跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/07 21:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱顯鎰
研究生(外文):Hsien-Yi Chiu
論文名稱:除毛雷射對生長期毛囊的影響: 傷害反應與毛囊再生
論文名稱(外文):Effect of depilatory laser on anagen hair follicles: damage response and regeneration
指導教授:林頌然
指導教授(外文):Sung-Jan Lin
口試日期:2017-06-14
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:95
中文關鍵詞:毛囊幹細胞亞歷山大雷射熱傷害修復再生耗竭
外文關鍵詞:hair folliclestem cellalexandrite laserthermal injuryrepairregenerationexhaustion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:820
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
毛囊總是終其一生不斷進行著不斷的衰退與再生;而且常常毛囊在遭受傷害時,也總是能有效率的修復再生。除毛雷射現已廣泛應用於臨床,一般相信此雷射是藉由引起對毛囊的熱效應來達到除毛的效果。然而即使如此,過去的臨床文獻也指出在經過雷射治療3個月後,約有40~80%的毛髮有再重新長回來的現象。雖然臨床上有觀察到上述現象,但除毛雷射是對毛囊造成怎樣的熱傷害,我們仍所知有限;另一方面,有些毛髮是如何再修復雷射所引起的熱傷害而再生依然沒有被研究過,我們對此仍一無所知。
故而本研究旨在研究除毛雷射是對毛囊造成怎樣的熱傷害及探究毛囊在經歷除毛雷射的傷害後是利用何種的細胞及分子機轉來進行修復的過程。在此研究中我們利用7週大(休止期)的C57BL/6小鼠當做研究模型,此外,我們也用蜜蠟拔毛的方法誘導小鼠背部皮膚的毛囊同步進入生長期。2週後當毛囊已在生長期時,我們在小鼠背部皮膚施予不同能量密度(fluence: 8, 10, 12, 14 J/cm2 , pulse duration: 3 ms)的除毛雷射(亞歷山大雷射,波長: 755 nm,脈衝期間: 3 ms),觀察毛囊後續產生的變化。
此研究發現除毛雷射會引起隨使用能量密度升高而增加的熱傷害,造成毛囊多部位的熱傷害引起細胞死亡,而這些受傷害的部位包含: 內外根鞘(outer and inner root sheath cells),毛囊皮質(hair cortex),毛囊球部(hair bulb),毛囊前皮質(precortex areas),毛間上皮(interfollicular epithelium)等。且在受傷的毛囊,毛囊往內分化為內根鞘及毛囊皮質的過程會被迫暫時性地中止待毛囊修復。另一方面,我們發現,毛囊細胞受傷後很快地於毛囊球部、外根鞘及毛囊隆起部位(bulge)的毛囊幹細胞(bulge stem cell),都出現了BrdU陽性的複製修復反應。更進一步我們使用基因轉殖鼠子代追蹤技術(K19CreER/+; R26tdTomato/+),發現被雷射傷害活化的毛囊幹細胞會離開他的棲位(niche),並分別往下及往上位移分化至受傷的外根鞘及毛間上皮來修復再生這些受傷害的毛囊表皮細胞。然而我們卻發現雷射後大量降低的毛囊幹細胞表面標記(Lhx2, Sox9 and keratin 15),進而得知毛囊幹細胞的數目明顯減少,了解到這雷射傷害過程會消耗毛囊幹細胞的儲備量,導致後續再生的毛囊變細及變短。而我們也發現hedgehog signaling是主宰毛囊受到除毛雷射熱傷害,幹細胞複製離開棲位修復毀損的毛囊細胞過程中,重要的分子訊號機轉之一。
此研究發現除毛雷射會對生長期的毛囊造成依使用能量密度高低不同的熱傷害,而毛囊為了修復這熱傷害,在hedgehog訊號的趨使下,將導致毛囊幹細胞不合時宜過度的活化離開他們的棲位,進而犧牲幹細胞的儲備量導致毛囊幹細胞的耗竭及後續毛囊的萎縮微小化。
Throughout adult life, hair follicles cyclically degenerate and regenerate. After injury, adult HFs can often efficiently “rebuild” themselves. Depilatory laser has been widely used clinically and its clinical effect is believed to be mediated by a selective photothermolytic effect. Nevertheless, variable regrowth rates have been reported, ranging from 40% to 80% 12 weeks after depilatory laser treatment. The thermal damage to HFs after laser irradiation has not been well characterized. How the thermally damaged HFs are repaired or regenerated remains to be explored.
