|
1. National Kidney, F., KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney International Supplements, 2013. 3(1): p. S1-150. 2. Levey, A.S., L.A. Stevens, and J. Coresh, Conceptual model of CKD: applications and implications. Am J Kidney Dis, 2009. 53(3 Suppl 3): p. S4-16. 3. Jha, V., A.Y. Wang, and H. Wang, The impact of CKD identification in large countries: the burden of illness. Nephrol Dial Transplant, 2012. 27 Suppl 3: p. iii32-8. 4. Levey, A.S., R. Atkins, J. Coresh, E.P. Cohen, A.J. Collins, K.U. Eckardt, M.E. Nahas, B.L. Jaber, M. Jadoul, A. Levin, N.R. Powe, J. Rossert, D.C. Wheeler, N. Lameire, and G. Eknoyan, Chronic kidney disease as a global public health problem: approaches and initiatives - a position statement from Kidney Disease Improving Global Outcomes. Kidney Int, 2007. 72(3): p. 247-59. 5. Wen, C.P., T.Y. Cheng, M.K. Tsai, Y.C. Chang, H.T. Chan, S.P. Tsai, P.H. Chiang, C.C. Hsu, P.K. Sung, Y.H. Hsu, and S.F. Wen, All-cause mortality attributable to chronic kidney disease: a prospective cohort study based on 462 293 adults in Taiwan. Lancet, 2008. 371(9631): p. 2173-82. 6. Saran, R., Y. Li, B. Robinson, K.C. Abbott, L.Y. Agodoa, J. Ayanian, J. Bragg-Gresham, R. Balkrishnan, J.L. Chen, E. Cope, P.W. Eggers, D. Gillen, D. Gipson, S.M. Hailpern, Y.N. Hall, K. He, W. Herman, M. Heung, R.A. Hirth, D. Hutton, S.J. Jacobsen, K. Kalantar-Zadeh, C.P. Kovesdy, Y. Lu, M.Z. Molnar, H. Morgenstern, B. Nallamothu, D.V. Nguyen, A.M. O''Hare, B. Plattner, R. Pisoni, F.K. Port, P. Rao, C.M. Rhee, A. Sakhuja, D.E. Schaubel, D.T. Selewski, V. Shahinian, J.J. Sim, P. Song, E. Streja, M. Kurella Tamura, F. Tentori, S. White, K. Woodside, and R.A. Hirth, US Renal Data System 2015 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am J Kidney Dis, 2016. 67(3 Suppl 1): p. Svii, S1-305. 7. National Kidney, F., K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis, 2002. 39(2 Suppl 1): p. S1-266. 8. Lambers Heerspink, H.J., V. Perkovic, and D. de Zeeuw, Is doubling of serum creatinine a valid clinical ''hard'' endpoint in clinical nephrology trials? Nephron Clin Pract, 2011. 119(3): p. c195-9; discussion c199. 9. Jun, M., T.C. Turin, M. Woodward, V. Perkovic, H.J. Lambers Heerspink, B.J. Manns, M. Tonelli, and B.R. Hemmelgarn, Assessing the Validity of Surrogate Outcomes for ESRD: A Meta-Analysis. J Am Soc Nephrol, 2015. 26(9): p. 2289-302. 10. Badve, S.V., S.C. Palmer, C.M. Hawley, E.M. Pascoe, G.F. Strippoli, and D.W. Johnson, Glomerular filtration rate decline as a surrogate end point in kidney disease progression trials. Nephrol Dial Transplant, 2016. 31(9): p. 1425-36. 11. Iseki, K., C. Iseki, Y. Ikemiya, and K. Fukiyama, Risk of developing end-stage renal disease in a cohort of mass screening. Kidney Int, 1996. 49(3): p. 800-5. 12. Shulman, N.B., C.E. Ford, W.D. Hall, M.D. Blaufox, D. Simon, H.G. Langford, and K.A. Schneider, Prognostic value of serum creatinine and effect of treatment of hypertension on renal function. Results from the hypertension detection and follow-up program. The Hypertension Detection and Follow-up Program Cooperative Group. Hypertension, 1989. 13(5 Suppl): p. I80-93. 