(3.235.108.188) 您好!臺灣時間:2021/03/03 20:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃敬淳
研究生(外文):Ching-Chun Huang
論文名稱:出生前空氣汙染物暴露對嬰兒健康之影響
論文名稱(外文):The Role of Prenatal Exposure to Ambient Air Pollution in Infantile Health
指導教授:郭育良郭育良引用關係陳保中陳保中引用關係
指導教授(外文):Yue-Liang GuoPau-Chung Chen
口試日期:2017-06-15
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:職業醫學與工業衛生研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:95
中文關鍵詞:先天性心臟病異位性皮膚炎肺炎空氣汙染懷孕
外文關鍵詞:Congenital Heart DiseaseAtopic DermatitisPneumoniaAir PollutionPregnancy
相關次數:
  • 被引用被引用:1
  • 點閱點閱:312
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
根據世界衛生組織2014年估計,全世界大概有90%的人其居住地未達世界衛生組織空氣品質標準,且已有許多研究發現環境中空氣汙染會造成孩童肺功能惡化、產生過敏性疾病、和影響氣喘病情控制。關於空氣汙染對孕婦的影響,一般認為胎兒對某些環境毒物的感受性甚至比孩童來得顯著,人類絕大部分器官在胚胎發育階段(embryonic period)就會成形,緊接著才在胎兒發育階段(fetal period)逐漸成熟;對吸呼系統而言,肺泡的發育更是要一直延續到孩童時期才會完全。因此,目前已越來越清楚了解到,對胎兒不同器官的發育而言,在關鍵的時間點暴露到特定環境毒物,會比其所暴露到的總劑量來得重要。
近幾十年來文獻指出,懷孕時期如果暴露到較高濃度的空氣汙染物,會造成胎兒的不良健康效應,諸如低出生體重(low birth weight)、子宮內生長遲滯(intrauterine growth retardation)、早產(preterm delivery)、早夭(fetal mortality)、甚至是先天性缺陷(congenital anomalies)。然而究竟懷孕時期的空氣汙染物暴露,對胎兒各別器官間的發育影響程度為何?目前仍尚未被完全釐清;加以和過往許多歐美研究相比,台灣的細懸浮微粒(PM2.5)濃度明顯高於世界衛生組織訂定標準,究竟暴露在這樣高濃度汙染物的環境之下,其健康效應是否仍然一樣?亦是我們有興趣討的。
因此本研究之整體目標為:
1.評估胚胎發育階段所暴露到的細懸浮微粒濃度高低,對新生兒罹患先天性心臟病(congenital heart diseases)之影響。
2.探討懷孕期間和剛出生後時期所暴露到空氣汙染物,對六個月大嬰兒被診斷有異位性皮膚炎(atopic dermatitis)之風險。
3.比較懷孕期間與出生後一年內所暴露到的空氣汙染物,對十八個月大孩童發生肺炎(pneumonia)所扮演之角色差異。

首先,我們利用環保署全台空氣品質監測站的每日監測平均濃度,結合地理資訊系統與克利金方法(kriging)來推估全台各鄉鎮的每日平均PM10, PM2.5, PM2.5–10, SO2, NO2, CO和O3濃度。再進一步將各指標空氣汙染物的暴露資料連結到2007–14年間的台灣出生通報資料庫(Taiwan Birth Registration Database),來評估在胚胎發育階段所暴露到空氣汙染物濃度高低,特別是細懸浮微粒,對新生兒被診斷有先天性心臟病之影響程度。第二部分,我們將空汙資料連結到台灣出生世代(Taiwan Birth Cohort Study)六個月大的調查結果,評估懷孕不同時期及出生後三個月內的空氣污染暴露狀況,對六個月大嬰兒罹患有異位性皮膚炎的風險。而第三部分,我們將更進一步延伸台灣出生世代研究的追蹤到十八個月大孩童,比較和探討其在懷孕時期與出生後一歲以前的空氣汙染暴露情形,對孩童發生肺炎所扮演的角色差異。
第一部分的研究結果發現,在2007–14年間總共有782位新生兒被診斷有先天性心臟病,其中最常見的類型依序為複雜性先天性心臟病(30.3%)、心室中膈缺損(27.9%)、和心房中膈缺損(18.8%);分析懷孕第3–8週所暴露到的指標空氣汙染物,發現細懸浮微粒暴露會顯著增加先天性心臟病發生的風險(aOR = 1.18, 95% CI: 1.01–1.38),特別是心內膜墊缺損(aOR = 2.30, 95% CI: 1.04–5.06)和肺動脈瓣狹窄(aOR = 1.66, 95% CI: 1.01–2.76)這兩項異常。在第二部分研究結果,總共有16,686位新生兒符合條件被納入,其中有1,206位(7.6%)在六個月大前曾被醫師診斷有異位性皮膚炎;統計分析發現在整個懷孕期間如果暴露到較高濃度的一氧化碳,會顯著增加其罹患異位性皮膚炎的風險(aOR = 1.37, 95% CI: 1.06–1.78),其中又以第一個孕期的暴露最為重要(aOR = 1.51, 95% CI: 1.16–1.97)。而第三部分的研究結果顯示,共有448位(2.8%)孩童曾經在18個月大前發生過肺炎;分析發現懷孕第二個孕期暴露到較高濃度的二氧化硫,會與其日後肺炎的發生呈現顯著負相關(aOR = 0.58, 95% CI: 0.41–0.82),但在出生後一年內的空氣汙染物暴露則沒有看到任何顯著的影響。
綜上,我們發現懷孕時期若暴露到較高濃度的特定空氣汙染物,確實會影響胎兒、甚至是出生後嬰兒的健康,且針對不同器官健康效應的關鍵暴露時期,也會因各個器官發育時程不同而有所差異。雖然確切致病機轉仍有待進一步研究釐清,然而站在健康危害提早預防的角度,一方面除需宣導教育孕婦避免接觸特定環境危害因子、並做適當個人防護外,政府在推動空汙防治的腳步上亦應大步跨前,以維護整體國人健康。
