exosome. Exosomes are attractive as potential carriers for drug delivery because of their natural function of transferring biomolecules among cells without eliciting immune responses. However, an obstacle to the application of exosomes for drug delivery is the difficulty in collecting sufficient numbers of these vesicles. We found that treatment with calcium phosphate (CaP) particles increased the number of exosomes secreted from macrophage-like RAW264.7 cells and monocyte-like THP-1 cells. CaP particles were easily internalized into cells and dissolved in acidic late-endosomes or lysosomes, resulting in the rupture of their membranes followed by the release of Ca2+ into cytosol. However, the Ca2+ concentrations in exosomes secreted from CaP particle-treated cells were similar to that in exosomes from untreated control cells, implying that exosomes secreted from cells treated with CaP particles are not contaminated by the Ca2+ released from CaP particles. This study highlights the potential of a new technique for the efficient production of exosomes using CaP particles.
Table of Contents

口試委員會審定書 i
致謝 ii
中文摘要 iv
Abstract vi
Table of Contents ix
List of Charts xiii
List of Tables xvii
List of Abbreviations xviii
Chapter 1 Introduction 1
1.1 Introduction of mesoHAP-OLZ as antidepressant drug carrier 1
1.1.1 Depression 1
1.1.2 Antidepressants Olanzapine 3
1.1.3 Non-adherence in antidepressant treatment 5
1.1.4 The purpose of study 6
1.2 Introduction of using CaP to stimulate exosome secretion from phagocytes 8
1.2.1 The next generation drug carrier exosome 8
1.2.2 The low production rate of exosome during clinical trial 9
1.2.3 The purpose of study 10
Chapter 2 Theoretical Basis 12
2.1 Hydroxyapatite as drug carrier 12
2.2 The principle of intracellular delivery of mesoHAP-OLZ 13
2.3 The animal model of depression 15
2.3.1 Behavioral despair-based 16
2.3.2 Reward-based 19
2.3.3 Genetically engineered mice 19
2.3.4 Chemically induce based 20
2.4 MesoHAP-OLZ medication and evaluation in rats 21
2.5 Exosome as the next generation drug carrier 25
2.6 Increase intracellular calcium concentration to stimulate exosome release 29
Chapter 3 Materials and methods 31
3.1 Reagents, drugs, cells, and animals 32
3.2 Materials synthesized and characterization of mesoHAP-OLZ 33
3.2.1 Synthesis of mesoporous HAP (mesoHAP) 33
3.2.2 Surface modification of mesoHAP to hydrophobicity and OLZ loading (mesoHAP-OLZ) 34
3.2.3 Materials characterization and analysis 34
3.2.4 Efficiency of OLZ loading 36
3.3 In vitro study of mesoHAP-OLZ 36
3.3.1 The evaluation of cell viability and cytotoxicity 36
3.3.2 In vitro OLZ release profile 38
3.3.3 Phagocytosis of particles uptaken by RAW-264.7 cells 39
3.4 In vivo study of mesoHAP-OLZ 39
3.4.1 In vivo OLZ release study 39
3.4.2 Animal model of rats with induced depression 40
3.4.3 Locomotor activity of rats with induced depression with and without mesoHAP-OLZ administration. 41
3.4.4 Forced swim test of rats with induced depression 42
3.4.5 5-HT determination in the rat brain 43
3.4.6 Functional imaging of rats with induced depression 44
3.4.7 Determination of learning and memory ability of rats with induced depression by MWM 44
3.4.8 Sub-chronic and chronic toxicity determination 46
3.4.9 Statistical analysis 47
3.5 Stimulation of exosome 47
3.5.1 Synthesis of CaP particles 47
3.5.2 Characterization of CaP particles: 48
3.5.3 Cytotoxicity assay 49
3.5.4 Cellular uptake and localization of CaP particles 49
3.5.5 Analysis of exosomes 50
3.5.6Assay of calcium concentration 52
Chapter 4 Results 53
4.1 Characterization of the materials 53
4.1.1 OLZ loading 59
4.2 In vitro and in vivo studies of OLZ drug release 61
4.2.1 Cell viability and cytotoxicity 61
4.2.2 Cellular uptake of mesoHAP-OLZ and OLZ releasing profile 62
4.2.3 OLZ release study in vivo 66
4.3 In vivo study of antideprssion treatment in depression induced rats 67
4.3.1 Locomotor activity of rats with induced depression 67
4.3.2 Forced swim test of rats with induced depression 70
4.3.3 Determination of 5-HT in the brain 71
4.3.4 Determination of 5-HT level in the rat hippocampus by anti-serotonin antibody staining. 72
4.3.5 Determination of hippocampal activity by fMRI 73
4.3.6 Learning and memory ability by Morris water maze 75
4.3.7 Determination of sub-chronic and chronic toxicity 78
4.4 The stimulation of exosome using CaP 82
4.4.1 Characterization of CaP particles 82
4.4.2 Uptake and intracellular behavior of CaP particles 83
4.4.3 CaP particles are not cytotoxic 85
4.4.4 CaP particles stimulate exosome secretion 86
4.4.5 Exosomes secreted by cells treated with CaP particles do not contain additional calcium 89
Chapter 5 Discussion 91
5.1 The preparation and characterization of mesoHAP-OLZ 91
5.1.1 Factors affect mesoHAP particle synthesis 91
5.1.2 Factors affect mesoHAP particle size and morphology 93
5.1.3 Hydrophobic modification of mesoHAP particles and OLZ loading 94
5.2 In vitro and in vivo OLZ drug release study 95
5.2.1 Factors affect OLZ release from mesoHAP-OLZ particles 95
5.2.2 MesoHAP-OLZ in vivo delivery and OLZ release 97
5.3 MesoHAP-OLZ antidepression treatment in depression induced rats 100
5.3.1 Recovery of activity in rats with induced depression 100
5.3.2 Biomarker measurement in the rat brain 102
5.3.3 Learning and memory ability of rats 106
5.3.4 Sub-chronic and chronic toxicity during long-term antidepressant treatment 107
5.4 CaP increase the release of exosome from cells 109
Chapter 6 Conclusion 113
References 115
Curriculum Vitae 127
Selected Publications and Conference 130
[1] M. Fava, K.S. Kendler, Major depressive disorder, Neuron 28(2) (2000) 335-341.