This study is aimed at characterizing the damage to the hair follicles induced by depilatory laser treatment and exploring the cellular and molecular mechanisms governing the subsequent regenerative process.
We used 7-week-old adult C57BL/6 mice as a model in which synchronized anagen entry was induced by waxing during telogen. Two weeks after waxing when anagen has been initiated, alexandrite laser (755 nm) with various fluence ( 8, 10, 12, 14 J/cm2 , pulse duration: 3 ms) was administered on the dorsal skin. We found that alexandrite laser induced fluence-dependent thermal injury, resulting in cell death of multiple HF subpopulations, including precortex areas, outer and inner root sheath cells, hair cortex, and hair bulb cells. In the damaged hair follicles, the differentiation toward inner root sheath and hair cortex was also disrupted. Rapidly responding to laser irradiation, the proliferative reparative activity, indicated by pulse BrdU labeling, was revealed in the hair bulb, outer root sheath and hair follicle bulge stem cells. Through lineage tracing in K19CreER/+; R26tdTomato/+mice, we demonstrated that aberrantly activated bulge stem cells migrated out of the bulge niche and moved downward and upward to the outer root sheath and interfollicular epidermis, respectively. The progeny of bulge stem cells contributed to the regenerated hair bulbs and occasionally the interfollicular epidermis. However, this process was accompanied by decrease in bulge stem cell numbers, evidenced by decreased cells expressing of bulge stem cell markers of Lhx2, Sox9 and keratin 15. It resulted in significant reduction in the diameter and length of the regrowing hairs. We also found that hedgehog signaling was activated in bulge stem cells after laser injury and its activation was required to activate bulge stem cells to repair the damaged hair bulb. Inhibition of hedgehog signaling after laser treatment lead to failed repair and premature catagen entry.
Our study showed that depilatory laser induces fluence-dependent thermal injury to anagen hair follicles. The thermal damage causes mistimed activation of bulge stem cells by enhancing hedgehog signaling. Mobilization of bulge stem cells out their niche might lead to their exhaustion and hair follicle miniaturization.
目次(頁數)
中文摘要 (1)
Abstract (3)
目 錄 (5)
圖目錄 (8)
表目錄 (11)
Chapter 1. Introduction (12)
1.1. Regenerative and repairative capacity of hair follicle (12)
1.2. Laser-assisted hair removal: selective photothermolysis (12)
1.3. Regrowing hairs after depilatory laser treatment : an unexplored phenomenon (14)
1.4. Rethinking the role of hair follicle stem cell in the process of depilatory- induced injury and repair or regeneration after injury (16)
Chapter 2. Materials and Methods (19)
Chapter 3. The damage to hair follicles induced by alexandrite laser (25)
3.1. Gross and histologic investigation of the damage to hair follicles induced by alexandrite laser (25)
3.2. Laser induces cell death of multiple hair follicle subpopulations (29)
Chapter 4. The reduced length and width of regrowing hairs after laser-irradiation due to depletion of bulge stem cell (32)
Chapter 5. Exploration of the underlying mechanism for the depletion of bulge stem cell (36)
5.1. Aberrantly activated hair follicle stem cells migrating out the niche and contributing to repair the laser-induced injury (36)
5.2 Dissection of the underling signaling pathway contributing to BgSC activation after laser treatment (41)
5.3. Functional assay to unveil the role of hedgehog signaling in repair of hair follicles after depilatory laser-induced injury (43)
Chapter 6. Discussion and Conclusion (47)
6.1. Depilatory laser- induced injury to the anagen hair follicle (47)
6.2. How the anagen hair follicle responds to various injury (47)
6.3. Tight control of activation and quiescence of the BgSC is important for maintaining the repairative and regenerative capacity of the hair follicle (49)
6.4. Disruption of tight regulation of BgSC leads to their exhaustion and depletion (50)
6.5. Hedgehog and BMP signaling involved in BgSC activation is essential for HF repair after depilatory laser-induced injury (52)
6.6. Lhx2 might be also involved in the switch between quiescence and activation of bulge stem cell after depilatory laser-induced injury (54)
Conclusion (56)
Abbreviations and acronyms (59)
參考文獻 (60)
附錄 (Supplementary Data) (72)
Curriculum Vitae (82)
Akilli Ozturk, O., Pakula, H., Chmielowiec, J., Qi, J., Stein, S., Lan, L., Sasaki, Y., Rajewsky, K., and Birchmeier, W. (2015). Gab1 and Mapk Signaling Are Essential in the Hair Cycle and Hair Follicle Stem Cell Quiescence. Cell Rep 13, 561-572.