According to a World Health Organization (WHO) estimate in 2014, about 90% of the world population inhabited in areas where the WHO Air Quality Guidelines were not met. Evidence has shown that ambient air pollution can affect children health such as deterioration of lung function, development of allergy, and manifestation of asthma. For the context of prenatal exposure, fetuses are generally considered to be highly susceptible to a variety of environmental toxicants. Almost all the organs acquire its basic structure by the end of embryogenesis and get its maturation subsequently throughout the fetal period. For respiratory system, the development and maturation of alveolus will continue up till childhood. Therefore, it is increasingly obvious that there are critical windows of development for different organ systems when the timing of exposure can be more important than the overall exposure dose.
Recent literature has suggested that exposure to ambient air pollution during pregnancy can cause adverse birth outcomes in fetus like low birth weight, intrauterine growth retardation, preterm delivery, fetal mortality, and birth defects. Whether other organ specific influences also related to air pollution exposure during critical periods of pregnancy remains not totally elucidated. Moreover, the concentration of fine particulate matter (PM2.5) in Taiwan was higher than those of the WHO guideline and previously published studies. The health effects of exposure to air pollution at such an exposure level remained unexplored and were investigated in the present work.
The aims of this study were to:
1.Evaluate the risk of exposure to PM2.5 during the embryogenic period on congenital heart diseases (CHDs) in Taiwan.
2.Investigate the effect of prenatal and early postnatal exposure to air pollution on infantile atopic dermatitis (AD) development.
3.Explore and compare the roles of prenatal and postnatal exposure to air pollution in the occurrence of infantile pneumonia.

In this study, we first utilized the 2007–14 Taiwan Birth Registration Database to evaluate the risk of exposure to ambient air pollution during weeks 3–8 of pregnancy on CHDs. Daily average concentrations of criteria air pollutants, including PM10, PM2.5, PM2.5–10, SO2, NO2, CO, and O3, were retrieved from the Air Quality Monitoring Networks in Taiwan and interpolated to each township using the kriging method. Second, we enrolled infant-mother pairs from the Taiwan Birth Cohort Study (TBCS) to explore the association between exposure to air pollution during pregnancy and early postnatal period on AD occurrence before 6 months old. Third, the risk of developing infantile pneumonia before age of 18 months was investigated using participants from the TBCS 18-month survey. We compared the influences of exposure to air pollution during pregnancy and one year postnatally.
