跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/08 11:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施以欣
研究生(外文):I-Hsin Shih
論文名稱:正常神經功能犬隻超音波量測視神經鞘寬度之評估
論文名稱(外文):Evaluation of ultrasonographic measurement of optic nerve sheath diameter in neurologically normal dogs
指導教授:張雅珮張雅珮引用關係
口試日期:2017-07-18
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:臨床動物醫學研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:53
中文關鍵詞:經眼超音波視神經鞘寬度腦壓品種
外文關鍵詞:caninetransorbital ultrasonographyoptic nerve sheath diameterintracranial pressurebreed
相關次數:
  • 被引用被引用:0
  • 點閱點閱:254
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
視神經鞘主要由外鞘、內鞘以及兩鞘膜形成的蜘蛛膜下腔構成,兩鞘膜分別又是顱內腦膜硬膜與軟膜向外延伸之結構,並包覆著腦脊髓液。目前在人醫文獻,多已證實腦壓上升與視神經鞘寬度變化具有高度正相關的特性,經眼量測視神經鞘寬度即依據這項特性作為評估腦壓的工具。然而,目前獸醫文獻有關於視神經鞘寬度與腦壓的研究仍不多,例如性別、年齡、體重、體表面積、品種對於視神經鞘寬度的影響等。本篇研究的主要目的有二,第一為評估此技術在獸醫領域應用上的一致性,第二則是評估可能影響視神經鞘寬度之因素。
本研究將至國立臺灣大學附設動物醫院就診、不具眼科疾病、腦部疾病且不具嚴重系統性疾病之犬隻列為研究對象。犬隻於全身麻醉下呈側躺姿勢,以Accutome® B-scan plus超音波儀搭配15MHz超音波探頭進行掃描,量測眼球後方3毫米及5毫米處之視神經鞘寬度。數據以平均值及標準差呈現,依據樣本特性,以獨立t檢定、組內相關係數、雙變數Pearson相關分析、線性回歸曲線以及ANOVA進行統計分析。
研究共納入206例犬隻,結果顯示,以超音波量測視神經鞘寬度,觀測者本身的一致性,以及二位觀測者之間的一致性,平均差異值皆小於0.1毫米,呈高度一致;眼球後方3毫米處與眼球後方5毫米處的量測值亦具高度一致性,平均差異值小於0.1毫米。視神經鞘寬度與各項變因的分析研究顯示,性別、年齡與視神經鞘寬度無顯著相關,而體重、體表面積則與視神經鞘寬度呈高度正相關性。本篇研究中進行第一步統計分析的品種包含瑪爾濟斯、約克夏、貴賓犬、臘腸犬、雪納瑞、米格魯、柯基犬、拉布拉多獵犬、哈士奇與黃金獵犬。犬種與視神經鞘之關係,體型越大之犬種擁有越寬的視神經鞘,但相似體型之犬種其視神經鞘寬度也可能存在顯著差異。單一品種下,除米格魯犬,其餘犬種的體重、體表面積與視神經鞘寬度並無顯著相關。
以上結果顯示,經眼球超音波量測犬隻視神經鞘寬度,能提供良好的再現性與一致性,但在應用時應以犬種的差異性為優先考量,即便是相似體型的犬種,其視神經鞘寬度可能有顯著差異。未來研究上仍需增加各種犬種中的正常族群與高腦壓族群之測量值,以例建立後續臨床應用上的參考值。
Transorbital ultrasonographic measurement of optic nerve sheath diameter (ONSD) has been applied as a noninvasive method for detecting intracranial hypertension in humans. However, there are limited data in veterinary literature describing the correlation between ONSD and intracranial pressure condition, as well as other factors that might influence the width of ONSD, such as body weight, body surface area, and breeds. The aims of this study are: (a) to assess intra- and inter-observer reliability of ultrasonographic measurement of optic nerve sheath diameter, and (b) to evaluate factors that may influence the ONSD in dogs with normal brain function.
Dogs presented to the National Taiwan University Veterinary Hospital, without ophthalmic disease, brain dysfunction, and severe systemic diseases, were included in the study. Under general anesthesia and in lateral recumbency, ONSD was measured at 3 mm and 5mm caudal to the optic disc via- a 15-MHz ultrasonographic probe. Statistical analysis was performed using the SPSS statistical computer program. Data was reported as mean SD values. According to property of sample, intra-class correlation, independent samples t-test, Pearson correlation, linear regression or ANOVA were applied for data analysis.
