跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/08 01:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳婷婷
研究生(外文):Ting-Ting Chen
論文名稱:STAT1 調控胸腺依賴性與胸腺非依賴性抗原引發 B 淋巴球之分化
論文名稱(外文):STAT1 Regulates B Cell Differentiation in Response tothymus-dependent and thymus-independent antigens
指導教授:李建國李建國引用關係
指導教授(外文):Chien-Kuo Lee
口試委員:孔祥智林國儀呂春敏繆希椿
口試委員(外文):John T. KungKuo-I LinChuen-Miin LeuShi-Chuen Miaw
口試日期:2016-11-29
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:免疫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:英文
論文頁數:121
中文關鍵詞:STAT1Toll樣受體邊陲 B 淋巴球肺炎鏈球菌
外文關鍵詞:STAT1toll-like receptormarginal zone BS. pneumoniae
相關次數:
  • 被引用被引用:0
  • 點閱點閱:212
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
干擾素 (包含第一型和第二型干擾素)是一種能夠調控先天性和適應性免疫反應的多功能的細胞激素。STAT1是第一型和第二型干擾素共同的訊息傳遞因子。然而,STAT1在抗體反應中扮演的角色目前尚不明確。本論文中,我們證明STAT1正向調控胸腺依賴性與胸腺非依賴性抗原引發的IgG反應,而且此反應是和B淋巴球和T淋巴球的作用有關。此外,STAT1也正向調控IL-4加上CD40抗體以及TLR誘導的IgM反應,而且這個作用在MZ B比FO B顯著。我們進一步發現,STAT1調控TLR誘導的IgM反應是和干擾素的作用無關。Stat1基因剔除的MZ B在受TLR配體刺激後的活化狀態、分裂能力和細胞凋亡的能力並沒有受到影響,但分化成漿細胞和產生IgM的能力則有缺失。有趣的是,我們發現STAT1能和Prdm1(BLIMP-1蛋白的基因名)的啟動子(promoter)結合,進而調控Prdm1 RNA的表現量。而且在經過TLR配體刺激後的Prdm1 RNA表現量在Stat1基因剔除MZ B確實減少。在Stat1基因剔除的MZ B中提高BLIMP-1表現,可以恢復TLR誘導IgM到正常的表現量。TLR誘導Prdm1基因減少的現象,除了Stat1基因剔除的MZ B之外,在脾臟B-1a細胞也可以觀察到。此外,我們發現Stat1基因剔除小鼠對於肺炎鏈球菌的感染比較敏感。靜脈注射肺炎鏈球菌感染後的野生型小鼠的血清,可以保護Stat1基因剔除小鼠免於肺炎鏈球菌感染造成的死亡。我們也證明Stat1基因剔除小鼠對肺炎鏈球菌感染較敏感確實是因為該小鼠MZ B缺少STAT1的緣故。總而言之,我們的實驗結果證明STAT1對於胸腺依賴性和胸腺非依賴性抗原誘導B淋巴球的分化、IgM和IgG的產生扮演著重要的角色。
Interferon (IFN), including type I and II IFNs, are pleiotropic cytokines that modulate the innate and adaptive immunity. STAT1 is a shared signaling mediator of type I and II IFNs. However, the role of STAT1 in antibody responses remains elusive. Here, we demonstrate that STAT1 positively regulates IgG responses in a B cell- and T cell-dependent manner in response to both thymus-dependent (TD) and thymus-independent (TI) antigens. Moreover, STAT1 also positively regulates IL-4 and anti-CD40 antibody- or TLR-mediated IgM responses of B cells which is more prominent in marginal zone B (MZ B) than follicular B (FO B) cells. Further, the STAT1-mediated IgM response of MZ B cells upon TLR stimulation is IFN-independent. While activation, proliferation and apoptosis are not affected, both differentiation into plasma cells and IgM production are impaired in Stat1-/-MZ B cells. Interestingly, STAT1 directly regulates the expression of Prdm1 (encodes BLIMP-1) by binding to its promoter, and Prdm1 expression is reduced in Stat1-/- MZ B cells. Restoration of BLIMP-1 to cells rescues TLR- induced IgM response. The attenuated Prdm1 expression in response to TLR is observed not only in Stat1-/- MZ B cells but also in Stat1-/- splenic B-1a cells. Moreover, Stat1-/- mice are more susceptible to S. pneumoniae infection, which can be rescued by the serum of bacteria primed WT mice. The increased susceptibility to S. pneumoniae infection in Stat1-/- mice is also intrinsic to STAT1 requirement in MZ B cells. Collectively, these results reveal a role of STAT1 in B cell differentiation, and IgM and IgG response to TD and TI antigens.