Firstly, there were 782 fetuses reported to have CHDs during 2007–14 and the most common subgroup was complex congenital heart diseases (30.3%), followed by ventricular septal defect (27.9%) and atrial septal defect (18.8%). The results revealed a positive correlation between exposure to PM2.5 during weeks 3–8 of pregnancy and the occurrence of CHDs (aOR = 1.18, 95% CI: 1.01–1.38). In subgroup analysis, we found that endocardial cushion defect (aOR = 2.30, 95% CI: 1.04–5.06) and pulmonary artery and valve stenosis (aOR = 1.66, 95% CI: 1.01–2.76) were significantly correlated to PM2.5 exposure during the embryonic period. Secondly, among the 16,686 enrolled infants from TBCS, 1,206 (7.2%) had been diagnosed as having AD before age of six months. The occurrence of AD was significantly associated with CO exposure during the whole gestational period (aOR = 1.37, 95% CI: 1.06–1.78) and the first trimester (aOR = 1.51, 95% CI: 1.16–1.97). Lastly, 448 out of 16,686 infants (2.8%) had ever developed pneumonia by 18 months old. Furthermore, infantile pneumonia occurrence was significantly associated with SO2 exposure (aOR = 0.58, 95% CI: 0.41–0.82) during the second trimester. No similar association was observed for the other air pollutants or during the first year postnatally.
In conclusion, we found that exposure to high levels of specific air pollutants during pregnancy was related to certain infantile health outcomes. Furthermore, the critical exposure windows for various organ systems were also different depending on the fetal developmental timeline. Although the underlying mechanisms remained to be elucidated, it is of crucial importance to prevent the adverse health impacts of air pollution on the fetus in advance. We can educate pregnant women to avoid contact with certain detrimental environmental modifiers, as well as adequately protect themselves during more polluted days. The authorities should also make more efforts to reduce the burden of air pollution.
誌謝 II
摘要 III
Abstract V
Glossary XIII
Chapter 1. Introduction 1
Characteristics of Air pollution 2
Primary pollutants 3
Secondary pollutants 5
Critical window of prenatal development 6
Air pollution and cardiac defect 8
Air pollution and allergic skin disease 10
Air pollution and respiratory morbidity 12
Chapter 2. Objectives 14
Chapter 3: Material and Methods 15
3.1 Prenatal exposure to air pollution and congenital heart diseases in Taiwan 15
3.1.1 Taiwan Birth Registration Database 15
3.1.2 Definitions of cases and controls 15
3.1.3 Exposure assessment 16
3.1.4 Spatial interpolation and cross-validation 17
3.1.5 Estimating exposure levels during critical periods 18
3.1.6 Statistical analysis 18
3.2 Prenatal air pollution exposure and risk of atopic dermatitis 19
3.2.1 Taiwan Birth Cohort Study 6-month survey 19
3.2.2 Definition of the outcome 20
3.2.3 Interpolation of air pollutants 20
3.2.4 Estimating exposure levels in different periods 20
3.2.5 Statistical analysis 21
3.3 Prenatal and postnatal exposure to air pollution and infantile pneumonia 22
3.3.1 Taiwan Birth Cohort Study 18-month survey 22
3.3.2 Definition of the outcome 22
3.3.3 Interpolation of air pollutants 22
3.3.4 Estimating exposure levels in different periods 23
3.3.5 Statistical analysis 23
Chapter 4: Results 25
4.1 Prenatal exposure to air pollution and congenital heart diseases in Taiwan 25
4.1.1 Incidence of congenital heart diseases 25
4.1.2 Distribution of air pollutants 25
4.1.3 Risk of congenital heart diseases 26
4.2 Prenatal air pollution exposure and occurrence of atopic dermatitis 26
4.2.1 Characteristics of the enrolled cohort 26
4.2.2 Distribution of air pollutants 27
4.2.3 Risk of developing atopic dermatitis 27
4.3 Prenatal and postnatal exposure to air pollution and infantile pneumonia 28
4.3.1 Characteristics of the enrolled cohort 28
4.3.2 Distribution of air pollutants 28
4.3.3 Risk of pneumonia occurrence 28
Chapter 5: Discussion 30
5.1 Risks of prenatal exposure to PM2.5 on congenital heart diseases 30
5.1.1 Major findings 30
5.1.2 Consistency with previous knowledge 30
5.1.3 Possible mechanism 32
5.2 Risks of prenatal air pollution exposure on developing infantile AD 33
5.2.1 Major findings 33
5.2.2 Consistency with previous knowledge 33
5.2.3 Possible mechanism 34
5.3 Risks of prenatal exposure to air pollution on infantile pneumonia occurrence 35
5.3.1 Major findings 35
5.3.2 Possible mechanism 35
5.3.3 Consistency with previous knowledge 36
5.3.4 Role of postnatal exposure to air pollutants 36
5.4 Spatial interpolation 37
5.5 Strengths 38
5.6 Limitations 39
Chapter 6: Conclusion and Recommendation 41
Conclusion 41
Recommendation 42
References 44
Publication List 89
Appendix 90
1World Health Organization. Ambient (outdoor) air quality and health. In, Vol. September 2016.