[2] S.S. AS, H. MA, Risk factors for depression; findings of a descriptive study conducted in Penang, Malaysia, Journal of Clinical and Diagnostic Research 3 (2009) 1859-1866.
[3] B.L. Hankin, R. Mermelstein, L. Roesch, Sex differences in adolescent depression: Stress exposure and reactivity models, Child Dev. 78(1) (2007) 279-295.
[4] J.D. Bremner, M. Narayan, E.R. Anderson, L.H. Staib, H.L. Miller, D.S. Charney, Hippocampal volume reduction in major depression, Am. J. Psychiatry 157(1) (2000) 115-118.
[5] M.J. Owens, C.B. Nemeroff, Role of serotonin in the pathophysiology of depression: focus on the serotonin transporter, Clin. Chem. 40(2) (1994) 288-295.
[6] G.A. Fava, E. Tossani, Prodromal stage of major depression, Early Intervention in Psychiatry 1(1) (2007) 9-18.
[7] M. Peet, Induction of mania with selective serotonin re-uptake inhibitors and tricyclic antidepressants, The British Journal of Psychiatry 164(4) (1994) 549-550.
[8] S. McConnell, F.N. Jacka, L.J. Williams, S. Dodd, M. Berk, The relationship between depression and cardiovascular disease, Int. J. Psychiatry Clin. Pract. 9(3) (2005) 157-167.
[9] F.P. Bymaster, D.O. Calligaro, J.F. Falcone, R.D. Marsh, N.A. Moore, N.C. Tye, P. Seeman, D.T. Wong, Radioreceptor binding profile of the atypical antipsychotic olanzapine, Neuropsychopharmacology 14(2) (1996) 87-96.
[10] C. Hiemke, A. Peled, M. Jabarin, J. Hadjez, H. Weigmann, S. HÄrtter, I. Modai, M. Ritsner, H. Silver, Fluvoxamine augmentation of olanzapine in chronic schizophrenia: pharmacokinetic interactions and clinical effects, J. Clin. Psychopharmacol. 22(5) (2002) 502-506.
[11] B. Fulton, K.L. Goa, Olanzapine, Drugs 53(2) (1997) 281-298.
[12] C. De las Cuevas, W. Peñate, E.J. Sanz, Risk factors for non-adherence to antidepressant treatment in patients with mood disorders, Eur. J. Clin. Pharmacol. 70(1) (2014) 89-98.
[13] J.E. Gerber, B. Cawthon, Overdose and death with olanzapine: two case reports, The American journal of forensic medicine and pathology 21(3) (2000) 249-251.
[14] M. Morgan, L.P. Hackett, G.K. Isbister, Olanzapine overdose: a series of analytically confirmed cases, Int. Clin. Psychopharmacol. 22(3) (2007) 183-186.
[15] K. Fu, D.W. Pack, A.M. Klibanov, R. Langer, Visual evidence of acidic environment within degrading poly (lactic-co-glycolic acid)(PLGA) microspheres, Pharm. Res. 17(1) (2000) 100-106.
[16] R. van der Meel, M.H. Fens, P. Vader, W.W. van Solinge, O. Eniola-Adefeso, R.M. Schiffelers, Extracellular vesicles as drug delivery systems: lessons from the liposome field, J. Controlled Release 195 (2014) 72-85.
[17] A. Srivastava, J. Filant, K. M Moxley, A. Sood, S. McMeekin, R. Ramesh, Exosomes: a role for naturally occurring nanovesicles in cancer growth, diagnosis and treatment, Curr. Gene Ther. 15(2) (2015) 182-192.
[18] H. Valadi, K. Ekström, A. Bossios, M. Sjöstrand, J.J. Lee, J.O. Lötvall, Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells, Nat. Cell Biol. 9(6) (2007) 654-659.