Table of contents
致謝------------------------------------------------------------------------------------------------- i
Abbreviation----------------------------------------------------------------------------------- iii
摘要------------------------------------------------------------------------------------------------ iv
Abstract------------------------------------------------------------------------------------------ v
Chapter I. Introduction
1.1 Interferons-------------------------------------------------------------------------------------- 2
1.2 Jak-Stat pathway------------------------------------------------------------------------------- 4
1.3 B cell subsets----------------------------------------------------------------------------------- 5
1.4 Transcription factors regulate B cell differentiation-------------------------------------- 7
1.5 TLR and antibody responses----------------------------------------------------------------- 8
1.6 IFNs and antibody responses---------------------------------------------------------------- 9
1.7 Antibody responses and blood-borne bacteria------------------------------------------- 10
1.8 Rational and significance------------------------------------------------------------------- 10
Chapter II. Materials and Methods
2.1 Mice------------------------------------------------------------------------------------------- 16
2.2 Immunization--------------------------------------------------------------------------------- 16
2.3 Antibodies and flow cytometry------------------------------------------------------------ 16
2.4 Cell sorting, cell culture and adoptive transfer------------------------------------------- 17
2.5 Enzyme-Linked Immunosorbent Assay (ELISA)----------------------------------------18
2.6 Immunohistochemistry and MZ B capture ability assay------------------------------- 18
2.7 Activation, proliferation, and apoptosis assays------------------------------------------ 19
2.8 ELISPOT assay------------------------------------------------------------------------------ 19
2.9 Complement depletion assay--------------------------------------------------------------- 20
2.10 Quantitative RT-PCR---------------------------------------------------------------------- 20
2.11 In silico analysis---------------------------------------------------------------------------- 21
2.12 RNA silencing------------------------------------------------------------------------------ 21
2.13 Chromatin immunoprecipitation assay (ChIP)----------------------------------------- 22
2.14 Reporter assay------------------------------------------------------------------------------ 23
2.15 Retroviral transduction-------------------------------------------------------------------- 24
2.16 Priming and challenging of S. pneumoniae--------------------------------------------- 24
2.17 Western blotting---------------------------------------------------------------------------- 25
2.18 Statistical analyses------------------------------------------------------------------------- 25
Tables
Table 1. Antibodies------------------------------------------------------------------------------ 13
Table 2. Reagents--------------------------------------------------------------------------------- 15
Table 3. Primer sequences of RT-QPCR----------------------------------------------------- 21
Table 4. shRNA sequence----------------------------------------------------------------------- 22
Table 5. Primer sequences of ChIP------------------------------------------------------------ 23
Chapter III. Results
3.1 Impaired antibody response in Stat1-/- mice to TD antigen-----------------------------27
3.2 Impaired IgG responses to TD antigen are intrinsic to the loss of STAT1 in T cells-------------------------------------------------------------------------------------------------------- 28
3.3 Impaired IgM and IgG response to TD antigen are intrinsic to the loss of STAT1 in B cells---------------------------------------------------------------------------------------------- 28
3.4 IL-4 and anti-CD40 antibody-induced IgM and IgG1 responses are impaired in Stat1-/-B cells--------------------------------------------------------------------------------------------- 29
3.5 IgM responses are normal in Stat1-/- mice when TNP-OVA emulsified with IFA or alum------------------------------------------------------------------------------------------------ 29
3.6 Impaired IgM response to CFA in Stat1-/- mice----------------------------------------- 30
3.7 TI-II antigen-induced IgG, but not IgM, responses are impaired in Stat1-/- mice--- 30
3.8 Impaired IgM responses in Stat1-/- B cells in response to TLR stimulation --------- 31
3.9 Impaired IgM response in Stat1-/- MZ B cells in response to TLR stimulation ----- 31
3.10 Impaired TLR-induced IgM responses in Stat1-/- mice are intrinsic to MZ B cells--------------------------------------------------------------------------------------------------------- 32
3.11 Development, distribution and antigen-capture ability of MZ B are normal in Stat1-/- mice---------------------------------------------------------------------------------------------- 33
3.12 The expression of TLR and TLR-induced activation of MZ B are normal in the absence of STAT1--------------------------------------------------------------------------- 34
3.13 TLR-stimulated B cell differentiation is impaired in the absence of STAT1-------- 35
3.14 STAT1 positively regulates Prdm1 expression and restoration of BLIMP-1 rescues the impaired IgM response in Stat1-/-MZ B cells--------------------------------------------- 36
3.15 Stat1-/- mice are more susceptible to blood-borne S. pneumoniae infection--------- 37
3.16 Increased susceptibility to S. pneumoniae infection in Stat1-/- mice is intrinsic to STAT1 requirement in MZ B cells------------------------------------------------------------ 38
3.17 Impaired LPS-induced production of anti-PC IgM in the absence of STAT1------ 40
3.18 TLR- and S. pneumoniae-stimulated serine phosphorylation of STAT1 contributes to the IgM response in MZ B cells-------------------------------------------------------------- 40
3.19 TLR-mediated Prdm1 expression and IgM response are impaired in Stat1-/- splenic B-1a cells------------------------------------------------------------------------------------------ 42
Chapter IV. Discussion
4.1 STAT1 regulates IgG response dependent on IFNs and adjuvant---------------------- 44
4.2 Distinct requirement of Stat1 and IFN in immune cells ------------------------------- 44
4.3 Stat1 directly regulates Prdm1 expression ----------------------------------------------- 45
4.4 IL-10 synergizes with TLR to promote Stat1 DNA binding ability to Prdm1 promoter ------------------------------------------------------------------------------------------ 46
4.5 The role of Stat1 in S. pneumoniae clearance ------------------------------------------- 47
4.6 The role of pS727-Stat1 in immune cells ------------------------------------------------ 48
4.7 The role of Stat1 in regulating MZ B and spB-1a differentiation -------------------- 49
4.8 The role of Stat1 in regulating nature antibody production --------------------------- 49
4.9 Concluding remarks------------------------------------------------------------------------- 50
Reference--------------------------------------------------------------------------------------- 51
Chapter V. Figures
Figure 1. TD antigen-induced IgM and IgG responses to TD antigen are impaired in Stat1-/- mice---------------------------------------------------------------------------------------- 61
Figure 2. Impaired IgG responses in Stat1-/- mice are T cell intrinsic--------------------- 63
Figure 3. Impaired IgM and IgG responses in Stat1-/- mice are B cell intrinsic---------- 65
Figure 4. IL-4 and anti-CD40 antibody-induced IgM production are impaired in Stat1-/- B cells---------------------------------------------------------------------------------------------- 67