2World Health Organization. WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide. In: Global update 2005.
3International Agency for Research on Cancer. Outdoor air pollution. In, Vol. 109. 2013.
4World Health Organization Europe. Effects of air pollution on children''s health and development. In, Vol. Susceptibility of children to air pollution. 2005.
5Ghio AJ, Samet J. Air pollution and health: metals and air pollution particles: Academic Press. 1999.
6Pooley FMM. Air pollution and health: Composition of air pollution particles: Academic Press. 1999.
7EJ Calabrese. Age and susceptibility to toxic substance. New York: John Wiley & Sons. 1986.
8Axelrod D, Davis DL, Hajek RA et al. It''s time to rethink dose: the case for combining cancer and birth and developmental defects. Environ Health Perspect 2001; 109: A246-9.
9Grandjean P, Bellinger D, Bergman A et al. The faroes statement: human health effects of developmental exposure to chemicals in our environment. Basic Clin Pharmacol Toxicol 2008; 102: 73-5.
10Crain DA, Janssen SJ, Edwards TM et al. Female reproductive disorders: the roles of endocrine-disrupting compounds and developmental timing. Fertil Steril 2008; 90: 911-40.
11Ben-Shlomo Y, Kuh D. A life course approach to chronic disease epidemiology: conceptual models, empirical challenges and interdisciplinary perspectives. Int J Epidemiol 2002; 31: 285-93.
12Olden K, Freudenberg N, Dowd J et al. Discovering how environmental exposures alter genes could lead to new treatments for chronic illnesses. Health affairs 2011; 30: 833-41.
13Kavlock RJ, Daston GP, DeRosa C et al. Research needs for the risk assessment of health and environmental effects of endocrine disruptors: a report of the U.S. EPA-sponsored workshop. Environ Health Perspect 1996; 104 Suppl 4: 715-40.
14Glinianaia SV, Rankin J, Bell R et al. Particulate air pollution and fetal health: a systematic review of the epidemiologic evidence. Epidemiology 2004; 15: 36-45.
15Sram RJ, Binkova B, Dejmek J et al. Ambient air pollution and pregnancy outcomes: a review of the literature. Environ Health Perspect 2005; 113: 375-82.
16Dolk H, Vrijheid M. The impact of environmental pollution on congenital anomalies. British medical bulletin 2003; 68: 25-45.
17Rosamond W, Flegal K, Friday G et al. Heart disease and stroke statistics--2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2007; 115: e69-171.
18van der Linde D, Konings EE, Slager MA et al. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol 2011; 58: 2241-7.
19Ferencz C, Rubin JD, Loffredo CA et al. Epidemiology of congenital heart disease: the Baltimore-Washington Infant Study 1981-1989. Mount Kisco, New York: Futura Publishing Co. 1993.
20Vrijheid M, Martinez D, Manzanares S et al. Ambient air pollution and risk of congenital anomalies: a systematic review and meta-analysis. Environ Health Perspect 2011; 119: 598-606.
21Gorini F, Chiappa E, Gargani L et al. Potential effects of environmental chemical contamination in congenital heart disease. Pediatric cardiology 2014; 35: 559-68.
22Ritz B, Yu F, Fruin S et al. Ambient air pollution and risk of birth defects in Southern California. Am J Epidemiol 2002; 155: 17-25.
23Agay-Shay K, Friger M, Linn S et al. Air pollution and congenital heart defects. Environ Res 2013; 124: 28-34.
24Dadvand P, Rankin J, Rushton S et al. Association between maternal exposure to ambient air pollution and congenital heart disease: A register-based spatiotemporal analysis. Am J Epidemiol 2011; 173: 171-82.
25Dadvand P, Rankin J, Rushton S et al. Ambient air pollution and congenital heart disease: a register-based study. Environ Res 2011; 111: 435-41.