Alonso, L., and Fuchs, E. (2003). Stem cells of the skin epithelium. Proc Natl Acad Sci U S A 100 Suppl 1, 11830-11835.
Anderson, R.R., and Parrish, J.A. (1983). Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science 220, 524-527.
Berman, D.M., Karhadkar, S.S., Hallahan, A.R., Pritchard, J.I., Eberhart, C.G., Watkins, D.N., Chen, J.K., Cooper, M.K., Taipale, J., Olson, J.M., et al. (2002). Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 297, 1559-1561.
Botchkarev, V.A., Botchkareva, N.V., Nakamura, M., Huber, O., Funa, K., Lauster, R., Paus, R., and Gilchrest, B.A. (2001). Noggin is required for induction of the hair follicle growth phase in postnatal skin. FASEB J 15, 2205-2214.
Botchkarev, V.A., Botchkareva, N.V., Roth, W., Nakamura, M., Chen, L.H., Herzog, W., Lindner, G., McMahon, J.A., Peters, C., Lauster, R., et al. (1999). Noggin is a mesenchymally derived stimulator of hair-follicle induction. Nat Cell Biol 1, 158-164.
Botchkarev, V.A., Botchkareva, N.V., Sharov, A.A., Funa, K., Huber, O., and Gilchrest, B.A. (2002). Modulation of BMP signaling by noggin is required for induction of the secondary (nontylotrich) hair follicles. J Invest Dermatol 118, 3-10.
Botchkarev, V.A., and Kishimoto, J. (2003). Molecular control of epithelial-mesenchymal interactions during hair follicle cycling. J Investig Dermatol Symp Proc 8, 46-55.
Botchkarev, V.A., and Paus, R. (2003). Molecular biology of hair morphogenesis: development and cycling. J Exp Zool B Mol Dev Evol 298, 164-180.
Botchkarev, V.A., and Sharov, A.A. (2004). BMP signaling in the control of skin development and hair follicle growth. Differentiation 72, 512-526.
Castilho, R.M., Squarize, C.H., Chodosh, L.A., Williams, B.O., and Gutkind, J.S. (2009). mTOR mediates Wnt-induced epidermal stem cell exhaustion and aging. Cell Stem Cell 5, 279-289.
Chen, C.C., Plikus, M.V., Tang, P.C., Widelitz, R.B., and Chuong, C.M. (2016). The Modulatable Stem Cell Niche: Tissue Interactions during Hair and Feather Follicle Regeneration. J Mol Biol 428, 1423-1440.
Chi, W., Wu, E., and Morgan, B.A. (2013). Dermal papilla cell number specifies hair size, shape and cycling and its reduction causes follicular decline. Development 140, 1676-1683.
Chi, W.Y., Enshell-Seijffers, D., and Morgan, B.A. (2010). De novo production of dermal papilla cells during the anagen phase of the hair cycle. J Invest Dermatol 130, 2664-2666.
Cohen, M., Kicheva, A., Ribeiro, A., Blassberg, R., Page, K.M., Barnes, C.P., and Briscoe, J. (2015). Ptch1 and Gli regulate Shh signalling dynamics via multiple mechanisms. Nat Commun 6, 6709.