[19] C. Raiborg, H. Stenmark, The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins, Nature 458(7237) (2009) 445-452.
[20] B.K. Thakur, H. Zhang, A. Becker, I. Matei, Y. Huang, B. Costa-Silva, Y. Zheng, A. Hoshino, H. Brazier, J. Xiang, Double-stranded DNA in exosomes: a novel biomarker in cancer detection, Cell Res. 24(6) (2014) 766-769.
[21] S.E. Andaloussi, I. Mäger, X.O. Breakefield, M.J. Wood, Extracellular vesicles: biology and emerging therapeutic opportunities, Nat. Rev. Drug Discov. 12(5) (2013) 347-357.
[22] A. Zomer, T. Vendrig, E.S. Hopmans, M. van Eijndhoven, J.M. Middeldorp, D.M. Pegtel, Exosomes: fit to deliver small RNA, Commun. Integr. Biol. 3(5) (2010) 447-450.
[23] C. Théry, L. Zitvogel, S. Amigorena, Exosomes: composition, biogenesis and function, Nat. Rev. Immunol. 2(8) (2002) 569-579.
[24] S.M. van Dommelen, P. Vader, S. Lakhal, S. Kooijmans, W.W. van Solinge, M.J. Wood, R.M. Schiffelers, Microvesicles and exosomes: opportunities for cell-derived membrane vesicles in drug delivery, J. Controlled Release 161(2) (2012) 635-644.
[25] S. Kooijmans, P. Vader, S.M. van Dommelen, W.W. van Solinge, R.M. Schiffelers, Exosome mimetics: a novel class of drug delivery systems, Int J Nanomedicine 7(1525) (2012) 1525-1541.
[26] G. Raposo, W. Stoorvogel, Extracellular vesicles: exosomes, microvesicles, and friends, J. Cell Biol. 200(4) (2013) 373-383.
[27] M. Colombo, G. Raposo, C. Théry, Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles, Annu. Rev. Cell. Dev. Biol. 30 (2014) 255-289.
[28] D. Sun, X. Zhuang, X. Xiang, Y. Liu, S. Zhang, C. Liu, S. Barnes, W. Grizzle, D. Miller, H.-G. Zhang, A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes, Mol. Ther. 18(9) (2010) 1606-1614.
[29] A.H. Alhasan, P.C. Patel, C.H.J. Choi, C.A. Mirkin, Exosome encased spherical nucleic acid gold nanoparticle conjugates as potent microRNA regulation agents, Small 10(1) (2014) 186-192.
[30] L. Alvarez-Erviti, Y. Seow, H. Yin, C. Betts, S. Lakhal, M.J. Wood, Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes, Nat. Biotechnol. 29(4) (2011) 341-345.
[31] A. Srivastava, A. Babu, J. Filant, K.M. Moxley, R. Ruskin, D. Dhanasekaran, A.K. Sood, S. McMeekin, R. Ramesh, Exploitation of exosomes as nanocarriers for gene-, chemo-, and immune-therapy of cancer, Journal of Biomedical Nanotechnology 12(6) (2016) 1159-1173.
[32] M.S. Kim, M.J. Haney, Y. Zhao, V. Mahajan, I. Deygen, N.L. Klyachko, E. Inskoe, A. Piroyan, M. Sokolsky, O. Okolie, Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells, Nanomed. Nanotechnol. Biol. Med. 12(3) (2016) 655-664.
[33] Y. Tian, S. Li, J. Song, T. Ji, M. Zhu, G.J. Anderson, J. Wei, G. Nie, A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy, Biomaterials 35(7) (2014) 2383-2390.
[34] L. Pascucci, V. Coccè, A. Bonomi, D. Ami, P. Ceccarelli, E. Ciusani, L. Viganò, A. Locatelli, F. Sisto, S.M. Doglia, Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery, J. Controlled Release 192 (2014) 262-270.
[35] E.V. Batrakova, M.S. Kim, Using exosomes, naturally-equipped nanocarriers, for drug delivery, J. Controlled Release 219 (2015) 396-405.
[36] T.S. Chen, F. Arslan, Y. Yin, S.S. Tan, R.C. Lai, A.B.H. Choo, J. Padmanabhan, C.N. Lee, D.P. de Kleijn, S.K. Lim, Enabling a robust scalable manufacturing process for therapeutic exosomes through oncogenic immortalization of human ESC-derived MSCs, J. Transl. Med. 9(1) (2011) 47.
[37] R.W.Y. Yeo, R.C. Lai, B. Zhang, S.S. Tan, Y. Yin, B.J. Teh, S.K. Lim, Mesenchymal stem cell: an efficient mass producer of exosomes for drug delivery, Adv. Drug Del. Rev. 65(3) (2013) 336-341.
[38] K.B. Johnsen, J.M. Gudbergsson, M.N. Skov, L. Pilgaard, T. Moos, M. Duroux, A comprehensive overview of exosomes as drug delivery vehicles—endogenous nanocarriers for targeted cancer therapy, Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 1846(1) (2014) 75-87.
