|
Akilli Ozturk, O., Pakula, H., Chmielowiec, J., Qi, J., Stein, S., Lan, L., Sasaki, Y., Rajewsky, K., and Birchmeier, W. (2015). Gab1 and Mapk Signaling Are Essential in the Hair Cycle and Hair Follicle Stem Cell Quiescence. Cell Rep 13, 561-572. Alonso, L., and Fuchs, E. (2003). Stem cells of the skin epithelium. Proc Natl Acad Sci U S A 100 Suppl 1, 11830-11835. Anderson, R.R., and Parrish, J.A. (1983). Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science 220, 524-527. Berman, D.M., Karhadkar, S.S., Hallahan, A.R., Pritchard, J.I., Eberhart, C.G., Watkins, D.N., Chen, J.K., Cooper, M.K., Taipale, J., Olson, J.M., et al. (2002). Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 297, 1559-1561. Botchkarev, V.A., Botchkareva, N.V., Nakamura, M., Huber, O., Funa, K., Lauster, R., Paus, R., and Gilchrest, B.A. (2001). Noggin is required for induction of the hair follicle growth phase in postnatal skin. FASEB J 15, 2205-2214. Botchkarev, V.A., Botchkareva, N.V., Roth, W., Nakamura, M., Chen, L.H., Herzog, W., Lindner, G., McMahon, J.A., Peters, C., Lauster, R., et al. (1999). Noggin is a mesenchymally derived stimulator of hair-follicle induction. Nat Cell Biol 1, 158-164. Botchkarev, V.A., Botchkareva, N.V., Sharov, A.A., Funa, K., Huber, O., and Gilchrest, B.A. (2002). Modulation of BMP signaling by noggin is required for induction of the secondary (nontylotrich) hair follicles. J Invest Dermatol 118, 3-10. Botchkarev, V.A., and Kishimoto, J. (2003). Molecular control of epithelial-mesenchymal interactions during hair follicle cycling. J Investig Dermatol Symp Proc 8, 46-55. Botchkarev, V.A., and Paus, R. (2003). Molecular biology of hair morphogenesis: development and cycling. J Exp Zool B Mol Dev Evol 298, 164-180. Botchkarev, V.A., and Sharov, A.A. (2004). BMP signaling in the control of skin development and hair follicle growth. Differentiation 72, 512-526. Castilho, R.M., Squarize, C.H., Chodosh, L.A., Williams, B.O., and Gutkind, J.S. (2009). mTOR mediates Wnt-induced epidermal stem cell exhaustion and aging. Cell Stem Cell 5, 279-289. Chen, C.C., Plikus, M.V., Tang, P.C., Widelitz, R.B., and Chuong, C.M. (2016). The Modulatable Stem Cell Niche: Tissue Interactions during Hair and Feather Follicle Regeneration. J Mol Biol 428, 1423-1440. Chi, W., Wu, E., and Morgan, B.A. (2013). Dermal papilla cell number specifies hair size, shape and cycling and its reduction causes follicular decline. Development 140, 1676-1683. Chi, W.Y., Enshell-Seijffers, D., and Morgan, B.A. (2010). De novo production of dermal papilla cells during the anagen phase of the hair cycle. J Invest Dermatol 130, 2664-2666. Cohen, M., Kicheva, A., Ribeiro, A., Blassberg, R., Page, K.M., Barnes, C.P., and Briscoe, J. (2015). Ptch1 and Gli regulate Shh signalling dynamics via multiple mechanisms. Nat Commun 6, 6709. Collins, C.A., Olsen, I., Zammit, P.S., Heslop, L., Petrie, A., Partridge, T.A., and Morgan, J.E. (2005). Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122, 289-301. Cotsarelis, G., Sun, T.T., and Lavker, R.M. (1990). Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61, 1329-1337. Dahl, L., Richter, K., Hagglund, A.C., and Carlsson, L. (2008). Lhx2 expression promotes self-renewal of a distinct multipotential hematopoietic progenitor cell in embryonic stem cell-derived embryoid bodies. PLoS One 3, e2025. Dierickx, C.C., Grossman, M.C., Farinelli, W.A., and Anderson, R.R. (1998). Permanent hair removal by normal-mode ruby laser. Arch Dermatol 134, 837-842. Doetsch, F., Caille, I., Lim, D.A., Garcia-Verdugo, J.M., and Alvarez-Buylla, A. (1999). Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703-716. Fendrich, V., Rehm, J., Waldmann, J., Buchholz, M., Christofori, G., Lauth, M., Slater, E.P., and Bartsch, D.K. (2011). Hedgehog inhibition with cyclopamine represses tumor growth and prolongs survival in a transgenic mouse model of islet cell tumors. Ann Surg 253, 546-552. Folgueras, A.R., Guo, X., Pasolli, H.A., Stokes, N., Polak, L., Zheng, D., and Fuchs, E. (2013). Architectural niche organization by LHX2 is linked to hair follicle stem cell function. Cell Stem Cell 13, 314-327. Gan, S.D., and Graber, E.M. (2013). Laser hair removal: a review. Dermatol Surg 39, 823-838. Gault, D.T., Grobbelaar, A.O., Grover, R., Liew, S.H., Philp, B., Clement, R.M., and Kiernan, M.N. (1999). The removal of unwanted hair using a ruby laser. Br J Plast Surg 52, 173-177. Gay, D., Kwon, O., Zhang, Z., Spata, M., Plikus, M.V., Holler, P.D., Ito, M., Yang, Z., Treffeisen, E., Kim, C.D., et al. (2013). Fgf9 from dermal gammadelta T cells induces hair follicle neogenesis after wounding. Nat Med 19, 916-923. Genander, M., Cook, P.J., Ramskold, D., Keyes, B.E., Mertz, A.F., Sandberg, R., and Fuchs, E. (2014). BMP signaling and its pSMAD1/5 target genes differentially regulate hair follicle stem cell lineages. Cell Stem Cell 15, 619-633. Gold, M.H., Bell, M.W., Foster, T.D., and Street, S. (1997). Long-term epilation using the EpiLight broad band, intense pulsed light hair removal system. Dermatol Surg 23, 909-913. Gros, J., Manceau, M., Thome, V., and Marcelle, C. (2005). A common somitic origin for embryonic muscle progenitors and satellite cells. Nature 435, 954-958. Grossman, M.C., Dierickx, C., Farinelli, W., Flotte, T., and Anderson, R.R. (1996). Damage to hair follicles by normal-mode ruby laser pulses. J Am Acad Dermatol 35, 889-894. Grunewald, S., Bodendorf, M.O., Zygouris, A., Simon, J.C., and Paasch, U. (2014). Long-term efficacy of linear-scanning 808 nm diode laser for hair removal compared to a scanned alexandrite laser. Lasers Surg Med 46, 13-19. Guha, U., Mecklenburg, L., Cowin, P., Kan, L., O''Guin, W.M., D''Vizio, D., Pestell, R.G., Paus, R., and Kessler, J.A. (2004). Bone morphogenetic protein signaling regulates postnatal hair follicle differentiation and cycling. Am J Pathol 165, 729-740. Haedersdal, M., Beerwerth, F., and Nash, J.F. (2011). Laser and intense pulsed light hair removal technologies: from professional to home use. Br J Dermatol 165 Suppl 3, 31-36. Hashimoto, T., Kazama, T., Ito, M., Urano, K., Katakai, Y., Yamaguchi, N., and Ueyama, Y. (2001). Histologic study of the regeneration process of human hair follicles grafted onto SCID mice after bulb amputation. J Investig Dermatol Symp Proc 6, 38-42. Hendrix, S., Handjiski, B., Peters, E.M., and Paus, R. (2005). A guide to assessing damage response pathways of the hair follicle: lessons from cyclophosphamide-induced alopecia