跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/21 06:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李思穎
研究生(外文):Szu-Ying Lee
論文名稱:晚期慢性腎臟病患者中尿酸與慢性腎臟病惡化之相關性
論文名稱(外文):Association between Uric Acid and Chronic Kidney Disease Progression in Patients with Advanced Chronic Kidney Disease
指導教授:簡國龍簡國龍引用關係
口試日期:2017-06-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:流行病學與預防醫學研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:90
中文關鍵詞:慢性腎臟病末期腎疾病死亡率高尿酸血症尿酸
外文關鍵詞:Chronic kidney diseaseEnd stage renal diseaseMortalityHyperuricemiaUric acid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:423
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
背景與目標:
雖然許多研究認為較高的尿酸和慢性腎臟病的發展有關,但目前對於尿酸是否會加速腎功能惡化仍有爭議;尤其在晚期慢性腎臟病患者中,高尿酸是否和慢性腎臟病惡化相關仍爭論不休。因此,本研究即是探討在晚期慢性腎臟病患者中,尿酸與慢性腎臟病惡化之相關性。

方法:
本研究包含5562位於2004至2016年進入”全民健康保險末期腎臟病前期病人照護與衛教計畫”之第3b、4及5期的慢性腎臟病患者,依其基準尿酸值高低分成五組,比較各組各種慢性腎臟病惡化的指標,包括: 全因死亡率、進入末期腎疾病 (包括血液透析、腹膜透析以及腎臟移植)、與基準相比兩倍以上之血清肌酸酐、以及與基準相比降低25%以上之腎絲球過濾率。所有病人皆持續追蹤直至死亡、進入透析或腎臟移植、或是2016年12月31日。我們進行Cox比例風險模型,並校正多種變項,包括:年齡、性別、基準腎絲球過濾率,糖尿病、高血壓、蛋白尿、身體質量指數、抽菸、喝酒、痛風、血色素、白蛋白、磷和三酸甘油脂。

結果:
在中位數為29個月的追蹤中,448位病人死亡、1118位病人進入末期腎疾病、1263位病人達到與基準相比兩倍以上之血清肌酸酐、以及2529位病人與基準相比降低25%以上之腎絲球過濾率。隨著基準尿酸值的增加,會增加全因死亡率、進入末期腎疾病的發生率、與基準相比兩倍以上之血清肌酸酐的發生率。與基準尿酸值最低的組別相比,基準尿酸值最高的組別校正後的全因死亡風險比為1.49 (95% 信賴區間:1.05-2.12,趨勢檢定:P=0.01)、進入末期腎疾病風險比為1.40 (95% 信賴區間:1.08-1.82,趨勢檢定:P=0.03)、以及與基準相比兩倍以上之血清肌酸酐風險比為1.44 (95% 信賴區間:1.11-1.85,趨勢檢定:P=0.01)。然而,與基準相比降低25%以上之腎絲球過濾率的風險比並未達統計顯著意義 (風險比:1.07,95% 信賴區間:0.91-1.26,趨勢檢定:P=1.00)。而在依據年齡、性別、糖尿病狀況、及慢性腎臟病分期分層後,尿酸對於各種慢性腎臟病惡化指標仍有一致的影響。

結論:
高尿酸血症和腎臟惡化的指標有相關性。然而,下降尿酸對於慢性腎臟病患者是否為保護因子,則需要更進一步的研究。
Background and Objectives:
Although many studies have suggested an association between higher uric acid and the development of chronic kidney disease(CKD), it is controversial whether a higher uric acid was associated with a faster decline in renal function, especially in advanced CKD patients. The aim of this study was to investigate the association between uric acid and CKD progression in advanced CKD patients.

Methods:
We retrospectively recruited a cohort of 5562 patients who were enrolled in the nationwide multidisciplinary pre-end stage renal disease care program in 2004 to 2016 with CKD stage 3b, stage 4, and stage 5. We classified participants on the basis of quintiles of serum uric acid concentrations and surveyed the association between uric acid and the outcomes about CKD progression that including all-cause mortality, incidence of end stage renal disease (ESRD, which was defined as renal replacement therapy including hemodialysis, peritoneal dialysis and renal transplantation), doubling of baseline serum creatinine and a 25% or greater drop in GFR (glomerular filtration rate) from baseline. All the patients were followed until reaching death, the initiation of dialysis, renal transplantation or being censored at date December 31, 2016. We adjusted Cox proportional hazard model by covariates including age, gender, baseline GFR, diabetes mellitus, hypertension, proteinuria, body mass index, smoking, drinking, gout, hemoglobin, albumin, phosphate and triglyceride.

Results:
During a median follow-up of 29 months, 448 patients died, 1118 patients entered ESRD, 1263 patients reached doubling of baseline serum creatinine, and 2529 patients dropped greater or equal to 25% GFR from the baseline. As uric acid levels increased, the incidence rate of all-cause mortality, ESRD, and doubling of baseline serum creatinine increased significantly. Compared with those in the lowest quintile of uric acid, participants in the highest quintile of uric acid has an adjusted hazard with 1.49 (95% CI: 1.05-2.12, test for trend: P=0.01) for all-cause mortality, 1.40 (95% CI: 1.08-1.82, test for trend: P=0.03) for ESRD, and 1.44 (95% CI: 1.11-1.85, test for trend: P=0.01) for doubling of baseline serum creatinine. However, the risk for a 25% or greater drop in GFR from the baseline was not significant (HR=1.07, 95% CI: 0.91-1.26, test for trend: P=1.00). A consistent effect was observed various stratified factors, including age, gender, diabetes mellitus and CKD stage.