26Gilboa SM, Mendola P, Olshan AF et al. Relation between ambient air quality and selected birth defects, seven county study, Texas, 1997-2000. Am J Epidemiol 2005; 162: 238-52.
27Hansen CA, Barnett AG, Jalaludin BB et al. Ambient air pollution and birth defects in brisbane, australia. PLoS One 2009; 4: e5408.
28Rankin J, Chadwick T, Natarajan M et al. Maternal exposure to ambient air pollutants and risk of congenital anomalies. Environ Res 2009; 109: 181-7.
29Strickland MJ, Klein M, Correa A et al. Ambient air pollution and cardiovascular malformations in Atlanta, Georgia, 1986-2003. Am J Epidemiol 2009; 169: 1004-14.
30Stingone JA, Luben TJ, Daniels JL et al. Maternal exposure to criteria air pollutants and congenital heart defects in offspring: results from the national birth defects prevention study. Environ Health Perspect 2014; 122: 863-72.
31Padula AM, Tager IB, Carmichael SL et al. Ambient air pollution and traffic exposures and congenital heart defects in the San Joaquin Valley of California. Paediatr Perinat Epidemiol 2013; 27: 329-39.
32In, Vol. 2010: Department of Health, Taiwan.
33Dolk H, Armstrong B, Lachowycz K et al. Ambient air pollution and risk of congenital anomalies in England, 1991-1999. Occup Environ Med 2010; 67: 223-7.
34Schembari A, Nieuwenhuijsen MJ, Salvador J et al. Traffic-related air pollution and congenital anomalies in Barcelona. Environ Health Perspect 2014; 122: 317-23.
35Zhang B, Liang S, Zhao J et al. Maternal exposure to air pollutant PM2.5 and PM10 during pregnancy and risk of congenital heart defects. J Expo Sci Environ Epidemiol 2016; 26: 422-7.
36Taiwan EPA. Air Quality Monitoring System. In, Vol. 2017. Taipei, Taiwan: Taiwan Environmental Protection Administration. 2006-2014.
37van der Hulst AE, Klip H, Brand PL. Risk of developing asthma in young children with atopic eczema: a systematic review. J Allergy Clin Immunol 2007; 120: 565-9.
38Deckers IA, McLean S, Linssen S et al. Investigating international time trends in the incidence and prevalence of atopic eczema 1990-2010: a systematic review of epidemiological studies. PLoS One 2012; 7: e39803.
39Wen HJ, Wang YJ, Lin YC et al. Prediction of atopic dermatitis in 2-yr-old children by cord blood IgE, genetic polymorphisms in cytokine genes, and maternal mentality during pregnancy. Pediatr Allergy Immunol 2011; 22: 695-703.
40Plotz SG, Ring J. What''s new in atopic eczema? Expert Opin Emerg Drugs 2010; 15: 249-67.
41Williams H, Flohr C. How epidemiology has challenged 3 prevailing concepts about atopic dermatitis. J Allergy Clin Immunol 2006; 118: 209-13.
42Jones CA, Holloway JA, Warner JO. Does atopic disease start in foetal life? Allergy 2000; 55: 2-10.
43Thomas Bieber. Atopic Dermatitis. N Engl J Med 2008; 358: 1483-94.
44Ahn K. The role of air pollutants in atopic dermatitis. J Allergy Clin Immunol 2014; 134: 993-9; discussion 1000.
45Herr CE, Ghosh R, Dostal M et al. Exposure to air pollution in critical prenatal time windows and IgE levels in newborns. Pediatr Allergy Immunol 2011; 22: 75-84.
46Jedrychowski W, Perera F, Maugeri U et al. Effects of Prenatal and Perinatal Exposure to Fine Air Pollutants and Maternal Fish Consumption on the Occurrence of Infantile Eczema. Int Arch Allergy Immunol 2011; 155: 275-81.
47Wang IJ, Hsieh WS, Chen CY et al. The effect of prenatal perfluorinated chemicals exposures on pediatric atopy. Environ Res 2011; 111: 785-91.
48Roduit C, Wohlgensinger J, Frei R et al. Prenatal animal contact and gene expression of innate immunity receptors at birth are associated with atopic dermatitis. J Allergy Clin Immunol 2011; 127: 179-85, 85 e1.
49Dharmage SC, Lowe AJ, Matheson MC et al. Atopic dermatitis and the atopic march revisited. Allergy 2014; 69: 17-27.
