(3.235.108.188) 您好!臺灣時間:2021/02/27 03:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃文彥
研究生(外文):Wen-Yen Huang
論文名稱:毛囊經輻射傷害後的再生反應:異位前驅細胞的角色
論文名稱(外文):Hair follicle regeneration after radiation injury: role of ectopic progenitor cells
指導教授:林頌然
指導教授(外文):Sung-Jan Lin
口試日期:2017-07-26
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:111
中文關鍵詞:毛囊幹細胞輻射落髮再生
外文關鍵詞:hair folliclestem cellionizing radiationradiotherapychemotherapyhair lossregeneration.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:204
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
器官在結構變換的過程中如何妥善佈署幹細胞,對於生理恆定及損傷後的再生皆扮演著關鍵的角色。毛囊生長週期包含三個時期,分別是生長期(anagen)、衰退期(catagen)、及休止期(telogen),各時期的毛囊結構與細胞組成皆不盡相同。在此,我們利用毛囊當作模式來探討器官結構變換時,幹細胞的佈署與器官再生之間的關聯性。在臨床上利用放射線或化學治療癌症的病人都不可避免地伴隨著許多副作用,落髮是其中的一種,且目前並無有效的治療方法,造成病患除了生理的不適外也承受了心理上極大壓力。臨床上,生長期毛囊受損的反應及受損後毛囊再生的機轉還有待更深入瞭解。為了讓基礎研究的結果能解決臨床上的問題,我們使用臨床上廣泛用來治療癌症的游離輻射與化學治療藥cyclophosphamide誘導生長期毛囊的損傷,並探討以下問題: (1)游離輻射與cyclophosphamide造成的細胞效應,(2)再生過程中不同細胞族群的動態,(3)毛囊萎縮與再生過程中的訊息調控機制。我們發現游離輻射和cyclophosphamide主要在基質細胞引起DNA雙股斷裂並造成細胞凋亡,其受損的程度隨劑量增加而遞增。另高劑量的游離輻射與cyclophosphamide皆造成與臨床上相似的落髮現象。結合BrdU標定與細胞系追蹤,我們發現根據受損程度的不同,生長期毛囊可透過異位前驅細胞的調動與去分化這兩種不同機制,使毛囊再生進而防止繼續萎縮。在低劑量游離輻射後,毛囊球基底層的K5+細胞會被快速活化,並在12到72小時內補充毛球內因細胞凋亡而失去的細胞。我們稱此為早期再生反應。在早期再生反應中,突部毛囊幹細胞則維持靜止狀態並無參與此再生過程。當高劑量輻射造成所有的基質細胞與毛球基底層K5+細胞都走向細胞凋亡時,這時存活下來的外根鞘細胞即透過去分化獲得與正常休止期毛囊中的次級毛胚幹細胞相似的幹細胞特性,並在72到120小時內進行毛囊再生。我們稱此為晚期再生反應。突部毛囊幹細胞則在輻射後第五天活化並分化成上部的外根鞘細胞。免疫染色與次世代定序分析結果顯示,游離輻射傷害會誘導p53表現,並且短暫抑制Wnt signaling。72小時之後,當p53停止表現,Wnt signaling即再度被活化。若在毛囊啟動自發性再生反應之前給予WNT 抑制劑或是剔除Wnt下游基因表現,毛囊就無法再生。此結果顯示毛囊再生反應的啟動與否需要Wnt signaling來調控。於是我們嘗試在高劑量游離輻射與cyclophosphamide傷害後立即以皮下植入方式給予Wnt3a重組蛋白,此處理雖無法降低p53表現,但透過Wnt3a持續活化Wnt signaling,進而刺激異位前驅細胞的活化,可以防止輻射及化療造成的落髮。我們的研究結果顯示生長期的毛囊透過廣泛佈署多能性細胞以因應損傷發生時,毛囊能迅速再生。透過活化異位前驅細胞可做為一個新的策略來改善臨床上因放射線或化療造成的落髮。
How organs deploy their stem cell (SC) pools during metamorphic remodeling is not only vital for homeostasis but also for regenerative potential after injury. Hair follicles (HFs) serve as an exceptional model to study this question because they undergo life-time cyclic growth with structural transformation between anagen (active growth), catagen (regression), and telogen (relative rest). Clinically, radiotherapy and chemotherapy are often inevitably accompanied by various side effects, such as hair loss, which causes great psychological distress in patients. Currently, there is no effective treatment for radiotherapy and chemotherapy-induced hair loss. Up to date, how the growing HFs respond and regenerate after radiotherapy and chemotherapy are not well understood. To investigate this, ionizing radiation (IR) and genotoxic cyclophosphamide (CYP) were employed to damage anagen HFs in mice. We aim to explore the following topics: (1) the cellular effects of IR and CYP injuries on anagen HFs, (2) the cell dynamics of distinct cell populations during HF regeneration from such injuries, (3) the molecular mechanisms of dystrophy and regeneration in anagen HFs. We found that both IR and CYP induced a dose-dependent DNA damage and apoptosis mainly in the proliferative matrix cells. Hair loss was observed after high-dose of IR and CYP injuries. Combining BrdU incorporation and lineage tracing, we found that, depending on the severity of IR injury, anagen HFs activated two distinct regenerative