ONSD was measured in 206 dogs. The intra- and inter-observer reliability was high for ONSD measurement. Gender and age did not significantly affect the measurement of ONSD. Body weight and body surface area were highly positively correlated with ONSD. ONSD in Maltese, Yorkshire, miniature Poodle, miniature Dachshund, miniature Schnauzer, Beagle, Corgi, Labrador Retriever, Husky, and Golden Retriever were further analyzed in this study. Results revealed significant difference in ONSD between various breeds, in which the larger size of breed tends to have the wider ONSD value. However, except for the Beagle, the ONSD was not significantly correlated with body weight and body surface area in dogs of the same breed.
The results demonstrated that ultrasonographic measurement of ONSD is a reproducible technique with high intra- and inter-observer reliability. However, when applying the measurement of ONSD to detect intracranial hypertension, breed variation should be considered as one important factor. The results of our study could be seen as a basis for future investigation. Larger sample size of various breeds including dogs with normal and increased intracranial pressure are needed to establish the reference of different breeds for future application of ultrasonographic ONSD to predict intracranial pressure.
口試委員審定書 i
致謝 ii
中文摘要 iii
英文摘要 v
目錄 vii
表次 ix
圖次 x
第一章、序言 1
第一節、研究背景 1
第二節、研究目的 2
第二章、文獻探討 3
第一節、腦壓 3
第一項、腦壓生理機制 3
第二項、高腦壓 4
第三項、高腦壓時的臨床及神經症狀 5
第二節、腦壓監測 6
第一項、侵入性腦壓監測 6
第二項、間接性腦壓評估 8
第三節、視神經鞘 10
第一項、解剖構造 10
第二項、視神經鞘特性 12
第三項、影像特徵 14
第四節、經眼超音波臨床應用性 17
第一項、人醫相關文獻 17
第二項、獸醫相關文獻 18
第三章、材料與方法 20
第一節、實驗對象 20
第二節、實驗方法 20
第一項、視神經鞘掃描 20
第二項、視神經鞘量測 21
第三節、統計分析 22
第四章、結果 25
第五章、討論 41
第一節、超音波量測犬隻視神經鞘寬度的再現性與一致性 41
第二節、影響視神經鞘寬度之因素 43
第三節、技術學習與未來獸醫領域研究方向 45
第四節、限制性 46
第六章、結論 48
參考文獻 49
1. Alali, A.S., et al., Intracranial pressure monitoring in severe traumatic brain injury: results from the American College of Surgeons Trauma Quality Improvement Program. J Neurotrauma, 2013. 30(20): p. 1737-46.
2. Sturges, B.K., R.A. Lecouteur, and L.D. Tripp, Intracranial pressure monitoring in clinically normal dogs using the Codman ICP Express and Codman Microsensor ICP transducer. J Vet Intern Med, 2000. 14: p. 387.
3. Platt, S. and L. Garosi, Small animal neurological emergencies. Head trauma, ed. S. Platt and L. Garosi. 2012, Manson Publishing Ltd.
4. Paulson, O.B., S. Strandgaard, and L. Edvinsson, Cerebral Autoregulation. Cerebrovasc Brain Metab Rev, 1990. 2: p. 161-192.
5. Mokri, B., The Monro-Kellie hypothesis -Applications in CSF volume depletion. Neurol, 2001. 56: p. 1746-1748.
6. Hylkema, C., Optic Nerve Sheath Diameter Ultrasound and the Diagnosis of Increased Intracranial Pressure. Crit Care Nurs Clin North Am, 2016. 28(1): p. 95-9.
7. Kent, M., S.R. Platt, and S.J. Schatzberg, The neurology of balance: function and dysfunction of the vestibular system in dogs and cats. Vet J, 2010. 185(3): p. 247-58.
8. Silverstein, D. and K. Hopper, Small animal critical care medicine. 2 ed. Intracranial pressure monitoring, ed. B.K. Sturges. 2014: Elsevier Health Sciences.
9. Servadei, F., V. Antonelli, and G. Giuliani, Evolving lesions in traumatic subarachnoid hemorrhage: prospective study of 110 patients with emphasis on the role of ICP monitoring. Acta Neurochir Suppl, 2002. 81: p. 81-82.
10. Bagley, R.S., R.D. Keegan, and S.A. Greene, Intraoperative monitoring of intracranial pressure in five dogs with space-occupying intracranial lesions. J Am Vet Med Assoc, 1995. 207: p. 588-591.
11. Ilie, L.A., et al., Relationship between intracranial pressure as measured by an epidural intracranial pressure monitoring system and optic nerve sheath diameter in healthy dogs. Am J Vet Res, 2015. 76(8): p. 724-31.
12. Cushing, H., Concerning a definite regulatory mechanism of the vaso-motor centre which controls blood pressure during cerebral compression. Bull Johns Hopkins Hosp, 1901. 12: p. 290.