Collins, C.A., Olsen, I., Zammit, P.S., Heslop, L., Petrie, A., Partridge, T.A., and Morgan, J.E. (2005). Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122, 289-301.
Cotsarelis, G., Sun, T.T., and Lavker, R.M. (1990). Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61, 1329-1337.
Dahl, L., Richter, K., Hagglund, A.C., and Carlsson, L. (2008). Lhx2 expression promotes self-renewal of a distinct multipotential hematopoietic progenitor cell in embryonic stem cell-derived embryoid bodies. PLoS One 3, e2025.
Dierickx, C.C., Grossman, M.C., Farinelli, W.A., and Anderson, R.R. (1998). Permanent hair removal by normal-mode ruby laser. Arch Dermatol 134, 837-842.
Doetsch, F., Caille, I., Lim, D.A., Garcia-Verdugo, J.M., and Alvarez-Buylla, A. (1999). Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703-716.
Fendrich, V., Rehm, J., Waldmann, J., Buchholz, M., Christofori, G., Lauth, M., Slater, E.P., and Bartsch, D.K. (2011). Hedgehog inhibition with cyclopamine represses tumor growth and prolongs survival in a transgenic mouse model of islet cell tumors. Ann Surg 253, 546-552.
Folgueras, A.R., Guo, X., Pasolli, H.A., Stokes, N., Polak, L., Zheng, D., and Fuchs, E. (2013). Architectural niche organization by LHX2 is linked to hair follicle stem cell function. Cell Stem Cell 13, 314-327.
Gan, S.D., and Graber, E.M. (2013). Laser hair removal: a review. Dermatol Surg 39, 823-838.
Gault, D.T., Grobbelaar, A.O., Grover, R., Liew, S.H., Philp, B., Clement, R.M., and Kiernan, M.N. (1999). The removal of unwanted hair using a ruby laser. Br J Plast Surg 52, 173-177.
Gay, D., Kwon, O., Zhang, Z., Spata, M., Plikus, M.V., Holler, P.D., Ito, M., Yang, Z., Treffeisen, E., Kim, C.D., et al. (2013). Fgf9 from dermal gammadelta T cells induces hair follicle neogenesis after wounding. Nat Med 19, 916-923.
Genander, M., Cook, P.J., Ramskold, D., Keyes, B.E., Mertz, A.F., Sandberg, R., and Fuchs, E. (2014). BMP signaling and its pSMAD1/5 target genes differentially regulate hair follicle stem cell lineages. Cell Stem Cell 15, 619-633.
Gold, M.H., Bell, M.W., Foster, T.D., and Street, S. (1997). Long-term epilation using the EpiLight broad band, intense pulsed light hair removal system. Dermatol Surg 23, 909-913.
Gros, J., Manceau, M., Thome, V., and Marcelle, C. (2005). A common somitic origin for embryonic muscle progenitors and satellite cells. Nature 435, 954-958.
Grossman, M.C., Dierickx, C., Farinelli, W., Flotte, T., and Anderson, R.R. (1996). Damage to hair follicles by normal-mode ruby laser pulses. J Am Acad Dermatol 35, 889-894.
Grunewald, S., Bodendorf, M.O., Zygouris, A., Simon, J.C., and Paasch, U. (2014). Long-term efficacy of linear-scanning 808 nm diode laser for hair removal compared to a scanned alexandrite laser. Lasers Surg Med 46, 13-19.
Guha, U., Mecklenburg, L., Cowin, P., Kan, L., O''Guin, W.M., D''Vizio, D., Pestell, R.G., Paus, R., and Kessler, J.A. (2004). Bone morphogenetic protein signaling regulates postnatal hair follicle differentiation and cycling. Am J Pathol 165, 729-740.
Haedersdal, M., Beerwerth, F., and Nash, J.F. (2011). Laser and intense pulsed light hair removal technologies: from professional to home use. Br J Dermatol 165 Suppl 3, 31-36.