Figure 5. TD responses in Stat1-/- mice is normal when antigen is emulsified with alum-------------------------------------------------------------------------------------------------------- 69
Figure 6. CFA-induced IgM response are impaired in Stat1-/- mice----------------------- 70
Figure 7. TI-II antigen-induced IgG, but not IgM, responses are impaired in Stat1-/- mice------------------------------------------------------------------------------------------------ 71
Figure 8. TLR-induced IgM and IgG responses are impaired in Stat1-/- B cells----------72
Figure 9. Impaired TLR-induced IgM responses in Stat1-/- MZ B are type I- and II- IFN independent--------------------------------------------------------------------------------------- 73
Figure 10. Impaired TLR-induced IgM responses in Stat1-/- mice are intrinsic to defect in MZ B cells-------------------------------------------------------------------------------------- 74
Figure 11. MZ B development, distribution and antigen-capture ability are normal in Stat1-/- mice--------------------------------------------------------------------------------------- 75
Figure 12. The expression of TLR and activation markers are comparable between WT and Stat1-/-MZ B cells--------------------------------------------------------------------------- 77
Figure 13. IL-10 but not IL-6 or TNF-a is decreased in Stat1-/-MZ B upon TLR stimulation---------------------------------------------------------------------------------------- 79
Figure 14. TLR-induced proliferation and apoptosis of Stat1-/-MZ B cells are normal---------------------------------------------------------------------------------------------------------- 81
Figure 15. TLR-stimulated B cell differentiation is impaired in Stat1-/-MZ B cells---- 82
Figure 16. TLR-induced Prdm1 and Xbp1s expression are reduced in Stat1-/-MZ B cells------------------------------------------------------------------------------------------------- 84
Figure 17. IgM production and Prdm1 expression is decreased in STAT1 knockdown CH12F3 cells-------------------------------------------------------------------------------------- 86
Figure 18. STAT1 binds to Prdm1 promoter region and regulates Prdm1 expression----------------------------------------------------------------------------------------------------------- 87
Figure 19. Restored Blimp-1 rescues TLR-induced IgM responses in Stat1-/-MZ B cells------------------------------------------------------------------------------------------------------- 89
Figure 20. MZ B plays a role in S. pneumoniae clearance---------------------------------- 90
Figure 21. Stat1-/- mice are more susceptible to S. pneumoniae infection---------------- 91
Figure 22. WT serum transfer rescues Stat1-/- mice from S. pneumoniae infection and anti-PC IgM plays a role in S. pneumoniae clearance--------------------------------------- 93
Figure 23. Increased susceptibility to S. pneumoniae infection in Stat1-/- mice is intrinsic to the loss of STAT1 in MZ B cells------------------------------------------------------------ 94
Figure 24. Reduced production of PC-specific antibody in Stat1-/- mice following S.
pneumoniae and TLR stimulation-------------------------------------------------------------- 96
Figure 25. p38 and CDK8 inhibitors reduce TLR-induced IgM responses in WT MZ B cells------------------------------------------------------------------------------------------------- 97
Figure 26. Serine phosphorylation of STAT1 regulates IgM production from MZ B cells------------------------------------------------------------------------------------------------- 99
Figure 27. Impaired IgM response in Stat1-/- spB-1a cells-------------------------------- 101
Figure 28. The percentage and numbers of peritoneal B-1a and B-1b cells are normal in
Stat1-/- mice-------------------------------------------------------------------------------------- 103
Figure 29. STAT1 positively regulates TLR-mediated plasma cell differentiation through directing binding to Prdm1 promoter, which is crucial for clearance of bloodborne
bacteria------------------------------------------------------------------------------------104
Appendix
STAT1 regulates marginal zone B cell differentiation in response to inflammation and infection with blood-borne bacteria
J. Exp. Med. 2016 Vol. 213 No. 13 3025–3039
References
Akira, S., Takeda, K., & Kaisho, T. (2001). Toll-like receptors: critical proteins linking innate and acquired immunity. Nature Immunology, 2(8), 675-680. doi:10.1038/90609
Amlot, P. L., & Hayes, A. E. (1985). Impaired human antibody response to the thymus-independent antigen, DNP-Ficoll, after splenectomy. Implications for post-splenectomy infections. Lancet, 1(8436), 1008-1011.
Bach, E. A., Aguet, M., & Schreiber, R. D. (1997). The IFN gamma receptor: a paradigm for cytokine receptor signaling. Annual Review of Immunology, 15, 563-591. doi:10.1146/annurev.immunol.15.1.563
Balazs, M., Martin, F., Zhou, T., & Kearney, J. (2002). Blood dendritic cells interact with splenic marginal zone B cells to initiate T-independent immune responses. Immunity, 17(3), 341-352.
Bancerek, J., Poss, Z. C., Steinparzer, I., Sedlyarov, V., Pfaffenwimmer, T., Mikulic, I., . . . Kovarik, P. (2013). CDK8 kinase phosphorylates transcription factor STAT1 to selectively regulate the interferon response. Immunity, 38(2), 250-262. doi:10.1016/j.immuni.2012.10.017
Barral, P., Eckl-Dorna, J., Harwood, N. E., De Santo, C., Salio, M., Illarionov, P., . . . Batista, F. D. (2008). B cell receptor-mediated uptake of CD1d-restricted antigen augments antibody responses by recruiting invariant NKT cell help in vivo. Proceedings of the National Academy of Sciences of the United States of America, 105(24), 8345-8350. doi:10.1073/pnas.0802968105
Batista, F. D., & Harwood, N. E. (2009). The who, how and where of antigen presentation to B cells. Nature Reviews: Immunology, 9(1), 15-27. doi:10.1038/nri2454
Bendelac, A., Bonneville, M., & Kearney, J. F. (2001). Autoreactivity by design: innate B and T lymphocytes. Nature Reviews: Immunology, 1(3), 177-186. doi:10.1038/35105052
Bergtold, A., Desai, D. D., Gavhane, A., & Clynes, R. (2005). Cell surface recycling of internalized antigen permits dendritic cell priming of B cells. Immunity, 23(5), 503-514. doi:10.1016/j.immuni.2005.09.013
Berland, R., & Wortis, H. H. (2002). Origins and functions of B-1 cells with notes on the role of CD5. Annual Review of Immunology, 20, 253-300. doi:10.1146/annurev.immunol.20.100301.064833
Bernasconi, N. L., Onai, N., & Lanzavecchia, A. (2003). A role for Toll-like receptors in acquired immunity: up-regulation of TLR9 by BCR triggering in naive B cells and constitutive expression in memory B cells. Blood, 101(11), 4500-4504. doi:10.1182/blood-2002-11-3569
Beutler, B. (2005). The Toll-like receptors: analysis by forward genetic methods. Immunogenetics, 57(6), 385-392. doi:10.1007/s00251-005-0011-3
Bezbradica, J. S., & Schroder, K. (2014). TRAF6 is a nexus for TLR-STAT1 crosstalk. Immunology and Cell Biology, 92(9), 737-738. doi:10.1038/icb.2014.71
Boisson-Dupuis, S., Kong, X. F., Okada, S., Cypowyj, S., Puel, A., Abel, L., & Casanova, J. L. (2012). Inborn errors of human STAT1: allelic heterogeneity governs the diversity of immunological and infectious phenotypes. Current Opinion in Immunology, 24(4), 364-378. doi:10.1016/j.coi.2012.04.011
Bolen, C. R., Ding, S., Robek, M. D., & Kleinstein, S. H. (2014). Dynamic expression profiling of type I and type III interferon-stimulated hepatocytes reveals a stable hierarchy of gene expression. Hepatology, 59(4), 1262-1272. doi:10.1002/hep.26657
Briles, D. E., Claflin, J. L., Schroer, K., & Forman, C. (1981). Mouse Igg3 antibodies are highly protective against infection with Streptococcus pneumoniae. Nature, 294(5836), 88-90.