attempts to regenerate hair bulbs and to avoid regression through mobilization and dedifferentiation of two different populations of ectopic progenitor cells. After low-dose of IR, the K5+ basal hair bulb cells, rather than bulge stem cells (BgSCs), were quickly activated to replenish the germinative and matrix cells lost by apoptosis and regenerated concentric layers of various differentiations between 12 and 72 hrs. We named it “the early regenerative attempt”. After high-dose of IR, when all basal hair bulb, germinative, and matrix cells were depleted by apoptosis, the surviving radioresistant outer root sheath cells rapidly dedifferentiated toward the SC-like state and fueled HF regeneration between 72 and 120 hrs. We named it “the late regenerative attempt”. These dedifferentiated ectopic progenitor cells were functionally similar to the secondary hair germ stem cells (ShgSCs) in telogen HFs. BgSC activation was detected at day 5 when the hair bulb has been regenerated by the dedifferentiated ectopic progenitor cells. By immunostaining and RNA sequencing, we found that Wnt/β-catenin signaling was transiently suppressed in a p53-dependent manner, and Wnt/β-catenin signaling reactivation was a prerequisite for regenerative attempts from IR injury. Inhibiting Wnt/β-catenin signaling reactivation abolished the regenerative attempts. Finally, we demonstrated that both IR and CYP-induced alopecia could be largely prevented by enhancing the ectopic SC mobilization through augmenting Wnt/β-catenin signaling. These results demonstrate that the wide deployment of multipotent cells in anagen HFs confers flexible regenerative strategies upon them to enable prompt regeneration from genotoxic injury. Enhancing ectopic progenitor mobilization can be a potential strategy to prevent hair loss from radiotherapy and chemotherapy.
誌謝……………………………………………………………………………………i
中文摘要………………………………………………………………………………ii
Abstract……………………………………………………………………………….iv
Index of Figures………………………………………………………………………x
Index of Tables……………………………………………………………………….xii
Index of Supplementary Information……………………………………………...xiii
CHAPTER 1. INTRODUCTION…………………………………………………….1
1.1. The strategy of quick regeneration from injury to an organ is required…………1
1.2. Epithelial-mesenchymal interaction and the hair cycle……………………………1
1.3. Hair follicle structures…………………………………………………………………3
1.4. Cell dynamics during structural transformation between distinct phases of the hair cycle………………………………………………………………………………...4
1.5. Cellular response to ionizing radiation………………………………………………7
1.6. IR-induced cellular damage in hair follicles………………………………………...8
1.7. Hair cycle disruption: the response of an organ to IR injury……………………..9
1.8. IR injury and regeneration: learn from other organs and their mechanisms…..11
1.9. Anagen repair/regenerative activity presents after chemotherapeutic damage..13
1.10. Reserve stem cells in other organs. Are they also present in anagen HFs?.....14
CHAPTER 2. MATERIALS AND METHODS……………………..……………..17
2.1. Animals………………………………………………………………………………….17
2.1.1. C57BL/6 mice……………………………………………………………………..17
2.1.2. K5CreER mice……………………………………………………………………….17
2.1.3. Lgr5EGFP-IRES-CreERT2 mice………………………………………………………..17
2.1.4. K19CreER mice…………………………………………………………….............18
