(18.205.60.226) 您好!臺灣時間:2019/12/15 10:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:楊凱傑
研究生(外文):Kai-Jie Yang
論文名稱:環境微粒法定量密合度測試方法改進
論文名稱(外文):Improvement of Quantitative Fit Testing Methods Using Ambient Aerosols
指導教授:陳志傑陳志傑引用關係
指導教授(外文):Chih-Chieh Chen
口試委員:林文印黃盛修蕭大智
口試日期:2017-02-06
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:職業醫學與工業衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:46
中文關鍵詞:呼吸防護具密合度測試環境微粒毛細管洩漏定量密合度測試
外文關鍵詞:respiratorquantitative fit testleakageambient aerosolfit test
相關次數:
  • 被引用被引用:0
  • 點閱點閱:116
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
當作業人員第一次使用緊密接合式呼吸防護具前,必須通過密合度測試,且定期(例如:每年)與不定期(例如:佩戴者的體重變化達百分之十以上時)都需要重新測試。進行一次密合度測試大約需要7到8分鐘的時間,雖然密合度測試可以確保呼吸防護具是否能提供足夠的保護,但是實際上,可能因為其操作耗時而無法完全照規定執行,因此,若能減少密合度測試所花的時間,將能讓雇主、使用者、與呼吸防護計畫管理人員更有意願執行密合度測試,確保作業者之健康。此研究之目的為深入探討現行環境微粒定量密合度測試方法各軟硬元件的特性,研析是否能從儀器性能、採樣系統、與資料分析進行修正與改進,以降低執行密合度測試所需之時間。

本研究中關於密合度的探討,可分兩階段進行:固定流量(濾材流量與洩漏流量之和)及呼吸模擬器(潮氣量與呼吸頻率之組合)測試。洩漏的模擬是以管長為10 mm,不同管徑之毛細管(1.0、1.5 mm)為之,並監測2-50 L/min固定流量通過N95與P100兩種口罩之壓降下,各毛細管的洩漏流量。總流量與毛細管流量之比率即為『正確密合度,FFt』。實際以環境微粒進行密合度量測時,將毛細管插在口罩上模擬洩漏,微粒量測儀器使用TSI Portacount與OPS 3330,採樣管長度為1.7公尺,後端以2-50 L/min的固定流率抽氣以比較兩台儀器量測值(相對於正確密合度)之準確度。本研究也分析不同的呼吸型態(潮氣容積:0.5-1 L、5-20次�每分鐘)、肺部沉積(後端是否接HEPA)對於密合度測試時口罩內微粒濃度的影響,並據以計算出能準確決定密合度的最短採樣時間。

實驗數據顯示,Portacount的微粒測量反應時間約為5秒,而OPS 3330約為2秒,定流率測試的結果顯示,使用P100口罩時,密合係數皆能與FFt相近;但若使用N95口罩,由於會有部分微粒穿透濾材進入口罩中,密合係數將會低估,因此,在量測N95口罩之密合係數時,Portacoumt在大於10L/min的操作流量時,須將N95-companion開啟才能與FFt相近,OPS則是超過30L/min才會受到濾材穿透的影響。由於呼吸時,口罩內微粒濃度會有上下起伏的現象,現行方法為計算採樣40秒之平均值,相較FFt有明顯高估的情形,本研究使用呼吸中之最高微粒濃度計算最低之密合係數(FFmin),較能與FFt相近,且OPS因為其反應時間較快,可以測量出較接近FFt的數值。若降低呼吸頻率時,能讓儀器有較足夠的時間反應,兩台儀器測量之FFmin能與FFt相近且穩定,可將採樣時間縮短為12秒,因此,整套密合度測試可從7.5分鐘縮短至約3-4分鐘。
Fit testing should be performed before the first use of tight-fitting respirators, and re-testing should be done annually. However, it may not always be conducted for various reasons, including time(>7 mins)and cost. As a result, reduced fit testing time would help increase the willingness of the employers, users, and respiratory protection programmer to implement fit testing, which in turn improves health protection This study aimed to evaluate if the fit testing time could be shorten by improving the instrumental settings, sampling system design, and data analysis procedure.