Briles, D. E., Nahm, M., Schroer, K., Davie, J., Baker, P., Kearney, J., & Barletta, R. (1981). Antiphosphocholine antibodies found in normal mouse serum are protective against intravenous infection with type 3 streptococcus pneumoniae. Journal of Experimental Medicine, 153(3), 694-705.
Carnaud, C., Lee, D., Donnars, O., Park, S. H., Beavis, A., Koezuka, Y., & Bendelac, A. (1999). Cutting edge: Cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. Journal of Immunology, 163(9), 4647-4650.
Carotta, S., Willis, S. N., Hasbold, J., Inouye, M., Pang, S. H., Emslie, D., . . . Nutt, S. L. (2014). The transcription factors IRF8 and PU.1 negatively regulate plasma cell differentiation. Journal of Experimental Medicine, 211(11), 2169-2181. doi:10.1084/jem.20140425
Castagnola, E., & Fioredda, F. (2003). Prevention of life-threatening infections due to encapsulated bacteria in children with hyposplenia or asplenia: a brief review of current recommendations for practical purposes. European Journal of Haematology, 71(5), 319-326.
Cerutti, A., Cols, M., & Puga, I. (2013). Marginal zone B cells: virtues of innate-like antibody-producing lymphocytes. Nature Reviews: Immunology, 13(2), 118-132. doi:10.1038/nri3383
Chang, M. K., Bergmark, C., Laurila, A., Horkko, S., Han, K. H., Friedman, P., . . . Witztum, J. L. (1999). Monoclonal antibodies against oxidized low-density lipoprotein bind to apoptotic cells and inhibit their phagocytosis by elicited macrophages: evidence that oxidation-specific epitopes mediate macrophage recognition. Proceedings of the National Academy of Sciences of the United States of America, 96(11), 6353-6358.
Chen, L. S., Wei, P. C., Liu, T., Kao, C. H., Pai, L. M., & Lee, C. K. (2009). STAT2 hypomorphic mutant mice display impaired dendritic cell development and antiviral response. Journal of Biomedical Science, 16, 22. doi:10.1186/1423-0127-16-22
Chen, Y., Pikkarainen, T., Elomaa, O., Soininen, R., Kodama, T., Kraal, G., & Tryggvason, K. (2005). Defective microarchitecture of the spleen marginal zone and impaired response to a thymus-independent type 2 antigen in mice lacking scavenger receptors MARCO and SR-A. Journal of Immunology, 175(12), 8173-8180.
Chen, Y. L., Chen, T. T., Pai, L. M., Wesoly, J., Bluyssen, H. A., & Lee, C. K. (2013). A type I IFN-Flt3 ligand axis augments plasmacytoid dendritic cell development from common lymphoid progenitors. Journal of Experimental Medicine, 210(12), 2515-2522. doi:10.1084/jem.20130536
Colino, J., Shen, Y., & Snapper, C. M. (2002). Dendritic cells pulsed with intact Streptococcus pneumoniae elicit both protein- and polysaccharide-specific immunoglobulin isotype responses in vivo through distinct mechanisms. Journal of Experimental Medicine, 195(1), 1-13.
Decker, T., & Kovarik, P. (2000). Serine phosphorylation of STATs. Oncogene, 19(21), 2628-2637. doi:10.1038/sj.onc.1203481
Dellgren, C., Gad, H. H., Hamming, O. J., Melchjorsen, J., & Hartmann, R. (2009). Human interferon-lambda3 is a potent member of the type III interferon family. Genes and Immunity, 10(2), 125-131. doi:10.1038/gene.2008.87
Diehl, S. A., Schmidlin, H., Nagasawa, M., van Haren, S. D., Kwakkenbos, M. J., Yasuda, E., . . . Spits, H. (2008). STAT3-mediated up-regulation of BLIMP1 Is coordinated with BCL6 down-regulation to control human plasma cell differentiation. Journal of Immunology, 180(7), 4805-4815.
Duan, B., & Morel, L. (2006). Role of B-1a cells in autoimmunity. Autoimmun Rev, 5(6), 403-408. doi:10.1016/j.autrev.2005.10.007
Durbin, J. E., Hackenmiller, R., Simon, M. C., & Levy, D. E. (1996). Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell, 84(3), 443-450.
