|
1.Maeda, S.S., et al., Hypoparathyroidism and pseudohypoparathyroidism. Arq Bras Endocrinol Metabol, 2006. 50(4): p. 664-73.
2.Cooper, M.S. and N.J. Gittoes, Diagnosis and management of hypocalcaemia. BMJ, 2008. 336(7656): p. 1298-302.
3.Tafaj, O. and H. Juppner, Pseudohypoparathyroidism: one gene, several syndromes. Journal of Endocrinological Investigation, 2017. 40(4): p. 347-356.
4.Mantovani, G., Clinical review: Pseudohypoparathyroidism: diagnosis and treatment. J Clin Endocrinol Metab, 2011. 96(10): p. 3020-30.
5.Quarles, L.D., Endocrine functions of bone in mineral metabolism regulation. J Clin Invest, 2008. 118(12): p. 3820-8.
6.Bruce Alberts, D.B., Karen Hopkin, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, Peter Walter, Essentials of Cell Biology. 3 ed. 2010, Charlotte, North Carolina: Baker & Taylor Books.
7.Lodish, H.F., Berk, A., Zipursky, L.S., Matsudaira, P.T., Baltimore, D. and Darnell, J, Molecular cell biology. 4 ed. 1999, New York: Scientific American Books.
8.Cooper, G.M., The cell: a molecular approach. 2 ed. 2000, Sunderland (MA): Sinauer Associates.
9.Weinstein, L.S., et al., Studies of the regulation and function of the Gs alpha gene Gnas using gene targeting technology. Pharmacol Ther, 2007. 115(2): p. 271-91.
10.Wettschureck, N. and S. Offermanns, Mammalian G proteins and their cell type specific functions. Physiol Rev, 2005. 85(4): p. 1159-204.
11.Izzi, B., et al., A new approach to imprinting mutation detection in GNAS by Sequenom EpiTYPER system. Clin Chim Acta, 2010. 411(23-24): p. 2033-9.
12.Lemos, M.C. and R.V. Thakker, GNAS mutations in Pseudohypoparathyroidism type 1a and related disorders. Hum Mutat, 2015. 36(1): p. 11-9.
13.Richard, N., et al., A new deletion ablating NESP55 causes loss of maternal imprint of A/B GNAS and autosomal dominant pseudohypoparathyroidism type Ib. J Clin Endocrinol Metab, 2012. 97(5): p. E863-7.
14.Linglart, A., et al., A novel STX16 deletion in autosomal dominant pseudohypoparathyroidism type Ib redefines the boundaries of a cis-acting imprinting control element of GNAS. Am J Hum Genet, 2005. 76(5): p. 804-14.
15.Bastepe, M. and H. Juppner, GNAS locus and pseudohypoparathyroidism. Horm Res, 2005. 63(2): p. 65-74.
16.Hayward, B.E., et al., Bidirectional imprinting of a single gene: GNAS1 encodes maternally, paternally, and biallelically derived proteins. Proc Natl Acad Sci U S A, 1998. 95(26): p. 15475-80.
17.Bastepe, M., et al., Autosomal dominant pseudohypoparathyroidism type Ib is associated with a heterozygous microdeletion that likely disrupts a putative imprinting control element of GNAS. J Clin Invest, 2003. 112(8): p. 1255-63.
18.Bastepe, M., et al., Receptor-mediated adenylyl cyclase activation through XLalpha(s), the extra-large variant of the stimulatory G protein alpha-subunit. Mol Endocrinol, 2002. 16(8): p. 1912-9. 19.Klemke, M., et al., Characterization of the extra-large G protein alpha-subunit XLalphas. II. Signal transduction properties. J Biol Chem, 2000. 275(43): p. 33633-40.
20.Oczkowicz, M., et al., Expression and imprinting analysis of the NESP55 gene in pigs. Gene Expr Patterns, 2012. 12(1-2): p. 18-23. 21.Ischia, R., et al., Molecular cloning and characterization of NESP55, a novel chromogranin-like precursor of a peptide with 5-HT1B receptor antagonist activity. J Biol Chem, 1997. 272(17): p. 11657-62.