In this study, investigation of the fit factors was divided into two levels: experimental testing with constant flow rates, simulation tests using a breathing machine(combination of tidal volume and breathing frequency). To simulate leakage, capillaries that were 10 mm in length with different diameters(1.0 mm-1.5mm)were used were inserted onto the respirators. The ratio of total and leak flow rate was considered the “true fit factor” in this study. Ambient particles were passed through the capillaries at constant flow rates of 5-50 L/min under the pressure drop of N95 and P100 respirators. The measured fit factors were determined by concurrent particle concentration measured by TSI Portacount and OPS 3330 with 1.7 m sampling tube in length. In addition, the effects of breathing pattern(tidal volume: 0.5-1 L, frequency: 5-20 times/min)and lung deposition(with/without HEPA filter behind the respirator)on in-mask particle concentration during fit testing were analyzed. The results were used to explore the minimal sampling time that approximated the “true fit factor, FFt”.

Results showed that the particle measurement response time for Portacount and OPS were approximately 5 and 2 seconds, respectively. For P100 respirators, most measured fit factors were similar to the FFt, whereas there was an underestimation while using N95 respirator due to particle penetration. Therefore, N95-companion was necessary while using N95 respirator. For the breathing tests, the fit factor was overestimated because the sampling tube was connected onto the facepiece where filtered air was partly sampled. The higher the breathing flow rate, the more the fit factor was overestimated. On the other hand, the measured fit factor would be close to the “true fit factor” when using the highest concentration during a breath(FFmin), and it could be decided in only one breathing. Consequently, with improved design, a fit test would cost approximately only 12 seconds, where the whole fit testing process could be reduced from 7.5 to about 3 minutes.
中文摘要 I
英文摘要 III
目錄 V
表目錄 VII
圖目錄 VIII
第一章、研究緣起與目的 1
第二章、文獻探討 3
2.1呼吸防護具洩漏與密合度 3
2.1.2 密合度之評估指標 3
2.2密合度測試 5
2.3定量密合度測試之改良方法 7
第三章、研究方法 10
3.1 探討市售定量密合度測試儀之設定 10
3.2 環境微粒法定量密合度測試精準度與加速之探討 10
3.2.1 定流量測試之FFt與密合係數 11
3.2.2 呼吸模擬器測試 12
第四章、結果與討論 14
4.1 探討市售定量密合度測試儀之設定 14
4.2 定流量測試之探討 14
4.2.1 口罩與洩漏之流量和壓降關係 14
4.2.2密合係數之量測值與FFt之比較 15
4.3 呼吸模擬器測試 17
4.3.1 密合度測試時的微粒濃度 17
4.3.2 量測微粒所需之時間 18
第五章、結論與建議 22
第六章、參考文獻 23
American National Standard for respirator fit testing methods(2001).
Burgess, W. A., & Anderson, D.(1967). Performance of respirator expiratory valves. American Industrial Hygiene Association Journal, 28(3), 216-223.
Butler, K.(2009). Using 3D head and respirator shapes to analyze respirator fit. Digital Human Modeling, 483-491.
Campbell, D., Coffey, C., & Lenhart, S.(2001). Respiratory protection as a function of respirator fitting characteristics and fit-test accuracy. AIHAJ-American Industrial Hygiene Association, 62(1), 36-44.
Chen, C., Ruuskanen, J., Pilacinski, W., & Willeke, K.(1990). Filter and leak penetration characteristics of a dust and mist filtering facepiece. The American Industrial Hygiene Association Journal, 51(12), 632-639.
Coffey, C. C., Campbell, D. L., & Zhuang, Z.(1999). Simulated workplace performance of N95 respirators. American Industrial Hygiene Association Journal, 60(5), 618-624.
Coffey, C. C., Lawrence, R. B., Campbell, D. L., Zhuang, Z., Calvert, C. A., & Jensen, P. A.(2004). Fitting characteristics of eighteen N95 filtering-facepiece respirators. Journal of occupational and environmental hygiene, 1(4), 262-271.
Crutchfield, C. D., Fairbank, E. O., & Greenstein, S. L.(1999). Effect of test exercises and mask donning on measured respirator fit. Applied occupational and environmental hygiene, 14(12), 827-837.