2.1.5. Rosa26tdTomato mice………………………………………………………............18
2.1.6. Ctnnbl flox/flox mice………………………………………………………………..18
2.1.7. p53 null mice……………………………………………………………………..18
2.1.8. p53flox/flox mice……………………………………….........................................18
2.1.9. K5CreER; R26tdTomato, Lgr5EGFP-IRES-CreERT2; R26tdTomato, and K19CreER; R26tdTomato mice………………………………………………………………….19
2.1.10. K5CreER; Ctnnblflox/flox and K5CreER; p53flox/flox mice……………………........19
2.2. Genomic DNA extraction and genotyping………………………………………….19
2.3. IR and chemotherapy exposure of mice…………………………………………….20
2.4. Mapping proliferative cells by BrdU incorporation………………………………21
2.5. Lineage tracing experiment…………………………………………………………..21
2.6. Inhibition of Wnt/β-catenin signaling……………………………………………….22
2.7. Histology, immunostaining and TUNEL staining………………………………….22
2.8. In situ hybridization……………………………………………………………………25
2.9. Image acquisition and quantification……………………………………………….25
2.10. Quantification of γ-H2AX foci………………………………………………………26
2.11. RNA-sequencing analysis……………………………………………………………27
2.12. Quantitative RT-PCR………………………………………………………………...27
2.13. FACS……………………………………………………………………………………28
2.14. Protein administration experiment…………………………………………………28
2.15. Statistics……………………………………………………………………………….29
CHAPTER 3. RESULTS…………………………………………………………….30
3.1. Dose-dependent HF dystrophy after IR and CYP injuries………………………..30
3.2. Cellular effects of anagen HFs after IR and CYP injuries……………………….31
3.3. K5+ basal hair bulb keratinocytes preferentially proliferate during the early regenerative attempt…………………………………………………………………..33
3.4. K5+ basal hair bulb cells replenish the germinative population and contribute to all concentric layers of recovered HFs…………………………………………….35
3.5. K5+ ORS cells remodel into the epithelial strand with dedifferentiation into stem cell-like progenitors that contribute to the late regenerative attempt………….37
3.6. Lower tip cells and BgSCs undergo stepwise activation for the late regenerative attempt………………………………………………………………………………….38
3.7. IR injury disrupts WNT/β-catenin signaling that is required for the late regenerative attempt…………………………………………………………………..40
3.8. Dual roles of p53 in IR-induced HF dystrophy and the suppression of WNT/β-catenin signaling…………………………………………………………….44
3.9. Local delivery of Wnt ligands prevents IR- and CYP-induced alopecia by enhancing WNT/β-catenin signaling-driven compensatory proliferation of ectopic progenitor cells………………………………………………………………46
CHAPTER 4. DISCUSSION………………………………………………………...48
4.1. Compensatory proliferation of multipotent basal hair bulb cells during the early regenerative attempt…………………………………………………………………..48
4.2. Remodeling and dedifferentiation of ORS cells to orchestrate the late regenerative attempt…………………………………………………………………..50
4.3. Activation of WNT/β-catenin signaling facilitates compensatory proliferation of ectopic progenitor cells and rescues IR- and chemotherapy-induced hair loss………………………………………………………………………………………53
CHAPTER 5. REFERENCES……………………………………………………....55
CHAPTER 6. FIGURES AND FIGURE LEGENDS……………………………...67
CHAPTER 7. TABLES……………………………………………………………..100
CHAPTER 8. SUPPLEMENTARY INFORMATION…………………………...106
1.Birnbaum KD, Sanchez Alvarado A. Slicing across kingdoms: regeneration in plants and animals. Cell 132, 697-710 (2008).