[39] C. Théry, Exosomes: secreted vesicles and intercellular communications, F1000 Biol. Rep. 3(15) (2011) 130.
[40] B. Cohen, M. Panker, E. Zuckerman, M. Foox, M. Zilberman, Effect of calcium phosphate-based fillers on the structure and bonding strength of novel gelatin–alginate bioadhesives, J. Biomater. Appl. 28(9) (2014) 1366-1375.
[41] S. Sharma, A. Verma, B.V. Teja, G. Pandey, N. Mittapelly, R. Trivedi, P. Mishra, An insight into functionalized calcium based inorganic nanomaterials in biomedicine: trends and transitions, Colloids Surf. B. Biointerfaces 133 (2015) 120-139.
[42] J. Zhao, Y. Liu, W.-b. Sun, H. Zhang, Amorphous calcium phosphate and its application in dentistry, Chem. Cent. J. 5(1) (2011) 40.
[43] L. Wang, G.H. Nancollas, Calcium orthophosphates: crystallization and dissolution, Chem. Rev. 108(11) (2008) 4628-4669.
[44] F. Barrère, C.A. van Blitterswijk, K. de Groot, Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics, international Journal of Nanomedicine 1(3) (2006) 317-332.
[45] Y. Mizushima, T. Ikoma, J. Tanaka, K. Hoshi, T. Ishihara, Y. Ogawa, A. Ueno, Injectable porous hydroxyapatite microparticles as a new carrier for protein and lipophilic drugs, J. Controlled Release 110(2) (2006) 260-265.
[46] M. Itokazu, W. Yang, T. Aoki, A. Ohara, N. Kato, Synthesis of antibiotic-loaded interporous hydroxyapatite blocks by vacuum method and in vitro drug release testing, Biomaterials 19(7-9) (1998) 817-819.
[47] V.S. Komlev, S.M. Barinov, E.V. Koplik, A method to fabricate porous spherical hydroxyapatite granules intended for time-controlled drug release, Biomaterials 23(16) (2002) 3449-3454.
[48] H. Peng, D. Zhang, B. Sun, Y. Luo, S. Lv, J. Wang, J. Chen, Synthesis of protein/hydroxyapatite nano-composites by a high-gravity co-precipitation method, RSC Advances 6(15) (2016) 12414-12421.
[49] R.D. Bloebaum, G.A. Lundeen, K.N. Bachus, I. Ison, A.A. Hofmann, Dissolution of particulate hydroxyapatite in a macrophage organelle model, Journal of Biomedical Materials Research Part A 40(1) (1998) 104-114.
[50] K.Y. Win, S.-S. Feng, Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs, Biomaterials 26(15) (2005) 2713-2722.
[51] E.P. Berthiaume, C. Medina, J.A. Swanson, Molecular size-fractionation during endocytosis in macrophages, J. Cell Biol. 129(4) (1995) 989-998.
[52] G. Hasler, W.C. Drevets, H.K. Manji, D.S. Charney, Discovering endophenotypes for major depression, Neuropsychopharmacology 29(10) (2004) 1765.
[53] B. Petit-Demouliere, F. Chenu, M. Bourin, Forced swimming test in mice: a review of antidepressant activity, Psychopharmacology 177(3) (2005) 245-255.
[54] J.F. Cryan, C. Mombereau, A. Vassout, The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice, Neurosci. Biobehav. Rev. 29(4) (2005) 571-625.
[55] C.K. Nielsen, J. Arnt, C. Sánchez, Intracranial self-stimulation and sucrose intake differ as hedonic measures following chronic mild stress: interstrain and interindividual differences, Behav. Brain Res. 107(1) (2000) 21-33.
[56] N.L. Schramm, M.P. McDonald, L.E. Limbird, The α2A-adrenergic receptor plays a protective role in mouse behavioral models of depression and anxiety, J. Neurosci. 21(13) (2001) 4875-4882.
[57] S. Ridder, S. Chourbaji, R. Hellweg, A. Urani, C. Zacher, W. Schmid, M. Zink, H. Hörtnagl, H. Flor, F.A. Henn, Mice with genetically altered glucocorticoid receptor expression show altered sensitivity for stress-induced depressive reactions, J. Neurosci. 25(26) (2005) 6243-6250.
[58] A.M. Pliakas, R.R. Carlson, R.L. Neve, C. Konradi, E.J. Nestler, W.A. Carlezon, Altered responsiveness to cocaine and increased immobility in the forced swim test associated with elevated cAMP response element-binding protein expression in nucleus accumbens, J. Neurosci. 21(18) (2001) 7397-7403.
[59] M.F. O''Neil, N.A. Moore, Animal models of depression: are there any?, Hum. Psychopharmacol. Clin. Exp. 18(4) (2003) 239-254.
[60] D. Healy, M. Savage, Reserpine exhumed, Br. J. Psychiatry 172 (1998) 376-378.