50World Health Organization. Pneumonia. In, Vol. 2016: World Health Organization. 2015.
51Schwartz J. Air pollution and children''s health. Pediatrics 2004; 113: 1037-43.
52Jedrychowski W, Galas A, Pac A et al. Prenatal ambient air exposure to polycyclic aromatic hydrocarbons and the occurrence of respiratory symptoms over the first year of life. Eur J Epidemiol 2005; 20: 775-82.
53Jedrychowski WA, Perera FP, Spengler JD et al. Intrauterine exposure to fine particulate matter as a risk factor for increased susceptibility to acute broncho-pulmonary infections in early childhood. Int J Hyg Environ Health 2013; 216: 395-401.
54Breton MC, Beauchesne MF, Lemiere C et al. Risk of perinatal mortality associated with asthma during pregnancy. Thorax 2009; 64: 101-6.
55Chen CH, Wen HJ, Chen PC et al. Prenatal and postnatal risk factors for infantile pneumonia in a representative birth cohort. Epidemiol Infect 2012; 140: 1277-85.
56Greenberg D, Givon-Lavi N, Broides A et al. The contribution of smoking and exposure to tobacco smoke to Streptococcus pneumoniae and Haemophilus influenzae carriage in children and their mothers. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 2006; 42: 897-903.
57Barnett AG, Williams GM, Schwartz J et al. Air pollution and child respiratory health: a case-crossover study in Australia and New Zealand. Am J Respir Crit Care Med 2005; 171: 1272-8.
58Chauhan AJ, Johnston SL. Air pollution and infection in respiratory illness. British medical bulletin 2003; 68: 95-112.
59Lewis TC, Robins TG, Dvonch JT et al. Air pollution-associated changes in lung function among asthmatic children in Detroit. Environ Health Perspect 2005; 113: 1068-75.
60MacIntyre EA, Gehring U, Molter A et al. Air pollution and respiratory infections during early childhood: an analysis of 10 European birth cohorts within the ESCAPE Project. Environ Health Perspect 2014; 122: 107-13.
61Schwartz J, Neas LM. Fine particles are more strongly associated than coarse particles with acute respiratory health effects in schoolchildren. Epidemiology 2000; 11: 6-10.
62Duijts L. Fetal and infant origins of asthma. Eur J Epidemiol 2012; 27: 5-14.
63Kajekar R. Environmental factors and developmental outcomes in the lung. Pharmacol Ther 2007; 114: 129-45.
64Burri PH. Fetal and postnatal development of the lung. Annual review of physiology 1984; 46: 617-28.
65Rice MB, Rifas-Shiman SL, Oken E et al. Exposure to traffic and early life respiratory infection: A cohort study. Pediatr Pulmonol 2014.
66Ranzi A, Porta D, Badaloni C et al. Exposure to air pollution and respiratory symptoms during the first 7 years of life in an Italian birth cohort. Occup Environ Med 2014; 71: 430-6.
67Esplugues A, Estarlich M, Sunyer J et al. Prenatal exposure to cooking gas and respiratory health in infants is modified by tobacco smoke exposure and diet in the INMA birth cohort study. Environ Health 2013; 12: 100.
68Phases of lung development, Classification in the adult lung. In, Vol. 2017.
69EUROCAT. EUROCAT Guide 1.4. Instructions for the Registration of Congenital Anomalies. In, Vol. 2017. 2016.
70Hoek G, Fischer P, Van Den Brandt P et al. Estimation of long-term average exposure to outdoor air pollution for a cohort study on mortality. J Expo Anal Environ Epidemiol 2001; 11: 459-69.
71Wen HJ, Chen PC, Chiang TL et al. Predicting risk for early infantile atopic dermatitis by hereditary and environmental factors. Br J Dermatol 2009; 161: 1166-72.
72Yang CY, Xiao ZP, Ho SC et al. Association between trihalomethane concentrations in drinking water and adverse pregnancy outcome in Taiwan. Environ Res 2007; 104: 390-5.
73Yang CY, Chang CC, Tsai SS et al. Arsenic in drinking water and adverse pregnancy outcome in an arseniasis-endemic area in northeastern Taiwan. Environ Res 2003; 91: 29-34.
74Yang CY, Cheng BH, Hsu TY et al. Association between petrochemical air pollution and adverse pregnancy outcomes in Taiwan. Arch Environ Health 2002; 57: 461-5.