13. Eriksen, B.O. and O.C. Ingebretsen, The progression of chronic kidney disease: a 10-year population-based study of the effects of gender and age. Kidney Int, 2006. 69(2): p. 375-82. 14. Astor, B.C., K. Matsushita, R.T. Gansevoort, M. van der Velde, M. Woodward, A.S. Levey, P.E. Jong, J. Coresh, C. Chronic Kidney Disease Prognosis, B.C. Astor, K. Matsushita, R.T. Gansevoort, M. van der Velde, M. Woodward, A.S. Levey, P.E. de Jong, J. Coresh, M. El-Nahas, K.U. Eckardt, B.L. Kasiske, J. Wright, L. Appel, T. Greene, A. Levin, O. Djurdjev, D.C. Wheeler, M.J. Landray, J.N. Townend, J. Emberson, L.E. Clark, A. Macleod, A. Marks, T. Ali, N. Fluck, G. Prescott, D.H. Smith, J.R. Weinstein, E.S. Johnson, M.L. Thorp, J.F. Wetzels, P.J. Blankestijn, A.D. van Zuilen, V. Menon, M. Sarnak, G. Beck, F. Kronenberg, B. Kollerits, M. Froissart, B. Stengel, M. Metzger, G. Remuzzi, P. Ruggenenti, A. Perna, H.J. Heerspink, B. Brenner, D. de Zeeuw, P. Rossing, H.H. Parving, P. Auguste, K. Veldhuis, Y. Wang, L. Camarata, B. Thomas, and T. Manley, Lower estimated glomerular filtration rate and higher albuminuria are associated with mortality and end-stage renal disease. A collaborative meta-analysis of kidney disease population cohorts. Kidney Int, 2011. 79(12): p. 1331-40. 15. Lin, C.M., M.C. Yang, S.J. Hwang, and J.M. Sung, Progression of stages 3b-5 chronic kidney disease--preliminary results of Taiwan national pre-ESRD disease management program in Southern Taiwan. J Formos Med Assoc, 2013. 112(12): p. 773-82. 16. Tonelli, M., P. Muntner, A. Lloyd, B.J. Manns, M.T. James, S. Klarenbach, R.R. Quinn, N. Wiebe, B.R. Hemmelgarn, and N. Alberta Kidney Disease, Using proteinuria and estimated glomerular filtration rate to classify risk in patients with chronic kidney disease: a cohort study. Ann Intern Med, 2011. 154(1): p. 12-21. 17. de Goeij, M.C., M. Liem, D.J. de Jager, N. Voormolen, Y.W. Sijpkens, J.I. Rotmans, E.W. Boeschoten, F.W. Dekker, D.C. Grootendorst, N. Halbesma, and P.-S. Group, Proteinuria as a risk marker for the progression of chronic kidney disease in patients on predialysis care and the role of angiotensin-converting enzyme inhibitor/angiotensin II receptor blocker treatment. Nephron Clin Pract, 2012. 121(1-2): p. c73-82. 18. Chen, C.H., H.Y. Wu, C.L. Wang, F.J. Yang, P.C. Wu, S.C. Hung, W.C. Kan, C.W. Yang, C.K. Chiang, J.W. Huang, and K.Y. Hung, Proteinuria as a Therapeutic Target in Advanced Chronic Kidney Disease: a Retrospective Multicenter Cohort Study. Sci Rep, 2016. 6: p. 26539. 19. Jafar, T.H., P.C. Stark, C.H. Schmid, M. Landa, G. Maschio, P.E. de Jong, D. de Zeeuw, S. Shahinfar, R. Toto, A.S. Levey, and A.S. Group, Progression of chronic kidney disease: the role of blood pressure control, proteinuria, and angiotensin-converting enzyme inhibition: a patient-level meta-analysis. Ann Intern Med, 2003. 139(4): p. 244-52. 20. Peralta, C.A., K.C. Norris, S. Li, T.I. Chang, M.K. Tamura, S.E. Jolly, G. Bakris, P.A. McCullough, M. Shlipak, and K. Investigators, Blood pressure components and end-stage renal disease in persons with chronic kidney disease: the Kidney Early Evaluation Program (KEEP). Arch Intern Med, 2012. 172(1): p. 41-7. 