|
1.Goldfinger, J.Z., et al., Thoracic aortic aneurysm and dissection. Journal of the American College of Cardiology, 2014. 64(16): p. 1725-1739. 2.Milewicz, D.M. and E. Regalado, Thoracic aortic aneurysms and aortic dissections. 2012. 3.Bradley, T.J., et al., The Expanding Clinical Spectrum of Extracardiovascular and Cardiovascular Manifestations of Heritable Thoracic Aortic Aneurysm and Dissection. Can J Cardiol, 2016. 32(1): p. 86-99. 4.Cury, M., F. Zeidan, and A.C. Lobato, Aortic disease in the young: genetic aneurysm syndromes, connective tissue disorders, and familial aortic aneurysms and dissections. International journal of vascular medicine, 2013. 2013. 5.Ziganshin, B.A., et al., Routine genetic testing for thoracic aortic aneurysm and dissection in a clinical setting. The Annals of thoracic surgery, 2015. 100(5): p. 1604-1611. 6.De Paepe, A., et al., Revised diagnostic criteria for the Marfan syndrome. American journal of medical genetics, 1996. 62(4): p. 417-426. 7.De Backer, J., L. Campens, and A. De Paepe, Genes in thoracic aortic aneurysms/dissections - do they matter? Ann Cardiothorac Surg, 2013. 2(1): p. 73-82. 8.Bowdin, S.C., et al., Genetic Testing in Thoracic Aortic Disease--When, Why, and How? Can J Cardiol, 2016. 32(1): p. 131-4. 9.Matkar, P.N., et al., Overview of Marfan Syndrome: knowns and unknowns. Journal of Controversies in Biomedical Research, 2015. 1(1): p. 51. 10.Ágg, B., et al., Possible extracardiac predictors of aortic dissection in Marfan syndrome. BMC cardiovascular disorders, 2014. 14(1): p. 1. 11.Pagon, R., et al., Marfan Syndrome--GeneReviews (®). 12.Byers, P.H., Determination of the molecular basis of Marfan syndrome: a growth industry. J Clin Invest, 2004. 114(2): p. 161-3. 13.De Backer, J., Marfan and Sartans: time to wake up! Eur Heart J, 2015. 36(32): p. 2131-3. 14.MacCarrick, G., et al., Loeys-Dietz syndrome: a primer for diagnosis and management. Genetics in Medicine, 2014. 16(8): p. 576-587. 15.Pannu, H., et al., Mutations in transforming growth factor-β receptor type II cause familial thoracic aortic aneurysms and dissections. Circulation, 2005. 112(4): p. 513-520. 16.Coucke, P.J., et al., Mutations in the facilitative glucose transporter GLUT10 alter angiogenesis and cause arterial tortuosity syndrome. Nature genetics, 2006. 38(4): p. 452-457. 17.Van Der Linde, D., et al., Aneurysm-osteoarthritis syndrome with visceral and iliac artery aneurysms. Journal of vascular surgery, 2013. 57(1): p. 96-102. 18.Tassabehji, M., et al., An elastin gene mutation producing abnormal tropoelastin and abnormal elastic fibres in a patient with autosomal dominant cutis laxa. Human molecular genetics, 1998. 7(6): p. 1021-1028. 19.Sermon, K., A. Van Steirteghem, and I. Liebaers, Preimplantation genetic diagnosis. The Lancet, 2004. 363(9421): p. 1633-1641. 20.Milewicz, D.M., et al., Fibrillin-1 (FBN1) mutations in patients with thoracic aortic aneurysms. Circulation, 1996. 94(11): p. 2708-2711. 21.Loeys, B.L., et al., A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nature genetics, 2005. 37(3): p. 275-281. 22.Singh, K.K., et al., TGFBR1 and TGFBR2 mutations in patients with features of Marfan syndrome and Loeys‐Dietz syndrome. Human mutation, 2006. 27(8): p. 770-777. 23.Nakao, A., et al., TGF‐β receptor‐mediated signalling through Smad2, Smad3 and Smad4. The EMBO journal, 1997. 16(17): p. 5353-5362. 24.Renard, M., et al., Novel MYH11 and ACTA2 mutations reveal a role for enhanced TGFβ signaling in FTAAD. International journal of cardiology, 2013. 165(2): p. 314-321. 25.Guo, D.-C., et al., Mutations in smooth muscle α-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nature genetics, 2007. 