13. Foundation, B.T., The American Association of Neurological Surgeons. The Joint Section on Neurotrauma and Critical Care: Initial management. J Neurotrauma, 2000. 17: p. 463-469.
14. Kristiansson, H., et al., Measuring elevated intracranial pressure through noninvasive methods a review of the literature. J Neurosurg Anesthesiol, 2013. 25(4): p. 372-85.
15. Bittermann, S., et al., Magnetic resonance imaging signs of presumed elevated intracranial pressure in dogs. Vet J, 2014. 201(1): p. 101-8.
16. Bellner, J., et al., Transcranial Doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP). Surg Neurol, 2004. 62(1): p. 45-51; discussion 51.
17. Klingelhofer, J., B. Conrad, and R. Benecke, Evaluation of intracranial pressure from transcranial Doppler studies in cerebral disease. J Neurol, 1988. 235: p. 159-162.
18. Fukushima, U., et al., Evaluation of intracranial pressure by transcranial Doppler ultrasonography in dogs with intracranial hypertension. J Vet Med Sci, 2000. 62(3): p. 353-5.
19. Nair, S., Clinical review of non-invasive intracranial pressure measurement in medical cases. Journal of Neuroanaesthesiology and Critical Care, 2016. 3(1): p. 9.
20. Shen, Q., J. Stuart, and B. Venkatesh, Inter observer variability of the transcranial doppler ultrasound technique: impact of lack of practice on the accuracy of measurement. J Clin Monit Comput, 1999. 15: p. 179-184.
21. de Lahunta, A., Miller''s anatomy of the dog. 4 ed. The eye, ed. C.J. Murphy, D.A. Samuelson, and R.V.H. Pollock. 2013: Evans HE.
22. Killer, H.E., et al., Architecture of arachnoid trabeculae, pillars, and septa in the subarachnoid space of the human optic nerve anatomy and clinical considerations. Br J Ophthalmol, 2003. 87(6): p. 777-81.
23. Morgan, W.H., D.Y. Yu, and R.L. Cooper, The influence of cerebrospinal fluid pressure on the lamina cribrosa tissue pressure gradient. Invest Ophthalmol Vis Sci, 1995. 36: p. 1163-1172.
24. Hansen, H.C. and K. Helmke, The subarachnoid space surrounding the optic nerves. An ultrasound study of the optic nerve sheath. Surg Radiol Anat, 1996. 18(4): p. 323-8.
25. Hansen, H.C. and K. Helmke, Validation of the optic nerve sheath response to changing cerebrospinal fluid pressure ultrasound findings during intrathecal infusion tests. J Neurosurg, 1997. 87(1): p. 34-40.
26. Hansen, H.C., et al., Dependence of the optic nerve sheath diameter on acutely applied subarachnoidal pressure - an experimental ultrasound study. Acta Ophthalmol, 2011. 89(6): p. e528-32.
27. Launey, Y., et al., Effect of osmotherapy on optic nerve sheath diameter in patients with increased intracranial pressure. J Neurotrauma, 2014. 31(10): p. 984-8.
28. Martins, B.C. and D.E. Brooks, Diseases of the canine optic nerve. Veterinary ophthalmology, ed. K.N. Gelatt, B.C. Gilger, and K.T. J. 2012: John Wiley & Sons.
29. Palmer, A.C., W. Malinowski, and K.C. Barnett, Clinical signs including papilloedema associated with brain tumours in twenty-one dogs. J Small Anim Pract, 1974. 15(6): p. 359-86.
30. Geeraerts, T., et al., Use of T2-weighted magnetic resonance imaging of the optic nerve sheath to detect raised intracranial pressure. Crit Care, 2008. 12(5): p. 114.
31. Watanabe, A., et al., Effect of intracranial pressure on the diameter of the optic nerve sheath. J Neurosurg, 2008. 109(2): p. 255-8.
32. Shofty, B., et al., Optic nerve sheath diameter on MR imaging: establishment of norms and comparison of pediatric patients with idiopathic intracranial hypertension with healthy controls. AJNR Am J Neuroradiol, 2012. 33(2): p. 366-9.
33. Young, A.M., et al., Correlating optic nerve sheath diameter with opening intracranial pressure in pediatric traumatic brain injury. Pediatr Res, 2017. 81(3): p. 443-447.
34. Sekhon, M.S., et al., Association between optic nerve sheath diameter and mortality in patients with severe traumatic brain injury. Neurocrit Care, 2014. 21(2): p. 245-52.