21. Foley, R.N., A.M. Murray, S. Li, C.A. Herzog, A.M. McBean, P.W. Eggers, and A.J. Collins, Chronic kidney disease and the risk for cardiovascular disease, renal replacement, and death in the United States Medicare population, 1998 to 1999. J Am Soc Nephrol, 2005. 16(2): p. 489-95. 22. Chuahirun, T., A. Khanna, K. Kimball, and D.E. Wesson, Cigarette smoking and increased urine albumin excretion are interrelated predictors of nephropathy progression in type 2 diabetes. Am J Kidney Dis, 2003. 41(1): p. 13-21. 23. Kang, D.H. and W. Chen, Uric acid and chronic kidney disease: new understanding of an old problem. Semin Nephrol, 2011. 31(5): p. 447-52. 24. Maesaka, J.K. and S. Fishbane, Regulation of renal urate excretion: a critical review. Am J Kidney Dis, 1998. 32(6): p. 917-33. 25. Wright, A.F., I. Rudan, N.D. Hastie, and H. Campbell, A ''complexity'' of urate transporters. Kidney Int, 2010. 78(5): p. 446-52. 26. Bobulescu, I.A. and O.W. Moe, Renal transport of uric acid: evolving concepts and uncertainties. Adv Chronic Kidney Dis, 2012. 19(6): p. 358-71. 27. Takiue, Y., M. Hosoyamada, M. Kimura, and H. Saito, The effect of female hormones upon urate transport systems in the mouse kidney. Nucleosides Nucleotides Nucleic Acids, 2011. 30(2): p. 113-9. 28. Richette, P., F. Perez-Ruiz, M. Doherty, T.L. Jansen, G. Nuki, E. Pascual, L. Punzi, A.K. So, and T. Bardin, Improving cardiovascular and renal outcomes in gout: what should we target? Nat Rev Rheumatol, 2014. 10(11): p. 654-61. 29. Wang, J., T. Qin, J. Chen, Y. Li, L. Wang, H. Huang, and J. Li, Hyperuricemia and risk of incident hypertension: a systematic review and meta-analysis of observational studies. PLoS One, 2014. 9(12): p. e114259. 30. Mazzali, M., J. Kanellis, L. Han, L. Feng, Y.Y. Xia, Q. Chen, D.H. Kang, K.L. Gordon, S. Watanabe, T. Nakagawa, H.Y. Lan, and R.J. Johnson, Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure-independent mechanism. Am J Physiol Renal Physiol, 2002. 282(6): p. F991-7. 31. Kodama, S., K. Saito, Y. Yachi, M. Asumi, A. Sugawara, K. Totsuka, A. Saito, and H. Sone, Association between serum uric acid and development of type 2 diabetes. Diabetes Care, 2009. 32(9): p. 1737-42. 32. Lv, Q., X.F. Meng, F.F. He, S. Chen, H. Su, J. Xiong, P. Gao, X.J. Tian, J.S. Liu, Z.H. Zhu, K. Huang, and C. Zhang, High serum uric acid and increased risk of type 2 diabetes: a systemic review and meta-analysis of prospective cohort studies. PLoS One, 2013. 8(2): p. e56864. 33. Zhu, Y., Y. Hu, T. Huang, Y. Zhang, Z. Li, C. Luo, Y. Luo, H. Yuan, I. Hisatome, T. Yamamoto, and J. Cheng, High uric acid directly inhibits insulin signalling and induces insulin resistance. Biochem Biophys Res Commun, 2014. 447(4): p. 707-14. 34. Wheeler, J.G., K.D. Juzwishin, G. Eiriksdottir, V. Gudnason, and J. Danesh, Serum uric acid and coronary heart disease in 9,458 incident cases and 155,084 controls: prospective study and meta-analysis. PLoS Med, 2005. 2(3): p. e76. 35. Kim, S.Y., J.P. Guevara, K.M. Kim, H.K. Choi, D.F. Heitjan, and D.A. Albert, Hyperuricemia and coronary heart disease: a systematic review and meta-analysis. Arthritis Care Res (Hoboken), 2010. 62(2): p. 170-80. 36. Braga, F., S. Pasqualetti, S. Ferraro, and M. Panteghini, Hyperuricemia as risk factor for coronary heart disease incidence and mortality in the general population: a systematic review and meta-analysis. Clin Chem Lab Med, 2016. 