Duling, M. G., Lawrence, R. B., Slaven, J. E., & Coffey, C. C.(2007). Simulated workplace protection factors for half-facepiece respiratory protective devices. Journal of occupational and environmental hygiene, 4(6), 420-431.
Han, D.-H., Willeke, K., & Colton, C. E.(1997). Quantitative fit testing techniques and regulations for tight-fitting respirators: current methods measuring aerosol or air leakage, and new developments. American Industrial Hygiene Association Journal, 58(3), 219-228.
Lawrence, R. B., Duling, M. G., Calvert, C. A., & Coffey, C. C.(2006). Comparison of performance of three different types of respiratory protection devices. Journal of occupational and environmental hygiene, 3(9), 465-474.
Lei, Z., Yang, J., & Zhuang, Z.(2012). Headform and N95 filtering facepiece respirator interaction: Contact pressure simulation and validation. Journal of occupational and environmental hygiene, 9(1), 46-58.
Lei, Z., Yang, J., Zhuang, Z., & Roberge, R.(2013). Simulation and evaluation of respirator faceseal leaks using computational fluid dynamics and infrared imaging. Annals of occupational hygiene, 57(4), 493-506.
Liu, B. Y., Lee, J.-K., Mullins, H., & Danisch, S. G.(1993). Respirator leak detection by ultrafine aerosols: a predictive model and experimental study. Aerosol science and technology, 19(1), 15-26.
McKay, R. T., & Bradley, J.(2005). Evaluation of Three New Fit Test Protocols for Use with the TSI Portacount. JOURNAL-INTERNATIONAL SOCIETY FOR RESPIRATORY PROTECTION, 22(3/4), 112.
Myojo, T., Willeke, K., & Chen, C.-C.(1994). Fit test for filtering facepieces: Search for a low-cost, quantitative method. American Industrial Hygiene Association, 55(9), 797-805.
NIOSH.(1995). Guide to Selection and Use of Particulate Respirator Certified under 42 CFR 84.
OSHA.(1998). Respiratory Protection Standard(29 CFR 1910.134).
Remiarz, R., Richardson, A. W., Hofacre, K. C., Weed, J., & Holm, R.(2014). Evaluation of Faster Fit Testing Methods for Respirators Based on the TSI Portacount®. Paper presented at the 2014 Prague International Society for Respiratory Protection Conference, Prague.
Rengasamy, S., King, W. P., Eimer, B. C., & Shaffer, R. E.(2008). Filtration performance of NIOSH-approved N95 and P100 filtering facepiece respirators against 4 to 30 nanometer-size nanoparticles. Journal of occupational and environmental hygiene, 5(9), 556-564.
Richardson, A. W., Hofacre, K. C., Weed, J., Holm, R., & Remiarz, R.(2013). Evaluation of Faster Fit Testing Methods for Respirators Based on the TSI Portacount®. Journal of the International Society for Respiratory Protection, 30, 116-127.
Roberge, R. J., Monaghan, W. D., Palmiero, A. J., Shaffer, R., & Bergman, M. S.(2011). Infrared imaging for leak detection of N95 filtering facepiece respirators: A pilot study. American journal of industrial medicine, 54(8), 628-636.
Sietsema, M., & Brosseau, L.(2014). Comparing Real-Time Fit Factors to Traditional Fit Factors by OSHA Exercise for N95 Respirators Paper presented at the 2014 Prague International Society for Respiratory Protection Conference, Prague.
Sreenath, A., Weed, J., & Church, T.(2001). A modified protocol for quantitative fit testing using the Portacount®. Applied occupational and environmental hygiene, 16(10), 979-988.
Willeke, K., Ayer, H. E., & Blanchard, J. D.(1981). New methods for quantitative respirator fit testing with aerosols. The American Industrial Hygiene Association Journal, 42(2), 121-125.
Yang, J., Dai, J., & Zhuang, Z.(2009). Simulating the interaction between a respirator and a headform using LS-DYNA. Computer-Aided Design and Applications, 6(4), 539-551.
Zhuang, Z., Coffey, C. C., Jensen, P. A., Campbell, D. L., Lawrence, R. B., & Myers, W. R.(2003). Correlation between quantitative fit factors and workplace protection factors measured in actual workplace environments at a steel foundry. AIHA Journal, 64(6), 730-738.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