35. Goeres, P., et al., Ultrasound assessment of optic nerve sheath diameter in healthy volunteers. J Crit Care, 2016. 31(1): p. 168-71.
36. Chen, H., et al., Ultrasound measurement of optic nerve diameter and optic nerve sheath diameter in healthy Chinese adults. BMC Neurol, 2015. 15: p. 106.
37. Maude, R.R., et al., Transorbital sonographic evaluation of normal optic nerve sheath diameter in healthy volunteers in Bangladesh. PLoS One, 2013. 8(12): p. e81013.
38. Soldatos, T., et al., Optic nerve sonography in the diagnostic evaluation of adult brain injury. Crit Care, 2008. 12(3): p. 67.
39. Ballantyne, S.A., et al., Observer variation in the sonographic measurement of optic nerve sheath diameter in normal adults. Eur J Ultrasound, 2002. 15(3): p. 145-9.
40. Lee, S.U., et al., Optic nerve sheath diameter threshold by ocular ultrasonography for detection of increased intracranial pressure in Korean adult patients with brain lesions. Medicine (Baltimore), 2016. 95(41): p. e5061.
41. Tayal, V.S., et al., Emergency department sonographic measurement of optic nerve sheath diameter to detect findings of increased intracranial pressure in adult head injury patients. Ann Emerg Med, 2007. 49(4): p. 508-14.
42. Blaivas, M., D. Theodoro, and P.R. Sierzenski, Elevated intracranial pressure detected by bedside emergency ultrasonography of the optic nerve sheath. Acad Emerg Med, 2003. 10(4).
43. Kimberly, H.H., et al., Correlation of optic nerve sheath diameter with direct measurement of intracranial pressure. Acad Emerg Med, 2008. 15(2): p. 201-4.
44. Rajajee, V., et al., Optic nerve ultrasound for the detection of raised intracranial pressure. Neurocrit Care, 2011. 15(3): p. 506-15.
45. Lochner, P., et al., Intra- and interobserver reliability of transorbital sonographic assessment of the optic nerve sheath diameter and optic nerve diameter in healthy adults. J Ultrasound, 2016. 19(1): p. 41-5.
46. Moretti, R., et al., Reliability of optic nerve ultrasound for the evaluation of patients with spontaneous intracranial hemorrhage. Neurocrit Care, 2009. 11(3): p. 406-10.
47. Maissan, I.M., et al., Ultrasonographic measured optic nerve sheath diameter as an accurate and quick monitor for changes in intracranial pressure. J Neurosurg, 2015. 123(3): p. 743-7.
48. Geeraerts, T., et al., Ultrasonography of the optic nerve sheath may be useful for detecting raised intracranial pressure after severe brain injury. Intensive Care Med, 2007. 33(10): p. 1704-11.
49. Geeraerts, T., et al., Non-invasive assessment of intracranial pressure using ocular sonography in neurocritical care patients. Intensive Care Med, 2008. 34(11): p. 2062-7.
50. Lee, H.C., et al., Ultrasonographic measurement of optic nerve sheath diameter in normal dogs. J Vet Sci, 2003. 4(3).
51. Cooley, S.D., et al., Correlations among Ultrasonographic Measurements of Optic Nerve Sheath Diameter, Age, and Body Weight in Clinically Normal Horses. Vet Radiol Ultrasound, 2016. 57(1): p. 49-57.
52. Bekerman, I., P. Gottlieb, and M. Vaiman, Variations in eyeball diameters of the healthy adults. J Ophthalmol, 2014. 2014: p. 503645.
53. Gaiddon, J., et al., Use of biometry and keratometry for determining optimal power for intraocular lens implants in dogs. Am J Vet Res, 1991. 52(5): p. 781-3.
54. Murphy, C.J., K. Zadnik, and M.J. Mannis, Myopia and refractive error in dogs. Invest Ophthalmol Vis Sci, 1992. 33(8): p. 2459-63.
55. Newman, W.D., et al., Measurement of optic nerve sheath diameter by ultrasound a means of detecting acute raised intracranial pressure in hydrocephalus. Br J Ophthalmol, 2002. 86(10): p. 1109-13.
56. Kim, S.H., H.J. Kim, and K.T. Jung, Position does not affect the optic nerve sheath diameter during laparoscopy. Korean J Anesthesiol, 2015. 68(4): p. 358-63.
57. Romagnuolo, L., et al., Optic nerve sheath diameter does not change with patient position. Am J Emerg Med, 2005. 23(5): p. 686-8.
58. Zeiler, F.A., et al., A unique method for estimating the reliability learning curve of optic nerve sheath diameter ultrasound measurement. Crit Ultrasound J, 2016. 8(1): p. 9.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top