39(12): p. 1488-1493. 26.Luyckx, I., et al., Two novel MYLK nonsense mutations causing thoracic aortic aneurysms/dissections in patients without apparent family history. Clinical Genetics, 2017. 27.Lindsay, M.E., et al., Loss-of-function mutations in TGFB2 cause a syndromic presentation of thoracic aortic aneurysm. Nature genetics, 2012. 44(8): p. 922-927. 28.Bertoli-Avella, A.M., et al., Mutations in a TGF-β ligand, TGFB3, cause syndromic aortic aneurysms and dissections. Journal of the American College of Cardiology, 2015. 65(13): p. 1324-1336. 29.Kontusaari, S., et al., A mutation in the gene for type III procollagen (COL3A1) in a family with aortic aneurysms. Journal of Clinical Investigation, 1990. 86(5): p. 1465. 30.Guo, D.-c., et al., Recurrent gain-of-function mutation in PRKG1 causes thoracic aortic aneurysms and acute aortic dissections. The American Journal of Human Genetics, 2013. 93(2): p. 398-404. 31.Barbier, M., et al., MFAP5 loss-of-function mutations underscore the involvement of matrix alteration in the pathogenesis of familial thoracic aortic aneurysms and dissections. The American Journal of Human Genetics, 2014. 95(6): p. 736-743. 32.Guo, D.-c., et al., MAT2A mutations predispose individuals to thoracic aortic aneurysms. The American Journal of Human Genetics, 2015. 96(1): p. 170-177. 33.Garg, V., et al., Mutations in NOTCH1 cause aortic valve disease. Nature, 2005. 437(7056): p. 270-274. 34.Zenker, M., et al., A dual phenotype of periventricular nodular heterotopia and frontometaphyseal dysplasia in one patient caused by a single FLNA mutation leading to two functionally different aberrant transcripts. The American Journal of Human Genetics, 2004. 74(4): p. 731-737. 35.Al-Hassnan, Z.N., et al., Recessively inherited severe aortic aneurysm caused by mutated EFEMP2. The American journal of cardiology, 2012. 109(11): p. 1677-1680. 36.Putnam, E.A., et al., Fibrillin–2 (FBN2) mutations result in the Marfan–like disorder, congenital contractural arachnodactyly. Nature genetics, 1995. 11(4): p. 456-458. 37.Drera, B., et al., Two novel SLC2A10/GLUT10 mutations in a patient with arterial tortuosity syndrome. American journal of medical genetics. Part A, 2007. 143(2): p. 216. 38.Hannuksela, M., et al., Screening for familial thoracic aortic aneurysms with aortic imaging does not detect all potential carriers of the disease. Aorta, 2015. 3(1): p. 1. 39.Giunta, C., A. Randolph, and B. Steinmann, Mutation analysis of the PLOD1 gene: an efficient multistep approach to the molecular diagnosis of the kyphoscoliotic type of Ehlers-Danlos syndrome (EDS VIA). Molecular genetics and metabolism, 2005. 86(1): p. 269-276. 40.Knebelmann, B., et al., Spectrum of mutations in the COL4A5 collagen gene in X-linked Alport syndrome. American journal of human genetics, 1996. 59(6): p. 1221. 41.Wang, F., et al., Detection of mutations in the COL4A5 gene by analyzing cDNA of skin fibroblasts. Kidney international, 2005. 67(4): p. 1268-1274. 42.Loeys, B.L., et al., The revised Ghent nosology for the Marfan syndrome. Journal of medical genetics, 2010. 47(7): p. 476-485. 43.Sanger, F., S. Nicklen, and A.R. Coulson, DNA sequencing with chain-terminating inhibitors. Proceedings of the national academy of sciences, 1977. 74(12): p. 5463-5467. 44.Metzker, M.L., Sequencing technologies—the next generation. Nature reviews genetics, 2010. 11(1): p. 31-46. 45.Mardis, E.R., Next-generation DNA sequencing methods. Annu. Rev. Genomics Hum. Genet., 2008. 9: p. 387-402. 46.Li, H. and R. Durbin, Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics, 2009. 25(14): p. 1754-1760. 47.McKenna, A., et al., The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome research, 2010. 