2.Ryan JL. Ionizing radiation: the good, the bad, and the ugly. The Journal of Investigative Dermatology 132, 985-993 (2012).

3.Malkinson FD, Keane JT. Radiobiology of the skin: review of some effects on epidermis and hair. The Journal of Investigative Dermatology 77, 133-138 (1981).

4.Blanpain C, Mohrin M, Sotiropoulou PA, Passegue E. DNA-damage response in tissue-specific and cancer stem cells. Cell Stem Cell 8, 16-29 (2011).

5.Tetteh PW, Farin HF, Clevers H. Plasticity within stem cell hierarchies in mammalian epithelia. Trends in Cell Biology 25, 100-108 (2015).

6.Guo CY, et al. Sensitivity and dose dependency of radiation-induced injury in hematopoietic stem/progenitor cells in mice. Scientific Reports 5, 8055 (2015).

7.Blanpain C, Fuchs E. Epidermal homeostasis: a balancing act of stem cells in the skin. Nature reviews Molecular Cell Biology 10, 207-217 (2009).

8.Kollar EJ. The induction of hair follicles by embryonic dermal papillae. The Journal of Investigative Dermatology 55, 374-378 (1970).

9.Dhouailly D. Dermo-epidermal interactions between birds and mammals: differentiation of cutaneous appendages. Journal of Embryology and Experimental Morphology 30, 587-603 (1973).

10.Tucker AS. Salivary gland development. Seminars in Cell & Developmental Biology 18, 237-244 (2007).

11.Millar SE. Molecular mechanisms regulating hair follicle development. The Journal of Investigative Dermatology 118, 216-225 (2002).

12.Botchkarev VA, Kishimoto J. Molecular control of epithelial-mesenchymal interactions during hair follicle cycling. The journal of Investigative Dermatology Symposium Proceedings 8, 46-55 (2003).

13.Kishimoto J, Burgeson RE, Morgan BA. Wnt signaling maintains the hair-inducing activity of the dermal papilla. Genes & Development 14, 1181-1185 (2000).

14.Choi YS, et al. Distinct functions for Wnt/beta-catenin in hair follicle stem cell proliferation and survival and interfollicular epidermal homeostasis. Cell Stem Cell 13, 720-733 (2013).

15.Millar SE, et al. WNT signaling in the control of hair growth and structure. Developmental Biology 207, 133-149 (1999).

16.Myung PS, Takeo M, Ito M, Atit RP. Epithelial Wnt ligand secretion is required for adult hair follicle growth and regeneration. The Journal of Investigative Dermatology 133, 31-41 (2013).

17.Huang S, et al. Wls is expressed in the epidermis and regulates embryonic hair follicle induction in mice. PloS One 7, e45904 (2012).

18.Huelsken J, Vogel R, Erdmann B, Cotsarelis G, Birchmeier W. beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105, 533-545 (2001).

19.Enshell-Seijffers D, Lindon C, Kashiwagi M, Morgan BA. beta-catenin activity in the dermal papilla regulates morphogenesis and regeneration of hair. Developmental Cell 18, 633-642 (2010).

20.Xu Z, et al. Embryonic attenuated Wnt/beta-catenin signaling defines niche location and long-term stem cell fate in hair follicle. eLife 4, e10567 (2015).

21.Ouspenskaia T, Matos I, Mertz AF, Fiore VF, Fuchs E. WNT-SHH Antagonism Specifies and Expands Stem Cells prior to Niche Formation. Cell 164, 156-169 (2016).

22.Muller-Rover S, et al. A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. The Journal of Investigative Dermatology 117, 3-15 (2001).

23.Chen CC, Chuong CM. Multi-layered environmental regulation on the homeostasis of stem cells: the saga of hair growth and alopecia. Journal of Dermatological Science 66, 3-11 (2012).

24.Morgan BA. The dermal papilla: an instructive niche for epithelial stem and progenitor cells in development and regeneration of the hair follicle. Cold Spring Harbor Perspectives in Medicine 4, a015180 (2014).