22.Weinhaeusel, A., et al., PCR-based analysis of differentially methylated regions of GNAS enables convenient diagnostic testing of pseudohypoparathyroidism type Ib. Clin Chem, 2008. 54(9): p. 1537-45.
23.Chillambhi, S., et al., Deletion of the noncoding GNAS antisense transcript causes pseudohypoparathyroidism type Ib and biparental defects of GNAS methylation in cis. J Clin Endocrinol Metab, 2010. 95(8): p. 3993-4002.
24.Bird, A., Perceptions of epigenetics. Nature, 2007. 447(7143): p. 396-8.
25.Saxonov, S., P. Berg, and D.L. Brutlag, A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci U S A, 2006. 103(5): p. 1412-7.
26.Gardiner-Garden, M. and M. Frommer, CpG islands in vertebrate genomes. J Mol Biol, 1987. 196(2): p. 261-82.
27.Khalil, A.M. and C. Wahlestedt, Epigenetic mechanisms of gene regulation during mammalian spermatogenesis. Epigenetics, 2008. 3(1): p. 21-8.
28.Lee, D. and C. Shin, MicroRNA-target interactions: new insights from genome-wide approaches. Ann N Y Acad Sci, 2012. 1271: p. 118-28.
29.Bajrami, E. and M. Spiroski, Genomic Imprinting. Open Access Maced J Med Sci, 2016. 4(1): p. 181-4.
30.Elhamamsy, A.R., Role of DNA methylation in imprinting disorders: an updated review. J Assist Reprod Genet, 2017. 34(5): p. 549-562.
31.Barlow, D.P. and M.S. Bartolomei, Genomic imprinting in mammals. Cold Spring Harb Perspect Biol, 2014. 6(2).
32.Takatani, R., et al., Analysis of Multiple Families With Single Individuals Affected by Pseudohypoparathyroidism Type Ib (PHP1B) Reveals Only One Novel Maternally Inherited GNAS Deletion. J Bone Miner Res, 2016. 31(4): p. 796-805.
33.Nakamura, A., et al., Complex Genomic Rearrangement Within the GNAS Region Associated With Familial Pseudohypoparathyroidism Type 1b. J Clin Endocrinol Metab, 2016. 101(7): p. 2623-7.
34.Liu, J., J.G. Nealon, and L.S. Weinstein, Distinct patterns of abnormal GNAS imprinting in familial and sporadic pseudohypoparathyroidism type IB. Hum Mol Genet, 2005. 14(1): p. 95-102.
35.Zeniya, S., et al., A 22-year-old woman with hypocalcemia and clinical features of albright hereditary osteodystrophy diagnosed with sporadic pseudohypoparathyroidism type Ib using a methylation-specific multiplex ligation-dependent probe amplification assay. Intern Med, 2014. 53(9): p. 979-86.
36.Saiki, R.K., et al., Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 1988. 239(4839): p. 487-91.
37.Sanger, F. and A.R. Coulson, A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol, 1975. 94(3): p. 441-8.
38.Darst, R.P., et al., Bisulfite sequencing of DNA. Curr Protoc Mol Biol, 2010. Chapter 7: p. Unit 7 9 1-17.
39.Millar, D., Y. Christova, and P. Holliger, A polymerase engineered for bisulfite sequencing. Nucleic Acids Res, 2015. 43(22): p. e155.
40.Tetzner, R., D. Dietrich, and J. Distler, Control of carry-over contamination for PCR-based DNA methylation quantification using bisulfite treated DNA. Nucleic Acids Res, 2007. 35(1): p. e4.
41.Li, Y. and T.O. Tollefsbol, DNA methylation detection: bisulfite genomic sequencing analysis. Methods Mol Biol, 2011. 791: p. 11-21.
42.Ehrich, M., et al., A new method for accurate assessment of DNA quality after bisulfite treatment. Nucleic Acids Res, 2007. 35(5): p. e29.
43.Rochtus, A., et al., Genome-wide DNA methylation analysis of pseudohypoparathyroidism patients with GNAS imprinting defects. Clin Epigenetics, 2016. 8: p. 10.
44.Coffee, B., Methylation-specific PCR. Curr Protoc Hum Genet, 2009. Chapter 10: p. Unit 10 6.
|