in mice. J Invest Dermatol 125, 42-51. Horsley, V., Aliprantis, A.O., Polak, L., Glimcher, L.H., and Fuchs, E. (2008). NFATc1 balances quiescence and proliferation of skin stem cells. Cell 132, 299-310. Hsu, Y.C., and Fuchs, E. (2012). A family business: stem cell progeny join the niche to regulate homeostasis. Nat Rev Mol Cell Biol 13, 103-114. Hsu, Y.C., Li, L., and Fuchs, E. (2014a). Emerging interactions between skin stem cells and their niches. Nat Med 20, 847-856. Hsu, Y.C., Li, L., and Fuchs, E. (2014b). Transit-amplifying cells orchestrate stem cell activity and tissue regeneration. Cell 157, 935-949. Hsu, Y.C., Pasolli, H.A., and Fuchs, E. (2011). Dynamics between stem cells, niche, and progeny in the hair follicle. Cell 144, 92-105. Ito, M., Liu, Y., Yang, Z., Nguyen, J., Liang, F., Morris, R.J., and Cotsarelis, G. (2005). Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the epidermis. Nat Med 11, 1351-1354. Ito, M., Yang, Z., Andl, T., Cui, C., Kim, N., Millar, S.E., and Cotsarelis, G. (2007). Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature 447, 316-320. Jiang, J., and Hui, C.C. (2008). Hedgehog signaling in development and cancer. Dev Cell 15, 801-812. Kadaja, M., Keyes, B.E., Lin, M., Pasolli, H.A., Genander, M., Polak, L., Stokes, N., Zheng, D., and Fuchs, E. (2014). SOX9: a stem cell transcriptional regulator of secreted niche signaling factors. Genes Dev 28, 328-341. Kato, T., Omi, T., Naito, Z., Hirai, T., and Kawana, S. (2004). Histological hair removal study by ruby or alexandrite laser with comparative study on the effects of wavelength and fluence. J Cosmet Laser Ther 6, 32-37. Kobielak, K., Stokes, N., de la Cruz, J., Polak, L., and Fuchs, E. (2007). Loss of a quiescent niche but not follicle stem cells in the absence of bone morphogenetic protein signaling. Proc Natl Acad Sci U S A 104, 10063-10068. Kolterud, A., Alenius, M., Carlsson, L., and Bohm, S. (2004). The Lim homeobox gene Lhx2 is required for olfactory sensory neuron identity. Development 131, 5319-5326. Lask, G., Elman, M., Slatkine, M., Waldman, A., and Rozenberg, Z. (1997). Laser-assisted hair removal by selective photothermolysis. Preliminary results. Dermatol Surg 23, 737-739. Lavker, R.M., Miller, S., Wilson, C., Cotsarelis, G., Wei, Z.G., Yang, J.S., and Sun, T.T. (1993). Hair follicle stem cells: their location, role in hair cycle, and involvement in skin tumor formation. J Invest Dermatol 101, 16S-26S. Lavker, R.M., Sun, T.T., Oshima, H., Barrandon, Y., Akiyama, M., Ferraris, C., Chevalier, G., Favier, B., Jahoda, C.A., Dhouailly, D., et al. (2003). Hair follicle stem cells. J Investig Dermatol Symp Proc 8, 28-38. Lay, K., Kume, T., and Fuchs, E. (2016). FOXC1 maintains the hair follicle stem cell niche and governs stem cell quiescence to preserve long-term tissue-regenerating potential. Proc Natl Acad Sci U S A 113, E1506-1515. Lee, J., Platt, K.A., Censullo, P., and Ruiz i Altaba, A. (1997). Gli1 is a target of Sonic hedgehog that induces ventral neural tube development. Development 124, 2537-2552. Lei, M., Guo, H., Qiu, W., Lai, X., Yang, T., Widelitz, R.B., Chuong, C.M., Lian, X., and Yang, L. (2014). Modulating hair follicle size with Wnt10b/DKK1 during hair regeneration. Exp Dermatol 