25.Driskell RR, Clavel C, Rendl M, Watt FM. Hair follicle dermal papilla cells at a glance. Journal of Cell Science 124, 1179-1182 (2011).

26.Jahoda CA, Reynolds AJ. Dermal-epidermal interactions--follicle-derived cell populations in the study of hair-growth mechanisms. The Journal of Investigative Dermatology 101, 33S-38S (1993).

27.Oshimori N, Fuchs E. Paracrine TGF-beta signaling counterbalances BMP-mediated repression in hair follicle stem cell activation. Cell Stem Cell 10, 63-75 (2012).

28.Rendl M, Polak L, Fuchs E. BMP signaling in dermal papilla cells is required for their hair follicle-inductive properties. Genes & Development 22, 543-557 (2008).

29.Porter RM, Gandhi M, Wilson NJ, Wood P, McLean WH, Lane EB. Functional analysis of keratin components in the mouse hair follicle inner root sheath. The British Journal of Dermatology 150, 195-204 (2004).

30.Schneider MR, Schmidt-Ullrich R, Paus R. The hair follicle as a dynamic miniorgan. Current Biology : CB 19, R132-142 (2009).

31.Paus R, Cotsarelis G. The biology of hair follicles. The New England Journal of Medicine 341, 491-497 (1999).

32.Hsu YC, Pasolli HA, Fuchs E. Dynamics between stem cells, niche, and progeny in the hair follicle. Cell 144, 92-105 (2011).

33.Hsu YC, Li L, Fuchs E. Transit-amplifying cells orchestrate stem cell activity and tissue regeneration. Cell 157, 935-949 (2014).

34.Greco V, et al. A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell 4, 155-169 (2009).

35.Fu J, Hsu W. Epidermal Wnt controls hair follicle induction by orchestrating dynamic signaling crosstalk between the epidermis and dermis. The Journal of Investigative Dermatology 133, 890-898 (2013).

36.Lindner G, Botchkarev VA, Botchkareva NV, Ling G, van der Veen C, Paus R. Analysis of apoptosis during hair follicle regression (catagen). The American Journal of Pathology 151, 1601-1617 (1997).

37.Cotsarelis G, Sun TT, Lavker RM. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61, 1329-1337 (1990).

38.Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118, 635-648 (2004).

39.Ito M, et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nature Medicine 11, 1351-1354 (2005).

40.Rompolas P, et al. Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration. Nature 487, 496-499 (2012).

41.Legue E, Sequeira I, Nicolas JF. Hair follicle renewal: authentic morphogenesis that depends on a complex progression of stem cell lineages. Development 137, 569-577 (2010).

42.Citrin D, Cotrim AP, Hyodo F, Baum BJ, Krishna MC, Mitchell JB. Radioprotectors and mitigators of radiation-induced normal tissue injury. The Oncologist 15, 360-371 (2010).

43.Harfouche G, Martin MT. Response of normal stem cells to ionizing radiation: a balance between homeostasis and genomic stability. Mutation Research 704, 167-174 (2010).

44.Mandal PK, Blanpain C, Rossi DJ. DNA damage response in adult stem cells: pathways and consequences. Nature reviews Molecular Cell Biology 12, 198-202 (2011).

45.Masuda Y, Kamiya K. Molecular nature of radiation injury and DNA repair disorders associated with radiosensitivity. International Journal of Hematology 95, 239-245 (2012).

46.Khoo KH, Verma CS, Lane DP. Drugging the p53 pathway: understanding the route to clinical efficacy. Nature Reviews Drug Discovery 13, 217-236 (2014).

47.Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 88, 323-331 (1997).

48.Giaccia AJ, Kastan MB. The complexity of p53 modulation: emerging patterns from divergent signals. Genes & Development 12, 2973-2983 (1998).

49.Botchkarev VA, et al. p53 is essential for chemotherapy-induced hair loss. Cancer Research 60, 5002-5006 (2000).