Hashimoto, T., Kazama, T., Ito, M., Urano, K., Katakai, Y., Yamaguchi, N., and Ueyama, Y. (2001). Histologic study of the regeneration process of human hair follicles grafted onto SCID mice after bulb amputation. J Investig Dermatol Symp Proc 6, 38-42.
Hendrix, S., Handjiski, B., Peters, E.M., and Paus, R. (2005). A guide to assessing damage response pathways of the hair follicle: lessons from cyclophosphamide-induced alopecia in mice. J Invest Dermatol 125, 42-51.
Horsley, V., Aliprantis, A.O., Polak, L., Glimcher, L.H., and Fuchs, E. (2008). NFATc1 balances quiescence and proliferation of skin stem cells. Cell 132, 299-310.
Hsu, Y.C., and Fuchs, E. (2012). A family business: stem cell progeny join the niche to regulate homeostasis. Nat Rev Mol Cell Biol 13, 103-114.
Hsu, Y.C., Li, L., and Fuchs, E. (2014a). Emerging interactions between skin stem cells and their niches. Nat Med 20, 847-856.
Hsu, Y.C., Li, L., and Fuchs, E. (2014b). Transit-amplifying cells orchestrate stem cell activity and tissue regeneration. Cell 157, 935-949.
Hsu, Y.C., Pasolli, H.A., and Fuchs, E. (2011). Dynamics between stem cells, niche, and progeny in the hair follicle. Cell 144, 92-105.
Ito, M., Liu, Y., Yang, Z., Nguyen, J., Liang, F., Morris, R.J., and Cotsarelis, G. (2005). Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 11, 1351-1354.
Ito, M., Yang, Z., Andl, T., Cui, C., Kim, N., Millar, S.E., and Cotsarelis, G. (2007). Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 447, 316-320.
Jiang, J., and Hui, C.C. (2008). Hedgehog signaling in development and cancer. Dev Cell 15, 801-812.
Kadaja, M., Keyes, B.E., Lin, M., Pasolli, H.A., Genander, M., Polak, L., Stokes, N., Zheng, D., and Fuchs, E. (2014). SOX9: a stem cell transcriptional regulator of secreted niche signaling factors. Genes Dev 28, 328-341.
Kato, T., Omi, T., Naito, Z., Hirai, T., and Kawana, S. (2004). Histological hair removal study by ruby or alexandrite laser with comparative study on the effects of wavelength and fluence. J Cosmet Laser Ther 6, 32-37.
Kobielak, K., Stokes, N., de la Cruz, J., Polak, L., and Fuchs, E. (2007). Loss of a quiescent niche but not follicle stem cells in the absence of bone morphogenetic protein signaling. Proc Natl Acad Sci U S A 104, 10063-10068.
Kolterud, A., Alenius, M., Carlsson, L., and Bohm, S. (2004). The Lim homeobox gene Lhx2 is required for olfactory sensory neuron identity. Development 131, 5319-5326.
Lask, G., Elman, M., Slatkine, M., Waldman, A., and Rozenberg, Z. (1997). Laser-assisted hair removal by selective photothermolysis. Preliminary results. Dermatol Surg 23, 737-739.
Lavker, R.M., Miller, S., Wilson, C., Cotsarelis, G., Wei, Z.G., Yang, J.S., and Sun, T.T. (1993). Hair follicle stem cells: their location, role in hair cycle, and involvement in skin tumor formation. J Invest Dermatol 101, 16S-26S.
Lavker, R.M., Sun, T.T., Oshima, H., Barrandon, Y., Akiyama, M., Ferraris, C., Chevalier, G., Favier, B., Jahoda, C.A., Dhouailly, D., et al. (2003). Hair follicle stem cells. J Investig Dermatol Symp Proc 8, 28-38.
Lay, K., Kume, T., and Fuchs, E. (2016). FOXC1 maintains the hair follicle stem cell niche and governs stem cell quiescence to preserve long-term tissue-regenerating potential. Proc Natl Acad Sci U S A 113, E1506-1515.
Lee, J., Platt, K.A., Censullo, P., and Ruiz i Altaba, A. (1997). Gli1 is a target of Sonic hedgehog that induces ventral neural tube development. Development 124, 2537-2552.