75Lin MC, Yu HS, Tsai SS et al. Adverse pregnancy outcome in a petrochemical polluted area in Taiwan. J Toxicol Environ Health A 2001; 63: 565-74.
76Hwang BF, Lee YL, Jaakkola JJ. Air pollution and stillbirth: a population-based case-control study in Taiwan. Environ Health Perspect 2011; 119: 1345-9.
77Hwang BF, Lee YL, Jaakkola JJ. Air Pollution and the Risk of Cardiac Defects: A Population-Based Case-Control Study. Medicine 2015; 94: e1883.
78Gittenberger-de Groot AC, Bartelings MM, Deruiter MC et al. Basics of cardiac development for the understanding of congenital heart malformations. Pediatric research 2005; 57: 169-76.
79Jain R, Engleka KA, Rentschler SL et al. Cardiac neural crest orchestrates remodeling and functional maturation of mouse semilunar valves. J Clin Invest 2011; 121: 422-30.
80Morgan SC, Relaix F, Sandell LL et al. Oxidative stress during diabetic pregnancy disrupts cardiac neural crest migration and causes outflow tract defects. Birth defects research. Part A, Clinical and molecular teratology 2008; 82: 453-63.
81Seaton A, Soutar A, Crawford V et al. Particulate air pollution and the blood. Thorax 1999; 54: 1027-32.
82Gabrielli A, Layon AJ. Carbon monoxide intoxication during pregnancy: a case presentation and pathophysiologic discussion, with emphasis on molecular mechanisms. Journal of clinical anesthesia 1995; 7: 82-7.
83Chen HW, Jiang WS, Tzeng CR. Nitric oxide as a regulator in preimplantation embryo development and apoptosis. Fertil Steril 2001; 75: 1163-71.
84Barroso RP, Osuamkpe C, Nagamani M et al. Nitric oxide inhibits development of embryos and implantation in mice. Molecular human reproduction 1998; 4: 503-7.
85Inoue T, Kaibara M, Sakurai-Yamashita Y et al. Increases in serum nitrite and nitrate of a few-fold adversely affect the outcome of pregnancy in rats. Journal of pharmacological sciences 2004; 95: 228-33.
86Lee YL, Su HJ, Sheu HM et al. Traffic-related air pollution, climate, and prevalence of eczema in Taiwanese school children. J Invest Dermatol 2008; 128: 2412-20.
87D''Amato G, Cecchi L, D''Amato M et al. Urban air pollution and climate change as environmental risk factors of respiratory allergy: an update. J Investig Allergol Clin Immunol 2010; 20: 95-102; quiz following
88Morgenstern V, Zutavern A, Cyrys J et al. Atopic diseases, allergic sensitization, and exposure to traffic-related air pollution in children. Am J Respir Crit Care Med 2008; 177: 1331-7.
89Clark NA, Demers PA, Karr CJ et al. Effect of early life exposure to air pollution on development of childhood asthma. Environ Health Perspect 2010; 118: 284-90.
90Lee YL, Li CW, Sung FC et al. Environmental factors, parental atopy and atopic eczema in primary-school children: a cross-sectional study in Taiwan. Br J Dermatol 2007; 157: 1217-24.
91Gehring U, Wijga AH, Brauer M et al. Traffic-related air pollution and the development of asthma and allergies during the first 8 years of life. Am J Respir Crit Care Med 2010; 181: 596-603.
92Penard-Morand C, Raherison C, Charpin D et al. Long-term exposure to close-proximity air pollution and asthma and allergies in urban children. Eur Respir J 2010; 36: 33-40.
93Bowler RP, Crapo JD. Oxidative stress in allergic respiratory diseases. J Allergy Clin Immunol 2002; 110: 349-56.
94Pastore S, Korkina L. Redox imbalance in T cell-mediated skin diseases. Mediators Inflamm 2010; 2010: 861949.
95Moison RM, Palinckx JJ, Roest M et al. Induction of lipid peroxidation of pulmonary surfactant by plasma of preterm babies. Lancet 1993; 341: 79-82.
96Thom SR. Dehydrogenase conversion to oxidase and lipid peroxidation in brain after carbon monoxide poisoning. Journal of applied physiology 1992; 73: 1584-9.
97Ballester F, Estarlich M, Iniguez C et al. Air pollution exposure during pregnancy and reduced birth size: a prospective birth cohort study in Valencia, Spain. Environ Health 2010; 9: 6.