54(1): p. 7-15. 37. Li, M., X. Hu, Y. Fan, K. Li, X. Zhang, W. Hou, and Z. Tang, Hyperuricemia and the risk for coronary heart disease morbidity and mortality a systematic review and dose-response meta-analysis. Sci Rep, 2016. 6: p. 19520. 38. Khosla, U.M., S. Zharikov, J.L. Finch, T. Nakagawa, C. Roncal, W. Mu, K. Krotova, E.R. Block, S. Prabhakar, and R.J. Johnson, Hyperuricemia induces endothelial dysfunction. Kidney Int, 2005. 67(5): p. 1739-42. 39. Hong, Q., K. Qi, Z. Feng, Z. Huang, S. Cui, L. Wang, B. Fu, R. Ding, J. Yang, X. Chen, and D. Wu, Hyperuricemia induces endothelial dysfunction via mitochondrial Na+/Ca2+ exchanger-mediated mitochondrial calcium overload. Cell Calcium, 2012. 51(5): p. 402-10. 40. Puddu, P., G.M. Puddu, E. Cravero, L. Vizioli, and A. Muscari, Relationships among hyperuricemia, endothelial dysfunction and cardiovascular disease: molecular mechanisms and clinical implications. J Cardiol, 2012. 59(3): p. 235-42. 41. Choi, H.K. and G. Curhan, Soft drinks, fructose consumption, and the risk of gout in men: prospective cohort study. BMJ, 2008. 336(7639): p. 309-12. 42. Choi, H.K., W. Willett, and G. Curhan, Fructose-rich beverages and risk of gout in women. JAMA, 2010. 304(20): p. 2270-8. 43. Cox, C.L., K.L. Stanhope, J.M. Schwarz, J.L. Graham, B. Hatcher, S.C. Griffen, A.A. Bremer, L. Berglund, J.P. McGahan, N.L. Keim, and P.J. Havel, Consumption of fructose- but not glucose-sweetened beverages for 10 weeks increases circulating concentrations of uric acid, retinol binding protein-4, and gamma-glutamyl transferase activity in overweight/obese humans. Nutr Metab (Lond), 2012. 9(1): p. 68. 44. Sanchez-Lozada, L.G., E. Tapia, A. Jimenez, P. Bautista, M. Cristobal, T. Nepomuceno, V. Soto, C. Avila-Casado, T. Nakagawa, R.J. Johnson, J. Herrera-Acosta, and M. Franco, Fructose-induced metabolic syndrome is associated with glomerular hypertension and renal microvascular damage in rats. Am J Physiol Renal Physiol, 2007. 292(1): p. F423-9. 45. Kanbay, M., T. Jensen, Y. Solak, M. Le, C. Roncal-Jimenez, C. Rivard, M.A. Lanaspa, T. Nakagawa, and R.J. Johnson, Uric acid in metabolic syndrome: From an innocent bystander to a central player. Eur J Intern Med, 2016. 29: p. 3-8. 46. Li, L., C. Yang, Y. Zhao, X. Zeng, F. Liu, and P. Fu, Is hyperuricemia an independent risk factor for new-onset chronic kidney disease?: A systematic review and meta-analysis based on observational cohort studies. BMC Nephrol, 2014. 15: p. 122. 47. Nashar, K. and L.F. Fried, Hyperuricemia and the progression of chronic kidney disease: is uric acid a marker or an independent risk factor? Adv Chronic Kidney Dis, 2012. 19(6): p. 386-91. 48. Dousdampanis, P., K. Trigka, C.G. Musso, and C. Fourtounas, Hyperuricemia and chronic kidney disease: an enigma yet to be solved. Ren Fail, 2014. 36(9): p. 1351-9. 49. Suliman, M.E., R.J. Johnson, E. Garcia-Lopez, A.R. Qureshi, H. Molinaei, J.J. Carrero, O. Heimburger, P. Barany, J. Axelsson, B. Lindholm, and P. Stenvinkel, J-shaped mortality relationship for uric acid in CKD. Am J Kidney Dis, 2006. 48(5): p. 761-71. 