Lei, M., Guo, H., Qiu, W., Lai, X., Yang, T., Widelitz, R.B., Chuong, C.M., Lian, X., and Yang, L. (2014). Modulating hair follicle size with Wnt10b/DKK1 during hair regeneration. Exp Dermatol 23, 407-413.
Liew, S.H., Grobbelaar, A.O., Gault, D.T., Sanders, R., Green, C.J., and Linge, C. (1999a). The effect of ruby laser light on ex vivo hair follicles: clinical implications. Ann Plast Surg 42, 249-254.
Liew, S.H., Ladhani, K., Grobbelaar, A.O., Gault, D.T., Sanders, R., Green, C.J., and Linge, C. (1999b). Ruby laser-assisted hair removal reduces the coarseness of regrowing hairs: fallacy or fact? Br J Plast Surg 52, 380-384.
Lin, T.Y., Manuskiatti, W., Dierickx, C.C., Farinelli, W.A., Fisher, M.E., Flotte, T., Baden, H.P., and Anderson, R.R. (1998). Hair growth cycle affects hair follicle destruction by ruby laser pulses. J Invest Dermatol 111, 107-113.
Mardaryev, A.N., Meier, N., Poterlowicz, K., Sharov, A.A., Sharova, T.Y., Ahmed, M.I., Rapisarda, V., Lewis, C., Fessing, M.Y., Ruenger, T.M., et al. (2011). Lhx2 differentially regulates Sox9, Tcf4 and Lgr5 in hair follicle stem cells to promote epidermal regeneration after injury. Development 138, 4843-4852.
Matsumura, H., Mohri, Y., Binh, N.T., Morinaga, H., Fukuda, M., Ito, M., Kurata, S., Hoeijmakers, J., and Nishimura, E.K. (2016). Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis. Science 351, aad4395.
Matsuo, S., Takahashi, M., Inoue, K., Tamura, K., Irie, K., Kodama, Y., Nishikawa, A., and Yoshida, M. (2014). Inhibitory potential of postnatal treatment with cyclopamine, a hedgehog signaling inhibitor, on medulloblastoma development in Ptch1 heterozygous mice. Toxicol Pathol 42, 1174-1187.
Messenger, A.G., and Bleehen, S.S. (1984). Alopecia areata: light and electron microscopic pathology of the regrowing white hair. Br J Dermatol 110, 155-162.
Morgner, J., Ghatak, S., Jakobi, T., Dieterich, C., Aumailley, M., and Wickstrom, S.A. (2015). Integrin-linked kinase regulates the niche of quiescent epidermal stem cells. Nat Commun 6, 8198.
Morris, R.J., Liu, Y., Marles, L., Yang, Z., Trempus, C., Li, S., Lin, J.S., Sawicki, J.A., and Cotsarelis, G. (2004). Capturing and profiling adult hair follicle stem cells. Nat Biotechnol 22, 411-417.
Morris, R.J., and Potten, C.S. (1994). Slowly cycling (label-retaining) epidermal cells behave like clonogenic stem cells in vitro. Cell Prolif 27, 279-289.
Muller-Rover, S., Handjiski, B., van der Veen, C., Eichmuller, S., Foitzik, K., McKay, I.A., Stenn, K.S., and Paus, R. (2001). A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J Invest Dermatol 117, 3-15.
Niemann, C., Unden, A.B., Lyle, S., Zouboulis Ch, C., Toftgard, R., and Watt, F.M. (2003). Indian hedgehog and beta-catenin signaling: role in the sebaceous lineage of normal and neoplastic mammalian epidermis. Proc Natl Acad Sci U S A 100 Suppl 1, 11873-11880.
Oliver, R.F. (1966). Whisker growth after removal of the dermal papilla and lengths of follicle in the hooded rat. J Embryol Exp Morphol 15, 331-347.
Orringer, J.S., Hammerberg, C., Lowe, L., Kang, S., Johnson, T.M., Hamilton, T., Voorhees, J.J., and Fisher, G.J. (2006). The effects of laser-mediated hair removal on immunohistochemical staining properties of hair follicles. J Am Acad Dermatol 55, 402-407.