98Kannan S, Misra DP, Dvonch JT et al. Exposures to airborne particulate matter and adverse perinatal outcomes: a biologically plausible mechanistic framework for exploring potential effect modification by nutrition. Environ Health Perspect 2006; 114: 1636-42.
99Howell MD, Kim BE, Gao P et al. Cytokine modulation of atopic dermatitis filaggrin skin expression. J Allergy Clin Immunol 2007; 120: 150-5.
100Jean LB, Joseph LJ, Ronald PR. Chapter 3 Embryology. In: Dermatology, 2 edn., Vol. 1. Maryland Heights, MO: Mosby. 2008.
101Haas MJ, Parseghian SA, Sajid RM et al. Effect of thyroid hormone responsive protein (THRP) expression on PC12 cell survival. Experimental brain research 2003; 150: 75-84.
102Fernie KJ, Cruz-Martinez L, Peters L et al. Inhaling Benzene, Toluene, Nitrogen Dioxide, and Sulfur Dioxide, Disrupts Thyroid Function in Captive American Kestrels (Falco sparverius). Environ Sci Technol 2016.
103The National Institute for Occupational Safety and Health. A guide to the work-relatedness of disease: DIANE Publishing. January 1979.
104U.S. Library of Medicine. In, Vol. 2016.
105Ansari MA, Demello DE, Polk DH et al. Thyrotropin-releasing hormone accelerates fetal mouse lung ultrastructural maturation via stimulation of extra thyroidal pathway. Pediatric research 1997; 42: 709-14.
106Liggins GC. Thyrotrophin-releasing hormone (TRH) and lung maturation. Reproduction, fertility, and development 1995; 7: 443-50.
107O''Brien WF. Use of TRH in the fetus to advance lung maturity. Advances in experimental medicine and biology 1991; 299: 243-50.
108DiFranza JR, Aligne CA, Weitzman M. Prenatal and postnatal environmental tobacco smoke exposure and children''s health. Pediatrics 2004; 113: 1007-15.
109Sunyer J, Puig C, Torrent M et al. Nitrogen dioxide is not associated with respiratory infection during the first year of life. Int J Epidemiol 2004; 33: 116-20.
110Meng G, Law J, Thompson ME. Small-scale health-related indicator acquisition using secondary data spatial interpolation. Int J Health Geogr 2010; 9: 50.
111Liao D, Peuquet DJ, Duan Y et al. GIS approaches for the estimation of residential-level ambient PM concentrations. Environ Health Perspect 2006; 114: 1374-80.
112Son JY, Bell ML, Lee JT. Individual exposure to air pollution and lung function in Korea: spatial analysis using multiple exposure approaches. Environ Res 2010; 110: 739-49.
113Briggs D. The role of GIS: coping with space (and time) in air pollution exposure assessment. J Toxicol Environ Health A 2005; 68: 1243-61.
114Dockery DW, Speizer FE, Stram DO et al. Effects of inhalable particles on respiratory health of children. Am Rev Respir Dis 1989; 139: 587-94.
115Seo JH, Leem JH, Ha EH et al. Population-attributable risk of low birthweight related to PM10 pollution in seven Korean cities. Paediatr Perinat Epidemiol 2010; 24: 140-8.
116Lin CM, Lee PC, Teng SW et al. Validation of the Taiwan Birth Registry using obstetric records. Journal of the Formosan Medical Association = Taiwan yi zhi 2004; 103: 297-301.
117Ritz B, Wilhelm M. Ambient air pollution and adverse birth outcomes: methodologic issues in an emerging field. Basic Clin Pharmacol Toxicol 2008; 102: 182-90.
118李中一., 陳麗華., 邱孟君. et al. 臺灣「婦幼健康主題式資料庫」之建構與未來應用. 臺灣公共衛生雜誌 2006; 35: 209-20.
119Ker J, Hartert TV. The atopic march: what''s the evidence? Ann Allergy Asthma Immunol 2009; 103: 282-9.
120Bantz SK, Zhu Z, Zheng T. The Atopic March: Progression from Atopic Dermatitis to Allergic Rhinitis and Asthma. Journal of clinical & cellular immunology 2014; 5.
121Gustafsson D, Sjoberg O, Foucard T. Development of allergies and asthma in infants and young children with atopic dermatitis--a prospective follow-up to 7 years of age. Allergy 2000; 55: 240-5.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