Eisenbarth, S. C., Colegio, O. R., O''Connor, W., Sutterwala, F. S., & Flavell, R. A. (2008). Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature, 453(7198), 1122-1126. doi:10.1038/nature06939
Elkon, K. B., & Silverman, G. J. (2012). Naturally occurring autoantibodies to apoptotic cells. Advances in Experimental Medicine and Biology, 750, 14-26. doi:10.1007/978-1-4614-3461-0_2
Enoksson, S. L., Grasset, E. K., Hagglof, T., Mattsson, N., Kaiser, Y., Gabrielsson, S., . . . Karlsson, M. C. (2011). The inflammatory cytokine IL-18 induces self-reactive innate antibody responses regulated by natural killer T cells. Proceedings of the National Academy of Sciences of the United States of America, 108(51), E1399-1407. doi:10.1073/pnas.1107830108
Fagarasan, S., & Honjo, T. (2000). T-Independent immune response: new aspects of B cell biology. Science, 290(5489), 89-92.
Flaishon, L., Hershkoviz, R., Lantner, F., Lider, O., Alon, R., Levo, Y., . . . Shachar, I. (2000). Autocrine secretion of interferon gamma negatively regulates homing of immature B cells. Journal of Experimental Medicine, 192(9), 1381-1388.
Fornek, J. L., Tygrett, L. T., Waldschmidt, T. J., Poli, V., Rickert, R. C., & Kansas, G. S. (2006). Critical role for Stat3 in T-dependent terminal differentiation of IgG B cells. Blood, 107(3), 1085-1091. doi:10.1182/blood-2005-07-2871
Franchi, L., & Nunez, G. (2008). The Nlrp3 inflammasome is critical for aluminium hydroxide-mediated IL-1beta secretion but dispensable for adjuvant activity. European Journal of Immunology, 38(8), 2085-2089. doi:10.1002/eji.200838549
Frucht, D. M., Fukao, T., Bogdan, C., Schindler, H., O''Shea, J. J., & Koyasu, S. (2001). IFN-gamma production by antigen-presenting cells: mechanisms emerge. Trends in Immunology, 22(10), 556-560.
Genestier, L., Taillardet, M., Mondiere, P., Gheit, H., Bella, C., & Defrance, T. (2007). TLR agonists selectively promote terminal plasma cell differentiation of B cell subsets specialized in thymus-independent responses. Journal of Immunology, 178(12), 7779-7786.
Gessani, S., & Belardelli, F. (1998). IFN-gamma expression in macrophages and its possible biological significance. Cytokine and Growth Factor Reviews, 9(2), 117-123.
Goubau, D., Deddouche, S., & Reis e Sousa, C. (2013). Cytosolic sensing of viruses. Immunity, 38(5), 855-869. doi:10.1016/j.immuni.2013.05.007
Grun, J. L., & Maurer, P. H. (1989). Different T helper cell subsets elicited in mice utilizing two different adjuvant vehicles: the role of endogenous interleukin 1 in proliferative responses. Cellular Immunology, 121(1), 134-145.
Guarda, G., Braun, M., Staehli, F., Tardivel, A., Mattmann, C., Forster, I., . . . Tschopp, J. (2011). Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity, 34(2), 213-223. doi:10.1016/j.immuni.2011.02.006
Haas, K. M., Poe, J. C., Steeber, D. A., & Tedder, T. F. (2005). B-1a and B-1b cells exhibit distinct developmental requirements and have unique functional roles in innate and adaptive immunity to S. pneumoniae. Immunity, 23(1), 7-18. doi:10.1016/j.immuni.2005.04.011
Hamming, O. J., Terczynska-Dyla, E., Vieyres, G., Dijkman, R., Jorgensen, S. E., Akhtar, H., . . . Hartmann, R. (2013). Interferon lambda 4 signals via the IFNlambda receptor to regulate antiviral activity against HCV and coronaviruses. EMBO Journal, 32(23), 3055-3065. doi:10.1038/emboj.2013.232
Hardy, R. R., & Hayakawa, K. (2001). B cell development pathways. Annual Review of Immunology, 19, 595-621. doi:10.1146/annurev.immunol.19.1.595
Harris, D. P., Haynes, L., Sayles, P. C., Duso, D. K., Eaton, S. M., Lepak, N. M., . . . Lund, F. E. (2000). Reciprocal regulation of polarized cytokine production by effector B and T cells. Nature Immunology, 1(6), 475-482. doi:10.1038/82717
He, B., Qiao, X., & Cerutti, A. (2004). CpG DNA induces IgG class switch DNA recombination by activating human B cells through an innate pathway that requires TLR9 and cooperates with IL-10. Journal of Immunology, 173(7), 4479-4491.
Hillyer, P., Mane, V. P., Schramm, L. M., Puig, M., Verthelyi, D., Chen, A., . . . Rabin, R. L. (2012). Expression profiles of human interferon-alpha and interferon-lambda subtypes are ligand- and cell-dependent. Immunology and Cell Biology, 90(8), 774-783. doi:10.1038/icb.2011.109
Horkko, S., Bird, D. A., Miller, E., Itabe, H., Leitinger, N., Subbanagounder, G., . . . Witztum, J. L. (1999). Monoclonal autoantibodies specific for oxidized phospholipids or oxidized phospholipid-protein adducts inhibit macrophage uptake of oxidized low-density lipoproteins. Journal of Clinical Investigation, 103(1), 117-128. doi:10.1172/JCI4533
Huang, S., Hendriks, W., Althage, A., Hemmi, S., Bluethmann, H., Kamijo, R., . . . Aguet, M. (1993). Immune response in mice that lack the interferon-gamma receptor. Science, 259(5102), 1742-1745.
Isaacs, A., & Lindenmann, J. (1957). Virus interference. I. The interferon. Proceedings of the Royal Society of London. Series B: Biological Sciences, 147(927), 258-267.
Ivashkiv, L. B., & Donlin, L. T. (2014). Regulation of type I interferon responses. Nature Reviews: Immunology, 14(1), 36-49. doi:10.1038/nri3581
Iwasaki, A. (2012). A virological view of innate immune recognition. Annual Review of Microbiology, 66, 177-196. doi:10.1146/annurev-micro-092611-150203
Iwasaki, A., & Medzhitov, R. (2004). Toll-like receptor control of the adaptive immune responses. Nature Immunology, 5(10), 987-995. doi:10.1038/ni1112
Janeway, C. A., Jr., & Medzhitov, R. (1999). Lipoproteins take their toll on the host. Current Biology, 9(23), R879-882.