Oshima, H., Rochat, A., Kedzia, C., Kobayashi, K., and Barrandon, Y. (2001). Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell 104, 233-245.
Panteleyev, A.A., Jahoda, C.A., and Christiano, A.M. (2001). Hair follicle predetermination. J Cell Sci 114, 3419-3431.
Paus, R., and Cotsarelis, G. (1999). The biology of hair follicles. N Engl J Med 341, 491-497.
Paus, R., Handjiski, B., Eichmuller, S., and Czarnetzki, B.M. (1994). Chemotherapy-induced alopecia in mice. Induction by cyclophosphamide, inhibition by cyclosporine A, and modulation by dexamethasone. Am J Pathol 144, 719-734.
Paus, R., Heinzelmann, T., Robicsek, S., Czarnetzki, B.M., and Maurer, M. (1995). Substance P stimulates murine epidermal keratinocyte proliferation and dermal mast cell degranulation in situ. Arch Dermatol Res 287, 500-502.
Paus, R., Slominski, A., and Czarnetzki, B.M. (1993). Is alopecia areata an autoimmune-response against melanogenesis-related proteins, exposed by abnormal MHC class I expression in the anagen hair bulb? Yale J Biol Med 66, 541-554.
Pietras, E.M., Warr, M.R., and Passegue, E. (2011). Cell cycle regulation in hematopoietic stem cells. J Cell Biol 195, 709-720.
Porter, F.D., Drago, J., Xu, Y., Cheema, S.S., Wassif, C., Huang, S.P., Lee, E., Grinberg, A., Massalas, J.S., Bodine, D., et al. (1997). Lhx2, a LIM homeobox gene, is required for eye, forebrain, and definitive erythrocyte development. Development 124, 2935-2944.
Pratt, C.H., King, L.E., Jr., Messenger, A.G., Christiano, A.M., and Sundberg, J.P. (2017). Alopecia areata. Nat Rev Dis Primers 3, 17011.
Rhee, H., Polak, L., and Fuchs, E. (2006). Lhx2 maintains stem cell character in hair follicles. Science 312, 1946-1949.
Roberson, M.S., Schoderbek, W.E., Tremml, G., and Maurer, R.A. (1994). Activation of the glycoprotein hormone alpha-subunit promoter by a LIM-homeodomain transcription factor. Mol Cell Biol 14, 2985-2993.
Rompolas, P., Deschene, E.R., Zito, G., Gonzalez, D.G., Saotome, I., Haberman, A.M., and Greco, V. (2012). Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration. Nature 487, 496-499.
Rompolas, P., and Greco, V. (2014). Stem cell dynamics in the hair follicle niche. Semin Cell Dev Biol 25-26, 34-42.
Rompolas, P., Mesa, K.R., and Greco, V. (2013). Spatial organization within a niche as a determinant of stem-cell fate. Nature 502, 513-518.
Sato, N., Leopold, P.L., and Crystal, R.G. (1999). Induction of the hair growth phase in postnatal mice by localized transient expression of Sonic hedgehog. J Clin Invest 104, 855-864.
Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9, 671-675.
Shirkavand, A., Ataie-Fashtami, L., Sarkar, S., Alinaghizadeh, M.R., Fateh, M., Zand, N., and Djavid, G.E. (2012). Thermal damage patterns of diode hair-removal lasers according to various skin types and hair densities and colors: a simulation study. Photomed Laser Surg 30, 374-380.
Slominski, A.T., Botchkarev, V., Choudhry, M., Fazal, N., Fechner, K., Furkert, J., Krause, E., Roloff, B., Sayeed, M., Wei, E., et al. (1999). Cutaneous expression of CRH and CRH-R. Is there a "skin stress response system?". Ann N Y Acad Sci 885, 287-311.
Snippert, H.J., Haegebarth, A., Kasper, M., Jaks, V., van Es, J.H., Barker, N., van de Wetering, M., van den Born, M., Begthel, H., Vries, R.G., et al. (2010). Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 327, 1385-1389.