[61] L.L. Skalisz, V. Beijamini, S.L. Joca, M.A. Vital, C. Da Cunha, R. Andreatini, Evaluation of the face validity of reserpine administration as an animal model of depression–Parkinson''s disease association, Prog. Neuro-Psychopharmacol. Biol. Psychiatry 26(5) (2002) 879-883.
[62] L. Antkiewicz-Michaluk, A. Wąsik, E. Możdżeń, I. Romańska, J. Michaluk, Antidepressant-like effect of tetrahydroisoquinoline amines in the animal model of depressive disorder induced by repeated administration of a low dose of reserpine: behavioral and neurochemical studies in the rat, Neurotox. Res. 26(1) (2014) 85-98.
[63] J.-P. Henry, Radioligands of the vesicular monoamine transporter and their use as markers of monoamine storage vesicles, Biochem. Pharmacol. 38(15) (1989) 2395-2404.
[64] L. Prut, C. Belzung, The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review, Eur. J. Pharmacol. 463(1) (2003) 3-33.
[65] Y. Shirayama, A.C.-H. Chen, S. Nakagawa, D.S. Russell, R.S. Duman, Brain-derived neurotrophic factor produces antidepressant effects in behavioral models of depression, J. Neurosci. 22(8) (2002) 3251-3261.
[66] V. Castagné, P. Moser, S. Roux, R.D. Porsolt, Rodent models of depression: forced swim and tail suspension behavioral despair tests in rats and mice, Curr. Protoc. Neurosci. 55(8.10) (2011) 1-8.10.
[67] G.M. Miller, The emerging role of trace amine‐associated receptor 1 in the functional regulation of monoamine transporters and dopaminergic activity, J. Neurochem. 116(2) (2011) 164-176.
[68] G.P. Chrousos, Stress and disorders of the stress system, Nature Reviews Endocrinology 5(7) (2009) 374-381.
[69] A. Holmes, Targeted gene mutation approaches to the study of anxiety-like behavior in mice, Neurosci. Biobehav. Rev. 25(3) (2001) 261-273.
[70] Q. Peng, S. Zhang, Q. Yang, T. Zhang, X.-Q. Wei, L. Jiang, C.-L. Zhang, Q.-M. Chen, Z.-R. Zhang, Y.-F. Lin, Preformed albumin corona, a protective coating for nanoparticles based drug delivery system, Biomaterials 34(33) (2013) 8521-8530.
[71] K.P. García, K. Zarschler, L. Barbaro, J.A. Barreto, W. O''Malley, L. Spiccia, H. Stephan, B. Graham, Zwitterionic‐Coated “Stealth” Nanoparticles for Biomedical Applications: Recent Advances in Countering Biomolecular Corona Formation and Uptake by the Mononuclear Phagocyte System, Small 10(13) (2014) 2516-2529.
[72] T. Ishida, S. Kashima, H. Kiwada, The contribution of phagocytic activity of liver macrophages to the accelerated blood clearance (ABC) phenomenon of PEGylated liposomes in rats, J. Controlled Release 126(2) (2008) 162-165.
[73] G. Mignot, S. Roux, C. Thery, E. Ségura, L. Zitvogel, Prospects for exosomes in immunotherapy of cancer, J. Cell. Mol. Med. 10(2) (2006) 376-388.
[74] E. Cocucci, G. Racchetti, J. Meldolesi, Shedding microvesicles: artefacts no more, Trends Cell Biol. 19(2) (2009) 43-51.
[75] B. György, T.G. Szabó, M. Pásztói, Z. Pál, P. Misják, B. Aradi, V. László, É. Pállinger, E. Pap, Á. Kittel, Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles, Cell. Mol. Life Sci. 68(16) (2011) 2667-2688.
[76] K. Denzer, M.J. Kleijmeer, H. Heijnen, W. Stoorvogel, H.J. Geuze, Exosome: from internal vesicle of the multivesicular body to intercellular signaling device, J. Cell Sci. 113(19) (2000) 3365-3374.
[77] R.J. Simpson, S.S. Jensen, J.W. Lim, Proteomic profiling of exosomes: current perspectives, Proteomics 8(19) (2008) 4083-4099.
[78] J.Z. Nordin, Y. Lee, P. Vader, I. Mäger, H.J. Johansson, W. Heusermann, O.P. Wiklander, M. Hällbrink, Y. Seow, J.J. Bultema, Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties, Nanomed. Nanotechnol. Biol. Med. 11(4) (2015) 879-883.
[79] C. Théry, L. Zitvogel, S. Amigorena, Exosomes: composition, biogenesis and function, Nature Reviews Immunology 2(8) (2002) 569-579.
[80] Z. Li, P. Wang, Z. Wu, Preparation of nanosized hydroxyapatite particles at low temperatures, Journal of materials science 40(24) (2005) 6589-6591.
[81] J.-W. Rao, L.-Q. Ouyang, X.-l. Jia, D.-P. Quan, Y.-B. Xu, The fabrication and characterization of 3d porous sericin/fibroin blended scaffolds, Biomedical Engineering: Applications, Basis and Communications 23(01) (2011) 1-12.