50. Weiner, D.E., H. Tighiouart, E.F. Elsayed, J.L. Griffith, D.N. Salem, A.S. Levey, and M.J. Sarnak, The relationship between nontraditional risk factors and outcomes in individuals with stage 3 to 4 CKD. Am J Kidney Dis, 2008. 51(2): p. 212-23. 51. Madero, M., M.J. Sarnak, X. Wang, T. Greene, G.J. Beck, J.W. Kusek, A.J. Collins, A.S. Levey, and V. Menon, Uric acid and long-term outcomes in CKD. Am J Kidney Dis, 2009. 53(5): p. 796-803. 52. Nacak, H., M. van Diepen, A.R. Qureshi, J.J. Carrero, T. Stijnen, F.W. Dekker, and M. Evans, Uric acid is not associated with decline in renal function or time to renal replacement therapy initiation in a referred cohort of patients with Stage III, IV and V chronic kidney disease. Nephrol Dial Transplant, 2015. 30(12): p. 2039-45. 53. Uchida, S., W.X. Chang, T. Ota, Y. Tamura, T. Shiraishi, T. Kumagai, S. Shibata, Y. Fujigaki, M. Hosoyamada, K. Kaneko, Z.Y. Shen, and S. Fujimori, Targeting Uric Acid and the Inhibition of Progression to End-Stage Renal Disease--A Propensity Score Analysis. PLoS One, 2015. 10(12): p. e0145506. 54. Sturm, G., B. Kollerits, U. Neyer, E. Ritz, F. Kronenberg, and M.S. Group, Uric acid as a risk factor for progression of non-diabetic chronic kidney disease? The Mild to Moderate Kidney Disease (MMKD) Study. Exp Gerontol, 2008. 43(4): p. 347-52. 55. Rodenbach, K.E., M.F. Schneider, S.L. Furth, M.M. Moxey-Mims, M.M. Mitsnefes, D.J. Weaver, B.A. Warady, and G.J. Schwartz, Hyperuricemia and Progression of CKD in Children and Adolescents: The Chronic Kidney Disease in Children (CKiD) Cohort Study. Am J Kidney Dis, 2015. 66(6): p. 984-92. 56. Chen, Y.R., Y. Yang, S.C. Wang, P.F. Chiu, W.Y. Chou, C.Y. Lin, J.M. Chang, T.W. Chen, S.H. Ferng, and C.L. Lin, Effectiveness of multidisciplinary care for chronic kidney disease in Taiwan: a 3-year prospective cohort study. Nephrol Dial Transplant, 2013. 28(3): p. 671-82. 57. Chen, Y.R., Y. Yang, S.C. Wang, W.Y. Chou, P.F. Chiu, C.Y. Lin, W.C. Tsai, J.M. Chang, T.W. Chen, S.H. Ferng, and C.L. Lin, Multidisciplinary care improves clinical outcome and reduces medical costs for pre-end-stage renal disease in Taiwan. Nephrology (Carlton), 2014. 19(11): p. 699-707. 58. Kohl, M., M. Plischke, K. Leffondre, and G. Heinze, PSHREG: a SAS macro for proportional and nonproportional subdistribution hazards regression. Comput Methods Programs Biomed, 2015. 118(2): p. 218-33. 59. Chow, S.C., J. Shao, and H. Wang, Sample Size Calculations in Clinical Research, Second Edition. 2008: p. 174-179. 60. Coresh, J., T.C. Turin, K. Matsushita, Y. Sang, S.H. Ballew, L.J. Appel, H. Arima, S.J. Chadban, M. Cirillo, O. Djurdjev, J.A. Green, G.H. Heine, L.A. Inker, F. Irie, A. Ishani, J.H. Ix, C.P. Kovesdy, A. Marks, T. Ohkubo, V. Shalev, A. Shankar, C.P. Wen, P.E. de Jong, K. Iseki, B. Stengel, R.T. Gansevoort, A.S. Levey, and C.K.D.P. Consortium, Decline in estimated glomerular filtration rate and subsequent risk of end-stage renal disease and mortality. JAMA, 2014. 311(24): p. 2518-31. 61. Kumagai, T., T. Ota, Y. Tamura, W.X. Chang, S. Shibata, and S. Uchida, Time to target uric acid to retard CKD progression. Clin Exp Nephrol, 2016. 62. Sanchez-Lozada, L.G., M.A. Lanaspa, M. Cristobal-Garcia, F. Garcia-Arroyo, V. Soto, D. Cruz-Robles, T. Nakagawa, M.A. Yu, D.H. Kang, and R.J. Johnson, Uric acid-induced endothelial dysfunction is associated with mitochondrial alterations and decreased intracellular ATP concentrations. Nephron Exp Nephrol, 2012. 