20(9): p. 1297-1303. 48.Wang, K., M. Li, and H. Hakonarson, ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic acids research, 2010. 38(16): p. e164-e164. 49.Kumar, P., S. Henikoff, and P.C. Ng, Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nature protocols, 2009. 4(7): p. 1073-1081. 50.Adzhubei, I.A., et al., A method and server for predicting damaging missense mutations. Nature methods, 2010. 7(4): p. 248-249. 51.Sherry, S.T., et al., dbSNP: the NCBI database of genetic variation. Nucleic acids research, 2001. 29(1): p. 308-311. 52.Consortium, G.P., An integrated map of genetic variation from 1,092 human genomes. Nature, 2012. 491(7422): p. 56-65. 53.Tabor, H.K., et al., Pathogenic variants for Mendelian and complex traits in exomes of 6,517 European and African Americans: implications for the return of incidental results. The American Journal of Human Genetics, 2014. 95(2): p. 183-193. 54.Lek, M., et al., Analysis of protein-coding genetic variation in 60,706 humans. Nature, 2016. 536(7616): p. 285-291. 55.Landrum, M.J., et al., ClinVar: public archive of interpretations of clinically relevant variants. Nucleic acids research, 2016. 44(D1): p. D862-D868. 56.Robinson, J.T., et al., Integrative genomics viewer. Nature biotechnology, 2011. 29(1): p. 24-26. 57.Béroud, C., et al., UMD (Universal mutation database): a generic software to build and analyze locus-specific databases. Human mutation, 2000. 15(1): p. 86. 58.Collod‐Béroud, G., et al., Update of the UMD‐FBN1 mutation database and creation of an FBN1 polymorphism database. Human mutation, 2003. 22(3): p. 199-208. 59.Frédéric, M.Y., et al., The FBN2 gene: new mutations, locus‐specific database (Universal Mutation Database FBN2), and genotype‐phenotype correlations. Human mutation, 2009. 30(2): p. 181-190. 60.Richards, S., et al., Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in medicine: official journal of the American College of Medical Genetics, 2015. 17(5): p. 405-424. 61.Faivre, L., et al., Effect of mutation type and location on clinical outcome in 1,013 probands with Marfan syndrome or related phenotypes and FBN1 mutations: an international study. The American Journal of Human Genetics, 2007. 81(3): p. 454-466. 62.de Bustamante, A.D., et al., Phenotypic variability in Marfan syndrome in a family with a novel nonsense FBN1 gene mutation. Revista Española de Cardiología, 2012. 65(04): p. 380-381. 63.Villamizar, C., et al., Paucity of skeletal manifestations in Hispanic families with FBN1 mutations. European journal of medical genetics, 2010. 53(2): p. 80-84. 64.Yang, H., et al., Genetic testing of the FBN1 gene in Chinese patients with Marfan/Marfan-like syndrome. Clinica Chimica Acta, 2016. 459: p. 30-35. 65.Stheneur, C., et al., Identification of the minimal combination of clinical features in probands for efficient mutation detection in the FBN1 gene. European Journal of Human Genetics, 2009. 17(9): p. 1121-1128. 66.Den Dunnen, J.T. and S.E. Antonarakis, Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Human mutation, 2000. 15(1): p. 7. 67.Faivre, L., et al., Pathogenic FBN1 mutations in 146 adults not meeting clinical diagnostic criteria for Marfan syndrome: further delineation of type 1 fibrillinopathies and focus on patients with an isolated major criterion. American Journal of Medical Genetics Part A, 2009. 149(5): p. 854-860. 68.Frederic, M.Y., et al., A new locus‐specific database (LSDB) for mutations in the TGFBR2 gene: UMD‐TGFBR2. Human mutation, 2008. 29(1): p. 33-38. 69.Lennon, R., et al., Coinheritance of COL4A5 and MYO1E mutations accentuate the severity of kidney disease. Pediatric nephrology, 2015. 30(9): p. 1459-1465.
|