[82] C.-H. Chen, C.-J. Chiang, G. Rau, M.-S. Huang, K.K. Chan, C.-J. Liao, Y.-J. Kuo, In vivo evaluation of a new biphasic calcium phosphate bone substitute in rabbit femur defects model, Biomedical Engineering: Applications, Basis and Communications 24(06) (2012) 537-548.
[83] S. Bolandghamat, A. Moghimi, M. Iranshahi, Effects of ethanolic extract of pine needles (Pinus eldarica Medw.) on reserpine-induced depression-like behavior in male Wistar rats, Pharmacogn. Mag. 7(27) (2011) 248.
[84] I. Ninan, S.K. Kulkarni, Differential effects of olanzapine at dopamine D1 and D2 receptors in dopamine depleted animals, Psychopharmacology 142(2) (1999) 175-181.
[85] G.A. Ordway, K. Szebeni, Effect of repeated treatment with olanzapine or olanzapine plus fluoxetine on tyrosine hydroxylase in the rat locus coeruleus, Int. J. Neuropsychopharmacol. 7(3) (2004) 321-327.
[86] F. Naqvi, S. Haider, T. Perveen, D.J. Haleem, Sub-chronic exposure to noise affects locomotor activity and produces anxiogenic and depressive like behavior in rats, Pharmacol. Rep. 64(1) (2012) 64-69.
[87] D.A. Slattery, J.F. Cryan, Using the rat forced swim test to assess antidepressant-like activity in rodents, Nat. Protoc. 7(6) (2012) 1009-1014.
[88] S. Dal-Zotto, O. Martı́, A. Armario, Influence of single or repeated experience of rats with forced swimming on behavioural and physiological responses to the stressor, Behav. Brain Res. 114(1) (2000) 175-181.
[89] J.M. Arumana, D. Li, R. Dharmakumar, Deriving blood‐oxygen‐level‐dependent contrast in MRI with T 2*‐weighted, T2‐prepared and phase‐cycled SSFP methods: Theory and experiment, Magn. Reson. Med. 59(3) (2008) 561-570.
[90] S. Pothion, J.-C. Bizot, F. Trovero, C. Belzung, Strain differences in sucrose preference and in the consequences of unpredictable chronic mild stress, Behav. Brain Res. 155(1) (2004) 135-146.
[91] M. Cachard-Chastel, S. Devers, S. Sicsic, M. Langlois, F. Lezoualc’h, A. Gardier, C. Belzung, Prucalopride and donepezil act synergistically to reverse scopolamine-induced memory deficit in C57Bl/6j mice, Behav. Brain Res. 187(2) (2008) 455-461.
[92] N. Gacar, O. Mutlu, T. Utkan, I.K. Celikyurt, S.S. Gocmez, G. Ulak, Beneficial effects of resveratrol on scopolamine but not mecamylamine induced memory impairment in the passive avoidance and Morris water maze tests in rats, Pharmacol. Biochem. Behav. 99(3) (2011) 316-323.
[93] J. Tao, H. Pan, Y. Zeng, X. Xu, R. Tang, Roles of amorphous calcium phosphate and biological additives in the assembly of hydroxyapatite nanoparticles, The Journal of Physical Chemistry B 111(47) (2007) 13410-13418.
[94] C. Cardemil, I. Elgali, W. Xia, L. Emanuelsson, B. Norlindh, O. Omar, P. Thomsen, Strontium-doped calcium phosphate and hydroxyapatite granules promote different inflammatory and bone remodelling responses in normal and ovariectomised rats, PLoS One 8(12) (2013) e84932.
[95] Y. Kakizawa, S. Furukawa, K. Kataoka, Block copolymer-coated calcium phosphate nanoparticles sensing intracellular environment for oligodeoxynucleotide and siRNA delivery, J. Controlled Release 97(2) (2004) 345-356.
[96] J.S. Park, T.H. Han, K.Y. Lee, S.S. Han, J.J. Hwang, D.H. Moon, S.Y. Kim, Y.W. Cho, N-acetyl histidine-conjugated glycol chitosan self-assembled nanoparticles for intracytoplasmic delivery of drugs: endocytosis, exocytosis and drug release, J. Controlled Release 115(1) (2006) 37-45.
[97] J. Schageman, E. Zeringer, M. Li, T. Barta, K. Lea, J. Gu, S. Magdaleno, R. Setterquist, A.V. Vlassov, The complete exosome workflow solution: from isolation to characterization of RNA cargo, BioMed research international 2013 (2013).
[98] M. Alexander, R. Hu, M.C. Runtsch, D.A. Kagele, T.L. Mosbruger, T. Tolmachova, M.C. Seabra, J.L. Round, D.M. Ward, R.M. O’Connell, Exosome-delivered microRNAs modulate the inflammatory response to endotoxin, Nature communications 6 (2015).
[99] S. Khan, J.M. Jutzy, J.R. Aspe, D.W. McGregor, J.W. Neidigh, N.R. Wall, Survivin is released from cancer cells via exosomes, Apoptosis 16(1) (2011) 1-12.