121(3-4): p. e71-8. 63. Kang, D.H., T. Nakagawa, L. Feng, S. Watanabe, L. Han, M. Mazzali, L. Truong, R. Harris, and R.J. Johnson, A role for uric acid in the progression of renal disease. J Am Soc Nephrol, 2002. 13(12): p. 2888-97. 64. Ryu, E.S., M.J. Kim, H.S. Shin, Y.H. Jang, H.S. Choi, I. Jo, R.J. Johnson, and D.H. Kang, Uric acid-induced phenotypic transition of renal tubular cells as a novel mechanism of chronic kidney disease. Am J Physiol Renal Physiol, 2013. 304(5): p. F471-80. 65. Mazzali, M., Y.G. Kim, S. Suga, K.L. Gordon, D.H. Kang, J.A. Jefferson, J. Hughes, S.D. Kivlighn, H.Y. Lan, and R.J. Johnson, Hyperuricemia exacerbates chronic cyclosporine nephropathy. Transplantation, 2001. 71(7): p. 900-5. 66. Sanchez-Lozada, L.G., E. Tapia, J. Santamaria, C. Avila-Casado, V. Soto, T. Nepomuceno, B. Rodriguez-Iturbe, R.J. Johnson, and J. Herrera-Acosta, Mild hyperuricemia induces vasoconstriction and maintains glomerular hypertension in normal and remnant kidney rats. Kidney Int, 2005. 67(1): p. 237-47. 67. Mazali, F.C., R.J. Johnson, and M. Mazzali, Use of uric acid-lowering agents limits experimental cyclosporine nephropathy. Nephron Exp Nephrol, 2012. 120(1): p. e12-9. 68. Omori, H., N. Kawada, K. Inoue, Y. Ueda, R. Yamamoto, I. Matsui, J. Kaimori, Y. Takabatake, T. Moriyama, Y. Isaka, and H. Rakugi, Use of xanthine oxidase inhibitor febuxostat inhibits renal interstitial inflammation and fibrosis in unilateral ureteral obstructive nephropathy. Clin Exp Nephrol, 2012. 16(4): p. 549-56. 69. Khanna, D., J.D. Fitzgerald, P.P. Khanna, S. Bae, M.K. Singh, T. Neogi, M.H. Pillinger, J. Merill, S. Lee, S. Prakash, M. Kaldas, M. Gogia, F. Perez-Ruiz, W. Taylor, F. Liote, H. Choi, J.A. Singh, N. Dalbeth, S. Kaplan, V. Niyyar, D. Jones, S.A. Yarows, B. Roessler, G. Kerr, C. King, G. Levy, D.E. Furst, N.L. Edwards, B. Mandell, H.R. Schumacher, M. Robbins, N. Wenger, R. Terkeltaub, and R. American College of, 2012 American College of Rheumatology guidelines for management of gout. Part 1: systematic nonpharmacologic and pharmacologic therapeutic approaches to hyperuricemia. Arthritis Care Res (Hoboken), 2012. 64(10): p. 1431-46. 70. Carnovale, C., M. Venegoni, and E. Clementi, Allopurinol overuse in asymptomatic hyperuricemia: a teachable moment. JAMA Intern Med, 2014. 174(7): p. 1031-2. 71. Kang, Y., M.J. Kim, H.N. Jang, E.J. Bae, S. Yun, H.S. Cho, S.H. Chang, and D.J. Park, Rhabdomyolysis associated with initiation of febuxostat therapy for hyperuricaemia in a patient with chronic kidney disease. J Clin Pharm Ther, 2014. 39(3): p. 328-30. 72. Kanji, T., M. Gandhi, C.M. Clase, and R. Yang, Urate lowering therapy to improve renal outcomes in patients with chronic kidney disease: systematic review and meta-analysis. BMC Nephrol, 2015. 16: p. 58. 73. Sircar, D., S. Chatterjee, R. Waikhom, V. Golay, A. Raychaudhury, S. Chatterjee, and R. Pandey, Efficacy of Febuxostat for Slowing the GFR Decline in Patients With CKD and Asymptomatic Hyperuricemia: A 6-Month, Double-Blind, Randomized, Placebo-Controlled Trial. Am J Kidney Dis, 2015. 66(6): p. 945-50.
|