Kang, Y. S., Do, Y., Lee, H. K., Park, S. H., Cheong, C., Lynch, R. M., . . . Park, C. G. (2006). A dominant complement fixation pathway for pneumococcal polysaccharides initiated by SIGN-R1 interacting with C1q. Cell, 125(1), 47-58. doi:10.1016/j.cell.2006.01.046
Koppe, U., Suttorp, N., & Opitz, B. (2012). Recognition of Streptococcus pneumoniae by the innate immune system. Cellular Microbiology, 14(4), 460-466. doi:10.1111/j.1462-5822.2011.01746.x
Kotenko, S. V., Gallagher, G., Baurin, V. V., Lewis-Antes, A., Shen, M., Shah, N. K., . . . Donnelly, R. P. (2003). IFN-lambdas mediate antiviral protection through a distinct class II cytokine receptor complex. Nature Immunology, 4(1), 69-77. doi:10.1038/ni875
Krieg, A. M., Yi, A. K., Matson, S., Waldschmidt, T. J., Bishop, G. A., Teasdale, R., . . . Klinman, D. M. (1995). CpG motifs in bacterial DNA trigger direct B-cell activation. Nature, 374(6522), 546-549. doi:10.1038/374546a0
Kruetzmann, S., Rosado, M. M., Weber, H., Germing, U., Tournilhac, O., Peter, H. H., . . . Carsetti, R. (2003). Human immunoglobulin M memory B cells controlling Streptococcus pneumoniae infections are generated in the spleen. Journal of Experimental Medicine, 197(7), 939-945. doi:10.1084/jem.20022020
Kwon, H., Thierry-Mieg, D., Thierry-Mieg, J., Kim, H. P., Oh, J., Tunyaplin, C., . . . Leonard, W. J. (2009). Analysis of interleukin-21-induced Prdm1 gene regulation reveals functional cooperation of STAT3 and IRF4 transcription factors. Immunity, 31(6), 941-952. doi:10.1016/j.immuni.2009.10.008
Le Bon, A., Schiavoni, G., D''Agostino, G., Gresser, I., Belardelli, F., & Tough, D. F. (2001). Type i interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity, 14(4), 461-470.
Leadbetter, E. A., Brigl, M., Illarionov, P., Cohen, N., Luteran, M. C., Pillai, S., . . . Brenner, M. B. (2008). NK T cells provide lipid antigen-specific cognate help for B cells. Proceedings of the National Academy of Sciences of the United States of America, 105(24), 8339-8344. doi:10.1073/pnas.0801375105
Lee, C. K., Rao, D. T., Gertner, R., Gimeno, R., Frey, A. B., & Levy, D. E. (2000). Distinct requirements for IFNs and STAT1 in NK cell function. Journal of Immunology, 165(7), 3571-3577.
Levy, D. E., & Darnell, J. E., Jr. (2002). Stats: transcriptional control and biological impact. Nature Reviews: Molecular Cell Biology, 3(9), 651-662. doi:10.1038/nrm909
Li, H., Willingham, S. B., Ting, J. P., & Re, F. (2008). Cutting edge: inflammasome activation by alum and alum''s adjuvant effect are mediated by NLRP3. Journal of Immunology, 181(1), 17-21.
Lin, F. R., Kuo, H. K., Ying, H. Y., Yang, F. H., & Lin, K. I. (2007). Induction of apoptosis in plasma cells by B lymphocyte-induced maturation protein-1 knockdown. Cancer Research, 67(24), 11914-11923. doi:10.1158/0008-5472.can-07-1868
Luu, K., Greenhill, C. J., Majoros, A., Decker, T., Jenkins, B. J., & Mansell, A. (2014). STAT1 plays a role in TLR signal transduction and inflammatory responses. Immunology and Cell Biology, 92(9), 761-769. doi:10.1038/icb.2014.51
MacLennan, I. C., Toellner, K. M., Cunningham, A. F., Serre, K., Sze, D. M., Zuniga, E., . . . Vinuesa, C. G. (2003). Extrafollicular antibody responses. Immunological Reviews, 194, 8-18.
Marrack, P., McKee, A. S., & Munks, M. W. (2009). Towards an understanding of the adjuvant action of aluminium. Nature Reviews: Immunology, 9(4), 287-293. doi:10.1038/nri2510
Martin, F., & Kearney, J. F. (2000). B-cell subsets and the mature preimmune repertoire. Marginal zone and B1 B cells as part of a "natural immune memory". Immunological Reviews, 175, 70-79.
Martin, F., & Kearney, J. F. (2001). B1 cells: similarities and differences with other B cell subsets. Current Opinion in Immunology, 13(2), 195-201.
Martin, F., & Kearney, J. F. (2002). Marginal-zone B cells. Nature Reviews: Immunology, 2(5), 323-335. doi:10.1038/nri799
Martin, F., Oliver, A. M., & Kearney, J. F. (2001). Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity, 14(5), 617-629.
Mebius, R. E., & Kraal, G. (2005). Structure and function of the spleen. Nature Reviews: Immunology, 5(8), 606-616. doi:10.1038/nri1669
Miknis, Z. J., Magracheva, E., Li, W., Zdanov, A., Kotenko, S. V., & Wlodawer, A. (2010). Crystal structure of human interferon-lambda1 in complex with its high-affinity receptor interferon-lambdaR1. Journal of Molecular Biology, 404(4), 650-664. doi:10.1016/j.jmb.2010.09.068
Muramatsu, M., Kinoshita, K., Fagarasan, S., Yamada, S., Shinkai, Y., & Honjo, T. (2000). Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell, 102(5), 553-563.