[100] J.L. Hood, M.J. Scott, S.A. Wickline, Maximizing exosome colloidal stability following electroporation, Anal. Biochem. 448 (2014) 41-49.
[101] K. Hirota, H. Terada, Endocytosis of particle formulations by macrophages and its application to clinical treatment, INTECH Open Access Publisher2012.
[102] S. Kim, J. Lee, Y. Kim, D.-H. Riu, S. Jung, Y. Lee, S. Chung, Y. Kim, Synthesis of Si, Mg substituted hydroxyapatites and their sintering behaviors, Biomaterials 24(8) (2003) 1389-1398.
[103] E.A. Emken, Metabolism of dietary stearic acid relative to other fatty acids in human subjects, The American journal of clinical nutrition 60(6) (1994) 1023S-1028S.
[104] S. Firdous, T. Aman, A. Nisa, Determination of olanzapine by UV spectrophotometry and non-aqueous titration, Journal-Chemical Society of Pakistan 27(2) (2005) 163.
[105] H. Onyeama, P. Ebong, M. Eteng, G. Igile, Effects of Calliandra Portoricensis Extracts on the Haematological Indices of Wistar Rats Challenged With Venom of Echis Ocellatus, Journal of Applied Pharmaceutical Science 2(6) (2012) 14.
[106] T. MATSUZAWA, M. NOMURA, U. Takashi, Clinical pathology reference ranges of laboratory animals, J. Vet. Med. Sci. 55(3) (1993) 351-362.
[107] H. Zhao, W. He, Y. Wang, Y. Yue, X. Gao, Z. Li, S. Yan, W. Zhou, X. Zhang, Biomineralizing synthesis of mesoporous hydroxyapatite–calcium pyrophosphate polycrystal using ovalbumin as biosurfactant, Mater. Chem. Phys. 111(2) (2008) 265-270.
[108] W. Suchanek, M. Yoshimura, Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants, J. Mater. Res. 13(01) (1998) 94-117.
[109] C.H. Navarro, K.J. Moreno, A. Arizmendi-Morquecho, A. Chávez-Valdez, S. García-Miranda, Preparation and tribological properties of chitosan/hydroxyapatite composite coatings applied on ultra high molecular weight polyethylene substrate, Journal of Plastic Film & Sheeting 28(4) (2012) 279-297.
[110] N. Zakharov, I. Polunina, K. Polunin, N. Rakitina, E. Kochetkova, N. Sokolova, V. Kalinnikov, Calcium hydroxyapatite for medical applications, Inorg. Mater. 40(6) (2004) 641-648.
[111] L. Kong, J. Ma, F. Boey, Nanosized hydroxyapatite powders derived from coprecipitation process, Journal of materials science 37(6) (2002) 1131-1134.
[112] B.J. Tarasevich, C.C. Chusuei, D.L. Allara, Nucleation and growth of calcium phosphate from physiological solutions onto self-assembled templates by a solution-formed nucleus mechanism, The Journal of Physical Chemistry B 107(38) (2003) 10367-10377.
[113] V.M. Rusu, C.-H. Ng, M. Wilke, B. Tiersch, P. Fratzl, M.G. Peter, Size-controlled hydroxyapatite nanoparticles as self-organized organic–inorganic composite materials, Biomaterials 26(26) (2005) 5414-5426.
[114] S. Bose, S.K. Saha, Synthesis and characterization of hydroxyapatite nanopowders by emulsion technique, Chem. Mater. 15(23) (2003) 4464-4469.
[115] H. Tanaka, T. Watanabe, M. Chikazawa, K. Kandori, T. Ishikawa, TPD, FTIR, and molecular adsorption studies of calcium hydroxyapatite surface modified with hexanoic and decanoic acids, J. Colloid Interface Sci. 214(1) (1999) 31-37.
[116] S.A. Agnihotri, T.M. Aminabhavi, Controlled release of clozapine through chitosan microparticles prepared by a novel method, J. Controlled Release 96(2) (2004) 245-259.
[117] S.B. Tiwari, T.K. Murthy, M. Raveendra Pai, P.R. Mehta, P.B. Chowdary, Controlled release formulation of tramadol hydrochloride using hydrophilic and hydrophobic matrix system, AAPS PharmSciTech 4(3) (2003) 18-23.
[118] J. Wang, B.M. Wang, S.P. Schwendeman, Characterization of the initial burst release of a model peptide from poly (D, L-lactide-co-glycolide) microspheres, J. Controlled Release 82(2) (2002) 289-307.
[119] Y. Yamaguchi, M. Takenaga, A. Kitagawa, Y. Ogawa, Y. Mizushima, R. Igarashi, Insulin-loaded biodegradable PLGA microcapsules: initial burst release controlled by hydrophilic additives, J. Controlled Release 81(3) (2002) 235-249.
[120] Y. Yeo, K. Park, Control of encapsulation efficiency and initial burst in polymeric microparticle systems, Arch. Pharmacal Res. 27(1) (2004) 1.