50.Wieler S, Gagne JP, Vaziri H, Poirier GG, Benchimol S. Poly(ADP-ribose) polymerase-1 is a positive regulator of the p53-mediated G1 arrest response following ionizing radiation. The Journal of Biological Chemistry 278, 18914-18921 (2003).

51.Malkinson FD, Keane JT. Hair matrix cell kinetics: a selective review. International Journal of Dermatology 17, 536-551 (1978).

52.Chase HB. Greying of hair; effects produced by single doses of X-rays on mice. Journal of Morphology 84, 57-79 (1949).

53.Malkinson FD, Griem ML. Radiation injury and recovery in anagen and telogen rodent hairs. Radiation Research 33, 554-562 (1968).

54.Malkinson FD, Griem ML, Marianovic R. Persistent impairment of hair growth afterssingle large doses of x-rays. Radiation Research 43, 83-91 (1970).
55.Chase HB. Growth of the hair. Physiological Reviews 34, 113-126 (1954).

56.Puck TT, Marcus PI. Action of x-rays on mammalian cells. J Exp Med 103, 653-666 (1956).

57.Geary JR, Jr. Effect of roentgen rays during various phases of the hair cycle of the albino rat. The American Journal of Anatomy 91, 51-105 (1952).

58.Potten CS. The cellular basis of skin injury after cytotoxic insult. The British Journal of Cancer Supplement 7, 47-58 (1986).

59.Nakayama F, Hagiwara A, Kimura M, Akashi M, Imamura T. Evaluation of radiation-induced hair follicle apoptosis in mice and the preventive effects of fibroblast growth factor-1. Experimental Dermatology 18, 889-892 (2009).

60.Kyoizumi S, Suzuki T, Teraoka S, Seyama T. Radiation sensitivity of human hair follicles in SCID-hu mice. Radiation Research 149, 11-18 (1998).

61.Hadshiew IM, Foitzik K, Arck PC, Paus R. Burden of hair loss: stress and the underestimated psychosocial impact of telogen effluvium and androgenetic alopecia. The Journal of Investigative Dermatology 123, 455-457 (2004).

62.Ross EK, Shapiro J. Management of hair loss. Dermatologic Clinics 23, 227-243 (2005).

63.Ross EK, Tan E, Shapiro J. Update on primary cicatricial alopecias. Journal of the American Academy of Dermatology 53, 1-37; quiz 38-40 (2005).

64.Harries MJ, Sinclair RD, Macdonald-Hull S, Whiting DA, Griffiths CE, Paus R. Management of primary cicatricial alopecias: options for treatment. The British Journal of Dermatology 159, 1-22 (2008).

65.Yan KS, et al. The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. Proceedings of the National Academy of Sciences of the United States of America 109, 466-471 (2012).

66.Potten CS, Grant HK. The relationship between ionizing radiation-induced apoptosis and stem cells in the small and large intestine. British Journal of Cancer 78, 993-1003 (1998).

67.Metcalfe C, Kljavin NM, Ybarra R, de Sauvage FJ. Lgr5+ stem cells are indispensable for radiation-induced intestinal regeneration. Cell Stem Cell 14, 149-159 (2014).

68.Cheng H, Leblond CP. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types. The American Journal of Anatomy 141, 537-561 (1974).

69.Bjerknes M, Cheng H. Intestinal epithelial stem cells and progenitors. Methods in Enzymology 419, 337-383 (2006).

70.Bjerknes M, Cheng H. Clonal analysis of mouse intestinal epithelial progenitors. Gastroenterology 116, 7-14 (1999).

71.Potten CS. Extreme sensitivity of some intestinal crypt cells to X and gamma irradiation. Nature 269, 518-521 (1977).

72.Marshman E, Booth C, Potten CS. The intestinal epithelial stem cell. BioEssays 24, 91-98 (2002).

73.Barker N, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003-1007 (2007).

74.Potten CS, Booth C, Pritchard DM. The intestinal epithelial stem cell: the mucosal governor. International Journal of Experimental Pathology 78, 219-243 (1997).