Muto, A., Ochiai, K., Kimura, Y., Itoh-Nakadai, A., Calame, K. L., Ikebe, D., . . . Igarashi, K. (2010). Bach2 represses plasma cell gene regulatory network in B cells to promote antibody class switch. EMBO Journal, 29(23), 4048-4061. doi:10.1038/emboj.2010.257
Nelson, J. D., Denisenko, O., & Bomsztyk, K. (2006). Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nature Protocols, 1(1), 179-185. doi:10.1038/nprot.2006.27
Nguyen, H. V., Mouly, E., Chemin, K., Luinaud, R., Despres, R., Fermand, J. P., . . . Bories, J. C. (2012). The Ets-1 transcription factor is required for Stat1-mediated T-bet expression and IgG2a class switching in mouse B cells. Blood, 119(18), 4174-4181. doi:10.1182/blood-2011-09-378182
Oganesyan, G., Saha, S. K., Pietras, E. M., Guo, B., Miyahira, A. K., Zarnegar, B., & Cheng, G. (2008). IRF3-dependent type I interferon response in B cells regulates CpG-mediated antibody production. Journal of Biological Chemistry, 283(2), 802-808. doi:10.1074/jbc.M704755200
Palinski, W., Horkko, S., Miller, E., Steinbrecher, U. P., Powell, H. C., Curtiss, L. K., & Witztum, J. L. (1996). Cloning of monoclonal autoantibodies to epitopes of oxidized lipoproteins from apolipoprotein E-deficient mice. Demonstration of epitopes of oxidized low density lipoprotein in human plasma. Journal of Clinical Investigation, 98(3), 800-814. doi:10.1172/JCI118853
Paludan, S. R., & Bowie, A. G. (2013). Immune sensing of DNA. Immunity, 38(5), 870-880. doi:10.1016/j.immuni.2013.05.004
Peng, S. L., Szabo, S. J., & Glimcher, L. H. (2002). T-bet regulates IgG class switching and pathogenic autoantibody production. Proceedings of the National Academy of Sciences of the United States of America, 99(8), 5545-5550. doi:10.1073/pnas.082114899
Phan, T. G., Gardam, S., Basten, A., & Brink, R. (2005). Altered migration, recruitment, and somatic hypermutation in the early response of marginal zone B cells to T cell-dependent antigen. Journal of Immunology, 174(8), 4567-4578.
Pillai, S., & Cariappa, A. (2009). The follicular versus marginal zone B lymphocyte cell fate decision. Nature Reviews: Immunology, 9(11), 767-777. doi:10.1038/nri2656
Pillai, S., Cariappa, A., & Moran, S. T. (2005). Marginal zone B cells. Annual Review of Immunology, 23, 161-196. doi:10.1146/annurev.immunol.23.021704.115728
Pilz, A., Kratky, W., Stockinger, S., Simma, O., Kalinke, U., Lingnau, K., . . . Decker, T. (2009). Dendritic cells require STAT-1 phosphorylated at its transactivating domain for the induction of peptide-specific CTL. Journal of Immunology, 183(4), 2286-2293. doi:10.4049/jimmunol.0901383
Prokunina-Olsson, L., Muchmore, B., Tang, W., Pfeiffer, R. M., Park, H., Dickensheets, H., . . . O''Brien, T. R. (2013). A variant upstream of IFNL3 (IL28B) creating a new interferon gene IFNL4 is associated with impaired clearance of hepatitis C virus. Nature Genetics, 45(2), 164-171. doi:10.1038/ng.2521
Puga, I., Cols, M., Barra, C. M., He, B., Cassis, L., Gentile, M., . . . Cerutti, A. (2011). B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen. Nature Immunology, 13(2), 170-180. doi:10.1038/ni.2194
Pulendran, B. (2004). Modulating vaccine responses with dendritic cells and Toll-like receptors. Immunological Reviews, 199, 227-250. doi:10.1111/j.0105-2896.2004.00144.x
Putz, E. M., Gotthardt, D., Hoermann, G., Csiszar, A., Wirth, S., Berger, A., . . . Sexl, V. (2013). CDK8-mediated STAT1-S727 phosphorylation restrains NK cell cytotoxicity and tumor surveillance. Cell Rep, 4(3), 437-444. doi:10.1016/j.celrep.2013.07.012
Rauch, A., Kutalik, Z., Descombes, P., Cai, T., Di Iulio, J., Mueller, T., . . . Swiss, H. I. V. C. S. (2010). Genetic variation in IL28B is associated with chronic hepatitis C and treatment failure: a genome-wide association study. Gastroenterology, 138(4), 1338-1345, 1345 e1331-1337. doi:10.1053/j.gastro.2009.12.056
Robertson, G., Hirst, M., Bainbridge, M., Bilenky, M., Zhao, Y., Zeng, T., . . . Jones, S. (2007). Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods, 4(8), 651-657. doi:10.1038/nmeth1068
Saito, M., Gao, J., Basso, K., Kitagawa, Y., Smith, P. M., Bhagat, G., . . . Dalla-Favera, R. (2007). A signaling pathway mediating downregulation of BCL6 in germinal center B cells is blocked by BCL6 gene alterations in B cell lymphoma. Cancer Cell, 12(3), 280-292. doi:10.1016/j.ccr.2007.08.011
Schroder, K., Hertzog, P. J., Ravasi, T., & Hume, D. A. (2004). Interferon-gamma: an overview of signals, mechanisms and functions. Journal of Leukocyte Biology, 75(2), 163-189. doi:10.1189/jlb.0603252
Sciammas, R., Shaffer, A. L., Schatz, J. H., Zhao, H., Staudt, L. M., & Singh, H. (2006). Graded expression of interferon regulatory factor-4 coordinates isotype switching with plasma cell differentiation. Immunity, 25(2), 225-236. doi:10.1016/j.immuni.2006.07.009
Shaffer, A. L., Lin, K. I., Kuo, T. C., Yu, X., Hurt, E. M., Rosenwald, A., . . . Staudt, L. M. (2002). Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity, 17(1), 51-62.