Song, S., and Lambert, P.F. (1999). Different responses of epidermal and hair follicular cells to radiation correlate with distinct patterns of p53 and p21 induction. Am J Pathol 155, 1121-1127.
Sun, T.T., Cotsarelis, G., and Lavker, R.M. (1991). Hair follicular stem cells: the bulge-activation hypothesis. J Invest Dermatol 96, 77S-78S.
Taylor, G., Lehrer, M.S., Jensen, P.J., Sun, T.T., and Lavker, R.M. (2000). Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 102, 451-461.
Thayer, S.P., di Magliano, M.P., Heiser, P.W., Nielsen, C.M., Roberts, D.J., Lauwers, G.Y., Qi, Y.P., Gysin, S., Fernandez-del Castillo, C., Yajnik, V., et al. (2003). Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 425, 851-856.
Tiede, S., and Paus, R. (2006). Lhx2--decisive role in epithelial stem cell maintenance, or just the "tip of the iceberg"? Bioessays 28, 1157-1160.
Tornqvist, G., Sandberg, A., Hagglund, A.C., and Carlsson, L. (2010). Cyclic expression of lhx2 regulates hair formation. PLoS Genet 6, e1000904.
Tumbar, T., Guasch, G., Greco, V., Blanpain, C., Lowry, W.E., Rendl, M., and Fuchs, E. (2004). Defining the epithelial stem cell niche in skin. Science 303, 359-363.
Vaccaro, M., Guarneri, F., Brianti, P., and Cannavo, S.P. (2015). Temporary radiation-induced alopecia after embolization of a cerebral arteriovenous malformation. Clin Exp Dermatol 40, 88-90.
Wagner, R.F., Jr. (1990). Physical methods for the management of hirsutism. Cutis 45, 319-321, 325-316.
Wandzioch, E., Kolterud, A., Jacobsson, M., Friedman, S.L., and Carlsson, L. (2004). Lhx2-/- mice develop liver fibrosis. Proc Natl Acad Sci U S A 101, 16549-16554.
Wang, X., Hsi, T.C., Guerrero-Juarez, C.F., Pham, K., Cho, K., McCusker, C.D., Monuki, E.S., Cho, K.W., Gay, D.L., and Plikus, M.V. (2015). Principles and mechanisms of regeneration in the mouse model for wound-induced hair follicle neogenesis. Regeneration (Oxf) 2, 169-181.
Xu, Y., Baldassare, M., Fisher, P., Rathbun, G., Oltz, E.M., Yancopoulos, G.D., Jessell, T.M., and Alt, F.W. (1993). LH-2: a LIM/homeodomain gene expressed in developing lymphocytes and neural cells. Proc Natl Acad Sci U S A 90, 227-231.
Yilmaz, O.H., Valdez, R., Theisen, B.K., Guo, W., Ferguson, D.O., Wu, H., and Morrison, S.J. (2006). Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441, 475-482.
Yuhki, M., Yamada, M., Kawano, M., Iwasato, T., Itohara, S., Yoshida, H., Ogawa, M., and Mishina, Y. (2004). BMPR1A signaling is necessary for hair follicle cycling and hair shaft differentiation in mice. Development 131, 1825-1833.
Zhang, C.L., Zou, Y., He, W., Gage, F.H., and Evans, R.M. (2008). A role for adult TLX-positive neural stem cells in learning and behaviour. Nature 451, 1004-1007.
Zhang, J., He, X.C., Tong, W.G., Johnson, T., Wiedemann, L.M., Mishina, Y., Feng, J.Q., and Li, L. (2006). Bone morphogenetic protein signaling inhibits hair follicle anagen induction by restricting epithelial stem/progenitor cell activation and expansion. Stem Cells 24, 2826-2839.
Zhang, Y.V., Cheong, J., Ciapurin, N., McDermitt, D.J., and Tumbar, T. (2009). Distinct self-renewal and differentiation phases in the niche of infrequently dividing hair follicle stem cells. Cell Stem Cell 5, 267-278.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top