75.Barroca V, et al. Mouse differentiating spermatogonia can generate germinal stem cells in vivo. Nature Cell Biology 11, 190-196 (2009).

76.Sangiorgi E, Capecchi MR. Bmi1 is expressed in vivo in intestinal stem cells. Nature Genetics 40, 915-920 (2008).

77.Tian H, et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 478, 255-259 (2011).
78.Barker N, van Oudenaarden A, Clevers H. Identifying the stem cell of the intestinal crypt: strategies and pitfalls. Cell Stem Cell 11, 452-460 (2012).

79.Sotiropoulou PA, et al. Bcl-2 and accelerated DNA repair mediates resistance of hair follicle bulge stem cells to DNA-damage-induced cell death. Nature Cell Biology 12, 572-582 (2010).

80.Rompolas P, Mesa KR, Greco V. Spatial organization within a niche as a determinant of stem-cell fate. Nature 502, 513-518 (2013).

81.Hendrix S, Handjiski B, Peters EM, Paus R. A guide to assessing damage response pathways of the hair follicle: lessons from cyclophosphamide-induced alopecia in mice. The Journal of Investigative Dermatology 125, 42-51 (2005).

82.Tata PR, et al. Dedifferentiation of committed epithelial cells into stem cells in vivo. Nature 503, 218-223 (2013).

83.van Es JH, et al. Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nature Cell Biology 14, 1099-1104 (2012).

84.Stange DE, et al. Differentiated Troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell 155, 357-368 (2013).

85.Schwitalla S, et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 152, 25-38 (2013).

86.Vaughan AE, et al. Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury. Nature 517, 621-625 (2015).

87.Oshima H, Rochat A, Kedzia C, Kobayashi K, Barrandon Y. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell 104, 233-245 (2001).

88.Kopan R, et al. Genetic mosaic analysis indicates that the bulb region of coat hair follicles contains a resident population of several active multipotent epithelial lineage progenitors. Developmental Biology 242, 44-57 (2002).

89.Legue E, Nicolas JF. Hair follicle renewal: organization of stem cells in the matrix and the role of stereotyped lineages and behaviors. Development 132, 4143-4154 (2005).

90.Takeda N, et al. Hopx expression defines a subset of multipotent hair follicle stem cells and a progenitor population primed to give rise to K6+ niche cells. Development 140, 1655-1664 (2013).

91.Jaks V, et al. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nature Genetics 40, 1291-1299 (2008).

92.Liang CC, You LR, Chang JL, Tsai TF, Chen CM. Transgenic mice exhibiting inducible and spontaneous Cre activities driven by a bovine keratin 5 promoter that can be used for the conditional analysis of basal epithelial cells in multiple organs. Journal of Biomedical Science 16, 2 (2009).

93.Means AL, Xu Y, Zhao A, Ray KC, Gu G. A CK19(CreERT) knockin mouse line allows for conditional DNA recombination in epithelial cells in multiple endodermal organs. Genesis 46, 318-323 (2008).

94.Hua G, et al. Crypt base columnar stem cells in small intestines of mice are radioresistant. Gastroenterology 143, 1266-1276 (2012).

95.Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols 4, 44-57 (2009).

96.Huang da W, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research 37, 1-13 (2009).

97.Ito M, Kizawa K, Hamada K, Cotsarelis G. Hair follicle stem cells in the lower bulge form the secondary germ, a biochemically distinct but functionally equivalent progenitor cell population, at the termination of catagen. Differentiation; Research in Biological Diversity 72, 548-557 (2004).

98.Nowak JA, Fuchs E. Isolation and culture of epithelial stem cells. Methods in Molecular Biology 482, 215-232 (2009).

99.Plikus MV, et al. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nature 451, 340-344 (2008).

100.Morris RJ, et al. Capturing and profiling adult hair follicle stem cells. Nature Biotechnology 22, 411-417 (2004).

101.Kadaja M, et al. SOX9: a stem cell transcriptional regulator of secreted niche signaling factors. Genes & Development 28, 328-341 (2014).