[121] M. Uhr, M.T. Grauer, F. Holsboer, Differential enhancement of antidepressant penetration into the brain in mice with abcb1ab (mdr1ab) P-glycoprotein gene disruption, Biol. Psychiatry 54(8) (2003) 840-846.
[122] L. Borum-Nicholas, O. Wilson, Surface modification of hydroxyapatite. Part I. Dodecyl alcohol, Biomaterials 24(21) (2003) 3671-3679.
[123] H. Margolis, E. Moreno, Kinetics of hydroxyapatite dissolution in acetic, lactic, and phosphoric acid solutions, Calcif. Tissue Int. 50(2) (1992) 137-143.
[124] U. Becherer, T. Moser, W. Stühmer, M. Oheim, Calcium regulates exocytosis at the level of single vesicles, Nat. Neurosci. 6(8) (2003) 846-853.
[125] P.I. Lee, Initial concentration distribution as a mechanism for regulating drug release from diffusion controlled and surface erosion controlled matrix systems, J. Controlled Release 4(1) (1986) 1-7.
[126] M.A. Cenci, Dopamine dysregulation of movement control in L-DOPA-induced dyskinesia, Trends Neurosci. 30(5) (2007) 236-243.
[127] J.T. Callaghan, R.F. Bergstrom, L.R. Ptak, C.M. Beasley, Olanzapine, Clin. Pharmacokinet. 37(3) (1999) 177-193.
[128] C.J. Harmer, G.M. Goodwin, P.J. Cowen, Why do antidepressants take so long to work? A cognitive neuropsychological model of antidepressant drug action, The British Journal of Psychiatry 195(2) (2009) 102-108.
[129] W.C. Drevets, J.L. Price, M.L. Furey, Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression, Brain structure and function 213(1-2) (2008) 93-118.
[130] R.B. Williams, D.A. Marchuk, K.M. Gadde, J.C. Barefoot, K. Grichnik, M.J. Helms, C.M. Kuhn, J.G. Lewis, S.M. Schanberg, M. Stafford-Smith, Serotonin-related gene polymorphisms and central nervous system serotonin function, Neuropsychopharmacology 28(3) (2003) 533.
[131] S. Campbell, G. MacQueen, The role of the hippocampus in the pathophysiology of major depression, J. Psychiatry Neurosci. (2004).
[132] R.M. Sapolsky, Depression, antidepressants, and the shrinking hippocampus, Proceedings of the National Academy of Sciences 98(22) (2001) 12320-12322.
[133] N.K. Logothetis, The neural basis of the blood–oxygen–level–dependent functional magnetic resonance imaging signal, Philosophical Transactions of the Royal Society of London B: Biological Sciences 357(1424) (2002) 1003-1037.
[134] B.M. Hampstead, A.Y. Stringer, R.F. Stilla, M. Giddens, K. Sathian, Mnemonic strategy training partially restores hippocampal activity in patients with mild cognitive impairment, Hippocampus 22(8) (2012) 1652-1658.
[135] N.J. Broadbent, L.R. Squire, R.E. Clark, Spatial memory, recognition memory, and the hippocampus, Proc. Natl. Acad. Sci. U. S. A. 101(40) (2004) 14515-14520.
[136] T.V. Bliss, G.L. Collingridge, A synaptic model of memory: long-term potentiation in the hippocampus, Nature 361(6407) (1993) 31.
[137] Y.-J. Shyong, M.-H. Wang, H.-C. Tseng, C. Cheng, K.-C. Chang, F.-H. Lin, Mesoporous hydroxyapatite as olanzapine carrier provides a long-acting effect in antidepression treatment, J. Med. Chem. 58(21) (2015) 8463-8474.
[138] E. Emmanouilidou, K. Melachroinou, T. Roumeliotis, S.D. Garbis, M. Ntzouni, L.H. Margaritis, L. Stefanis, K. Vekrellis, Cell-produced α-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival, J. Neurosci. 30(20) (2010) 6838-6851.
[139] A. Savina, M. Furlán, M. Vidal, M.I. Colombo, Exosome release is regulated by a calcium-dependent mechanism in K562 cells, J. Biol. Chem. 278(22) (2003) 20083-20090.
[140] A. Savina, C.M. Fader, M.T. Damiani, M.I. Colombo, Rab11 promotes docking and fusion of multivesicular bodies in a calcium‐dependent manner, Traffic 6(2) (2005) 131-143.
[141] E. Dömötör, N.J. Abbott, V. Adam‐Vizi, Na+–Ca2+ exchange and its implications for calcium homeostasis in primary cultured rat brain microvascular endothelial cells, The Journal of physiology 515(1) (1999) 147-155.
[142] X.-D. Wang, J.G. Kiang, L.W. Scheibel, R.C. Smallridge, Phospholipase C activation by Na+/Ca2+ exchange is essential for monensin-induced Ca2+ influx and arachidonic acid release in FRTL-5 thyroid cells, J. Investig. Med. 47(8) (1999) 388-396.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