Shaffer, A. L., Yu, X., He, Y., Boldrick, J., Chan, E. P., & Staudt, L. M. (2000). BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity, 13(2), 199-212.
Shapiro-Shelef, M., & Calame, K. (2005). Regulation of plasma-cell development. Nature Reviews: Immunology, 5(3), 230-242. doi:10.1038/nri1572
Sharfe, N., Nahum, A., Newell, A., Dadi, H., Ngan, B., Pereira, S. L., . . . Roifman, C. M. (2014). Fatal combined immunodeficiency associated with heterozygous mutation in STAT1. Journal of Allergy and Clinical Immunology, 133(3), 807-817. doi:10.1016/j.jaci.2013.09.032
Sheppard, P., Kindsvogel, W., Xu, W., Henderson, K., Schlutsmeyer, S., Whitmore, T. E., . . . Klucher, K. M. (2003). IL-28, IL-29 and their class II cytokine receptor IL-28R. Nature Immunology, 4(1), 63-68. doi:10.1038/ni873
Song, H., & Cerny, J. (2003). Functional heterogeneity of marginal zone B cells revealed by their ability to generate both early antibody-forming cells and germinal centers with hypermutation and memory in response to a T-dependent antigen. Journal of Experimental Medicine, 198(12), 1923-1935. doi:10.1084/jem.20031498
Staab, J., Herrmann-Lingen, C., & Meyer, T. (2013). CDK8 as the STAT1 serine 727 kinase? JAKSTAT, 2(3), e24275. doi:10.4161/jkst.24275
2013JAKS0135R [pii]
Subramaniam, P. S., Torres, B. A., & Johnson, H. M. (2001). So many ligands, so few transcription factors: a new paradigm for signaling through the STAT transcription factors. Cytokine, 15(4), 175-187. doi:10.1006/cyto.2001.0905
Swanson, C. L., Wilson, T. J., Strauch, P., Colonna, M., Pelanda, R., & Torres, R. M. (2010). Type I IFN enhances follicular B cell contribution to the T cell-independent antibody response. Journal of Experimental Medicine, 207(7), 1485-1500. doi:10.1084/jem.20092695
Tanigaki, K., Han, H., Yamamoto, N., Tashiro, K., Ikegawa, M., Kuroda, K., . . . Honjo, T. (2002). Notch-RBP-J signaling is involved in cell fate determination of marginal zone B cells. Nature Immunology, 3(5), 443-450. doi:10.1038/ni793
Thibault, D. L., Chu, A. D., Graham, K. L., Balboni, I., Lee, L. Y., Kohlmoos, C., . . . Utz, P. J. (2008). IRF9 and STAT1 are required for IgG autoantibody production and B cell expression of TLR7 in mice. Journal of Clinical Investigation, 118(4), 1417-1426. doi:10.1172/jci30065
Thibault, D. L., Graham, K. L., Lee, L. Y., Balboni, I., Hertzog, P. J., & Utz, P. J. (2009). Type I interferon receptor controls B-cell expression of nucleic acid-sensing Toll-like receptors and autoantibody production in a murine model of lupus. Arthritis Research & Therapy, 11(4), R112. doi:10.1186/ar2771
Tunyaplin, C., Shaffer, A. L., Angelin-Duclos, C. D., Yu, X., Staudt, L. M., & Calame, K. L. (2004). Direct repression of prdm1 by Bcl-6 inhibits plasmacytic differentiation. Journal of Immunology, 173(2), 1158-1165.
Tunyaplin, C., Shapiro, M. A., & Calame, K. L. (2000). Characterization of the B lymphocyte-induced maturation protein-1 (Blimp-1) gene, mRNA isoforms and basal promoter. Nucleic Acids Research, 28(24), 4846-4855.
Varinou, L., Ramsauer, K., Karaghiosoff, M., Kolbe, T., Pfeffer, K., Muller, M., & Decker, T. (2003). Phosphorylation of the Stat1 transactivation domain is required for full-fledged IFN-gamma-dependent innate immunity. Immunity, 19(6), 793-802.
Vasanwala, F. H., Kusam, S., Toney, L. M., & Dent, A. L. (2002). Repression of AP-1 function: a mechanism for the regulation of Blimp-1 expression and B lymphocyte differentiation by the B cell lymphoma-6 protooncogene. Journal of Immunology, 169(4), 1922-1929.
Wallick, S., Claflin, J. L., & Briles, D. E. (1983). Resistance to Streptococcus pneumoniae is induced by a phosphocholine-protein conjugate. Journal of Immunology, 130(6), 2871-2875.
Wang, W. B., Levy, D. E., & Lee, C. K. (2011). STAT3 negatively regulates type I IFN-mediated antiviral response. Journal of Immunology, 187(5), 2578-2585. doi:10.4049/jimmunol.1004128
Whitlock, C. A., & Watson, J. D. (1979). B-cell differentiation in the CBA/N mouse. I. Slower maturation of mitogen and antigen-responsive B cells in mice expressing an X-linked defect. Journal of Experimental Medicine, 150(6), 1483-1497.
Xu, W., & Zhang, J. J. (2005). Stat1-dependent synergistic activation of T-bet for IgG2a production during early stage of B cell activation. Journal of Immunology, 175(11), 7419-7424.
Yoshimoto, T., Takeda, K., Tanaka, T., Ohkusu, K., Kashiwamura, S., Okamura, H., . . . Nakanishi, K. (1998). IL-12 up-regulates IL-18 receptor expression on T cells, Th1 cells, and B cells: synergism with IL-18 for IFN-gamma production. Journal of Immunology, 161(7), 3400-3407.
Young, H. A. (1996). Regulation of interferon-gamma gene expression. Journal of Interferon and Cytokine Research, 16(8), 563-568. doi:10.1089/jir.1996.16.563
Zhu, J., Huang, X., & Yang, Y. (2007). Type I IFN signaling on both B and CD4 T cells is required for protective antibody response to adenovirus. Journal of Immunology, 178(6), 3505-3510.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top