102.Xie G, et al. Testing chemotherapeutic agents in the feather follicle identifies a selective blockade of cell proliferation and a key role for sonic hedgehog signaling in chemotherapy-induced tissue damage. The Journal of Investigative Dermatology 135, 690-700 (2015).

103.Reddy S, et al. Characterization of Wnt gene expression in developing and postnatal hair follicles and identification of Wnt5a as a target of Sonic hedgehog in hair follicle morphogenesis. Mechanisms of Development 107, 69-82 (2001).

104.Ouji Y, Ishizaka S, Nakamura-Uchiyama F, Okuzaki D, Yoshikawa M. Partial maintenance and long-term expansion of murine skin epithelial stem cells by Wnt-3a in vitro. The Journal of Investigative Dermatology 135, 1598-1608 (2015).

105.Kirsch DG, et al. p53 controls radiation-induced gastrointestinal syndrome in mice independent of apoptosis. Science 327, 593-596 (2010).

106.Insinga A, et al. DNA damage in stem cells activates p21, inhibits p53, and induces symmetric self-renewing divisions. Proceedings of the National Academy of Sciences of the United States of America 110, 3931-3936 (2013).

107.Fragkos M, Jurvansuu J, Beard P. H2AX is required for cell cycle arrest via the p53/p21 pathway. Molecular and Cellular Biology 29, 2828-2840 (2009).

108.Sengupta S, Harris CC. p53: traffic cop at the crossroads of DNA repair and recombination. Nature Reviews Molecular Cell Biology 6, 44-55 (2005).
109.Chiu SJ, Lee YJ, Hsu TS, Chen WS. Oxaliplatin-induced gamma-H2AX activation via both p53-dependent and -independent pathways but is not associated with cell cycle arrest in human colorectal cancer cells. Chemico-Biological Interactions 182, 173-182 (2009).

110.Sequeira I, Nicolas JF. Redefining the structure of the hair follicle by 3D clonal analysis. Development 139, 3741-3751 (2012).

111.Kai T, Spradling A. Differentiating germ cells can revert into functional stem cells in Drosophila melanogaster ovaries. Nature 428, 564-569 (2004).

112.Tetteh PW, et al. Replacement of Lost Lgr5-Positive Stem Cells through Plasticity of Their Enterocyte-Lineage Daughters. Cell Stem Cell 18, 203-213 (2016).

113.Desai TJ, Krasnow MA. Stem cells: Differentiated cells in a back-up role. Nature 503, 204-205 (2013).

114.Daniel GE, Park HD. Reproduction in Paramecium as affected by small doses of X-ray and beta radiation. Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine 83, 662-665 (1953).

115.Gonsalves NI, Chase HB. Wound healing in X-irradiated mammalian skin. T-I-T Journal of Life Sciences 5, 77-86 (1975).

116.Fan Y, Bergmann A. Distinct mechanisms of apoptosis-induced compensatory proliferation in proliferating and differentiating tissues in the Drosophila eye. Developmental Cell 14, 399-410 (2008).

117.Ryoo HD, Gorenc T, Steller H. Apoptotic cells can induce compensatory cell proliferation through the JNK and the Wingless signaling pathways. Developmental Cell 7, 491-501 (2004).

118.Pellettieri J, Fitzgerald P, Watanabe S, Mancuso J, Green DR, Sanchez Alvarado A. Cell death and tissue remodeling in planarian regeneration. Developmental Biology 338, 76-85 (2010).

119.Mesa KR, et al. Niche-induced cell death and epithelial phagocytosis regulate hair follicle stem cell pool. Nature 522, 94-97 (2015).
120.Sennett R, Rendl M. Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling. Seminars in Cell & Developmental Biology 23, 917-927 (2012).

121.Kim NH, et al. p53 and microRNA-34 are suppressors of canonical Wnt signaling. Science Signaling 4, ra71 (2011).

122. Williams, A. W.: A note on certain appearances of X-rayed hairs. Br. J. Dermatol. 18:63(1906).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