23, 407-413. Liew, S.H., Grobbelaar, A.O., Gault, D.T., Sanders, R., Green, C.J., and Linge, C. (1999a). The effect of ruby laser light on ex vivo hair follicles: clinical implications. Ann Plast Surg 42, 249-254. Liew, S.H., Ladhani, K., Grobbelaar, A.O., Gault, D.T., Sanders, R., Green, C.J., and Linge, C. (1999b). Ruby laser-assisted hair removal reduces the coarseness of regrowing hairs: fallacy or fact? Br J Plast Surg 52, 380-384. Lin, T.Y., Manuskiatti, W., Dierickx, C.C., Farinelli, W.A., Fisher, M.E., Flotte, T., Baden, H.P., and Anderson, R.R. (1998). Hair growth cycle affects hair follicle destruction by ruby laser pulses. J Invest Dermatol 111, 107-113. Mardaryev, A.N., Meier, N., Poterlowicz, K., Sharov, A.A., Sharova, T.Y., Ahmed, M.I., Rapisarda, V., Lewis, C., Fessing, M.Y., Ruenger, T.M., et al. (2011). Lhx2 differentially regulates Sox9, Tcf4 and Lgr5 in hair follicle stem cells to promote epidermal regeneration after injury. Development 138, 4843-4852. Matsumura, H., Mohri, Y., Binh, N.T., Morinaga, H., Fukuda, M., Ito, M., Kurata, S., Hoeijmakers, J., and Nishimura, E.K. (2016). Hair follicle aging is driven by transepidermal elimination of stem cells via COL17A1 proteolysis. Science 351, aad4395. Matsuo, S., Takahashi, M., Inoue, K., Tamura, K., Irie, K., Kodama, Y., Nishikawa, A., and Yoshida, M. (2014). Inhibitory potential of postnatal treatment with cyclopamine, a hedgehog signaling inhibitor, on medulloblastoma development in Ptch1 heterozygous mice. Toxicol Pathol 42, 1174-1187. Messenger, A.G., and Bleehen, S.S. (1984). Alopecia areata: light and electron microscopic pathology of the regrowing white hair. Br J Dermatol 110, 155-162. Morgner, J., Ghatak, S., Jakobi, T., Dieterich, C., Aumailley, M., and Wickstrom, S.A. (2015). Integrin-linked kinase regulates the niche of quiescent epidermal stem cells. Nat Commun 6, 8198. Morris, R.J., Liu, Y., Marles, L., Yang, Z., Trempus, C., Li, S., Lin, J.S., Sawicki, J.A., and Cotsarelis, G. (2004). Capturing and profiling adult hair follicle stem cells. Nat Biotechnol 22, 411-417. Morris, R.J., and Potten, C.S. (1994). Slowly cycling (label-retaining) epidermal cells behave like clonogenic stem cells in vitro. Cell Prolif 27, 279-289. Muller-Rover, S., Handjiski, B., van der Veen, C., Eichmuller, S., Foitzik, K., McKay, I.A., Stenn, K.S., and Paus, R. (2001). A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J Invest Dermatol 117, 3-15. Niemann, C., Unden, A.B., Lyle, S., Zouboulis Ch, C., Toftgard, R., and Watt, F.M. (2003). Indian hedgehog and beta-catenin signaling: role in the sebaceous lineage of normal and neoplastic mammalian epidermis. Proc Natl Acad Sci U S A 100 Suppl 1, 11873-11880. Oliver, R.F. (1966). Whisker growth after removal of the dermal papilla and lengths of follicle in the hooded rat. J Embryol Exp Morphol 15, 331-347. Orringer, J.S., Hammerberg, C., Lowe, L., Kang, S., Johnson, T.M., Hamilton, T., Voorhees, J.J., and Fisher, G.J. (2006). The effects of laser-mediated hair removal on immunohistochemical staining properties of hair follicles. J Am Acad Dermatol 55, 402-407. Oshima, H., Rochat, A., Kedzia, C., Kobayashi, K., and Barrandon, Y. (2001). Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell 104, 233-245. Panteleyev, A.A., Jahoda, C.A., and Christiano, A.M. (2001). Hair follicle predetermination. J Cell Sci 114, 3419-3431. Paus, R., and Cotsarelis, G. (1999). The biology of hair follicles. N Engl J Med 341, 491-497. Paus, R., Handjiski, B., Eichmuller, S., and Czarnetzki, B.M. (1994). Chemotherapy-induced alopecia in mice. Induction by cyclophosphamide, inhibition by cyclosporine A, and modulation by dexamethasone. Am J Pathol 144, 719-734. Paus, R., Heinzelmann, T., Robicsek, S., Czarnetzki, B.M., and Maurer, M. (1995). Substance P stimulates murine epidermal keratinocyte proliferation and dermal mast cell degranulation in situ. Arch Dermatol Res 287, 500-502. Paus, R., Slominski, A., and Czarnetzki, B.M. (1993). Is alopecia areata an autoimmune-response against melanogenesis-related proteins, exposed by abnormal MHC class I expression in the anagen hair bulb? Yale J Biol Med 66, 541-554. Pietras, E.M., Warr, M.R., and Passegue, E. (2011). Cell cycle regulation in hematopoietic stem cells. J Cell Biol 195, 709-720. Porter, F.D., Drago, J., Xu, Y., Cheema, S.S., Wassif, C., Huang, S.P., Lee, E., Grinberg, A., Massalas, J.S., Bodine, D., et al. (1997). Lhx2, a LIM homeobox gene, is required for eye, forebrain, and definitive erythrocyte development. Development 124, 2935-2944. Pratt, C.H., King, L.E., Jr., Messenger, A.G., Christiano, A.M., and Sundberg, J.P. (2017). Alopecia areata. Nat Rev Dis Primers 3, 17011. Rhee, H., Polak, L., and Fuchs, E. (2006). Lhx2 maintains stem cell character in hair follicles. Science 312, 1946-1949. Roberson, M.S., Schoderbek, W.E., Tremml, G., and Maurer, R.A. (1994). Activation of the glycoprotein hormone alpha-subunit promoter by a LIM-homeodomain transcription factor. Mol Cell Biol 14, 2985-2993. Rompolas, P., Deschene, E.R., Zito, G., Gonzalez, D.G., Saotome, I., Haberman, A.M., and Greco, V. (2012). Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration. Nature 487, 496-499. Rompolas, P., and Greco, V. (2014). Stem cell dynamics in the hair follicle niche. Semin Cell Dev Biol 25-26, 34-42. Rompolas, P., Mesa, K.R., and Greco, V. (2013). Spatial organization within a niche as a determinant of stem-cell fate. Nature 502, 513-518. Sato, N., Leopold, P.L., and Crystal, R.G. (1999). Induction of the hair growth phase in postnatal mice by localized transient expression of Sonic hedgehog. J Clin Invest 104, 855-864. Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9, 671-675. Shirkavand, A., Ataie-Fashtami, L., Sarkar, S., Alinaghizadeh, M.R., Fateh, M., Zand, N., and Djavid, G.E. (2012). Thermal damage patterns of diode hair-removal lasers according to various skin types and hair densities and colors: a simulation study. Photomed Laser Surg 30, 374-380. Slominski, A.T., Botchkarev, V., Choudhry, M., Fazal, N., Fechner, K., Furkert, J., Krause, E., Roloff, B., Sayeed, M., Wei, E., et al. (1999). Cutaneous expression of CRH and CRH-R. Is there a "skin stress response system?". Ann N Y Acad Sci 885, 287-311. Snippert, H.J., Haegebarth, A., Kasper, M., Jaks, V., van Es, J.H., Barker, N., van de Wetering, M., van den Born, M., Begthel, H., Vries, R.G., et al. (2010). Lgr6 marks stem cells in the hair follicle that generate all cell lineages of the skin. Science 327, 1385-1389. Song, S., and Lambert, P.F. (1999). Different responses of epidermal and hair follicular cells to radiation correlate with distinct patterns of p53 and p21 induction. Am J Pathol 155, 1121-1127. Sun, T.T., Cotsarelis, G., and Lavker, R.M. (1991). Hair follicular stem cells: the bulge-activation hypothesis. J Invest Dermatol 96, 77S-78S. Taylor, G., Lehrer, M.S., Jensen, P.J., Sun, T.T., and Lavker, R.M. (2000). Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 102, 451-461. Thayer, S.P., di Magliano, M.P., Heiser, P.W., Nielsen, C.M., Roberts, D.J., Lauwers, G.Y., Qi, Y.P., Gysin, S., Fernandez-del Castillo, C., Yajnik, V., et al. (2003). Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 425, 851-856. Tiede, S., and Paus, R. (2006). Lhx2--decisive role in epithelial stem cell maintenance, or just the "tip of the iceberg"? Bioessays 28, 1157-1160. Tornqvist, G., Sandberg, A., Hagglund, A.C., and Carlsson, L. (2010). Cyclic expression of lhx2 regulates hair formation. PLoS Genet 6, e1000904. Tumbar, T., Guasch, G., Greco, V., Blanpain, C., Lowry, W.E., Rendl, M., and Fuchs, E. (2004). Defining the epithelial stem cell niche in skin. Science 303, 359-363. Vaccaro, M., Guarneri, F., Brianti, P., and Cannavo, S.P. (2015). Temporary radiation-induced alopecia after embolization of a cerebral arteriovenous malformation. Clin Exp Dermatol 40, 88-90. Wagner, R.F., Jr. (1990). Physical methods for the management of hirsutism. Cutis 45, 319-321, 325-316. Wandzioch, E., Kolterud, A., Jacobsson, M., Friedman, S.L., and Carlsson, L. (2004). Lhx2-/- mice develop liver fibrosis. Proc Natl Acad Sci U S A 101, 16549-16554. Wang, X., Hsi, T.C., Guerrero-Juarez, C.F., Pham, K., Cho, K., McCusker, C.D., Monuki, E.S., Cho, K.W., Gay, D.L., and Plikus, M.V. (2015). Principles and mechanisms of regeneration in the mouse model for wound-induced hair follicle neogenesis. Regeneration (Oxf) 2, 169-181. Xu, Y., Baldassare, M., Fisher, P., Rathbun, G., Oltz, E.M., Yancopoulos, G.D., Jessell, T.M., and Alt, F.W. (1993). LH-2: a LIM/homeodomain gene expressed in developing lymphocytes and neural cells. Proc Natl Acad Sci U S A 90, 227-231. Yilmaz, O.H., Valdez, R., Theisen, B.K., Guo, W., Ferguson, D.O., Wu, H., and Morrison, S.J. (2006). Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441, 475-482. Yuhki, M., Yamada, M., Kawano, M., Iwasato, T., Itohara, S., Yoshida, H., Ogawa, M., and Mishina, Y. (2004). BMPR1A signaling is necessary for hair follicle cycling and hair shaft differentiation in mice. Development 131, 1825-1833. Zhang, C.L., Zou, Y., He, W., Gage, F.H., and Evans, R.M. (2008). A role for adult TLX-positive neural stem cells in learning and behaviour. Nature 451, 1004-1007. Zhang, J., He, X.C., Tong, W.G., Johnson, T., Wiedemann, L.M., Mishina, Y., Feng, J.Q., and Li, L. (2006). Bone morphogenetic protein signaling inhibits hair follicle anagen induction by restricting epithelial stem/progenitor cell activation and expansion. Stem Cells 24, 2826-2839. Zhang, Y.V., Cheong, J., Ciapurin, N., McDermitt, D.J., and Tumbar, T. (2009). Distinct self-renewal and differentiation phases in the niche of infrequently dividing hair follicle stem cells. Cell Stem Cell 5, 267-278.
|