Conclusions:
Our study clearly demonstrated that hyperuricemia was associated with composite renal progression outcomes. Further intervention studies for uric acid reduction as the protective role of CKD progression are warranted.
口試委員會審定書 .......... i
誌謝 .......... ii
Abstract .......... iii
摘要 .......... vi
Table of Contents .......... ix
TABLES .......... xii
FIGURES .......... xiii
APPENDICES .......... xiv
Chapter One Introduction .......... 1
1.1 Chronic Kidney Disease .......... 1
1.1.1 Epidemiology of Chronic Kidney Disease .......... 1
1.1.2 Stage of Chronic Kidney Disease .......... 2
1.2 Chronic Kidney Disease Progression .......... 2
1.2.1 Definition of Chronic Kidney Disease Progression .......... 3
1.2.2 Progression Factors of Chronic Kidney Disease .......... 5
1.3 Uric Acid .......... 9
1.3.1 Metabolism of Uric Acid .......... 9
1.3.2 Definition of hyperuricemia .......... 10
1.3.3 Comorbidities of Hyperuricemia .......... 11
1.4 Hyperuricemia and CKD .......... 16
1.5 Literature Review of the Association of Hyperuricemia and Chronic Kidney Disease Progression .......... 17
1.5.1 Review criteria .......... 17
1.5.2 Review Studies .......... 19
1.6 Taiwan Nationwide Pre-ESRD Care Program .......... 24
1.7 Research Gap .......... 25
Chapter Two Study Aim .......... 26
Chapter Three Materials and Methods .......... 27
3.1 Study Design .......... 27
3.2 Ethical statement .......... 27
3.3 Study Population .......... 27
3.3.1 Inclusion Criteria .......... 28
3.3.2 Exclusion Criteria .......... 28
3.4 Analytic Method of Uric Acid .......... 28
3.5 Confounding Factors .......... 29
3.6 Outcome Assessment .......... 30
3.7 Statistical Analysis .......... 31
3.7.1 Descriptive Analysis .......... 31
3.7.2 Time to Event Analysis .......... 32
3.7.3 Subgroup Analysis and test for interaction .......... 33
3.7.4 Sample Size Estimation .......... 34
Chapter Four Results .......... 36
4.1 The Characteristics of the Study Patients .......... 36
4.2 Baseline Characteristics by Quintile of Uric Acid .......... 38
4.3 Uric Acid and Renal Progression Outcomes .......... 38
4.3.1 Uric Acid and All-Cause Mortality .......... 39
4.3.2 Uric Acid and Incidence of ESRD .......... 40
4.3.3 Uric Acid and Biochemical Indicator .......... 41
4.3.4 Uric Acid and GFR decline index .......... 42
Chapter Five Discussion .......... 44
5.1 Main Findings .......... 44
5.2 Comparison with Previous Studies .......... 44
5.2.1 Uric Acid and All-Cause Mortality .......... 44
5.2.2 Uric Acid and Incidence of ESRD .......... 45
5.2.3 Uric Acid and Biochemical Indicators .......... 46
5.2.4 Uric Acid and GFR Decline Index .......... 47
5.3 Biological Mechanism .......... 48
5.4 Strengths and Limitations .......... 49
5.5 Clinical Importance and Public Health Implication .......... 50
5.7 Conclusions .......... 51
Reference .......... 53
Tables .......... 61
Figures .......... 74
Appendices .......... 85
1. National Kidney, F., KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney International Supplements, 2013. 3(1): p. S1-150.
2. Levey, A.S., L.A. Stevens, and J. Coresh, Conceptual model of CKD: applications and implications. Am J Kidney Dis, 2009. 53(3 Suppl 3): p. S4-16.
3. Jha, V., A.Y. Wang, and H. Wang, The impact of CKD identification in large countries: the burden of illness. Nephrol Dial Transplant, 2012. 27 Suppl 3: p. iii32-8.
4. Levey, A.S., R. Atkins, J. Coresh, E.P. Cohen, A.J. Collins, K.U. Eckardt, M.E. Nahas, B.L. Jaber, M. Jadoul, A. Levin, N.R. Powe, J. Rossert, D.C. Wheeler, N. Lameire, and G. Eknoyan, Chronic kidney disease as a global public health problem: approaches and initiatives - a position statement from Kidney Disease Improving Global Outcomes. Kidney Int, 2007. 72(3): p. 247-59.
5. Wen, C.P., T.Y. Cheng, M.K. Tsai, Y.C. Chang, H.T. Chan, S.P. Tsai, P.H. Chiang, C.C. Hsu, P.K. Sung, Y.H. Hsu, and S.F. Wen, All-cause mortality attributable to chronic kidney disease: a prospective cohort study based on 462 293 adults in Taiwan. Lancet, 2008. 371(9631): p. 2173-82.
6. Saran, R., Y. Li, B. Robinson, K.C. Abbott, L.Y. Agodoa, J. Ayanian, J. Bragg-Gresham, R. Balkrishnan, J.L. Chen, E. Cope, P.W. Eggers, D. Gillen, D. Gipson, S.M. Hailpern, Y.N. Hall, K. He, W. Herman, M. Heung, R.A. Hirth, D. Hutton, S.J. Jacobsen, K. Kalantar-Zadeh, C.P. Kovesdy, Y. Lu, M.Z. Molnar, H. Morgenstern, B. Nallamothu, D.V. Nguyen, A.M. O''Hare, B. Plattner, R. Pisoni, F.K. Port, P. Rao, C.M. Rhee, A. Sakhuja, D.E. Schaubel, D.T. Selewski, V. Shahinian, J.J. Sim, P. Song, E. Streja, M. Kurella Tamura, F. Tentori, S. White, K. Woodside, and R.A. Hirth, US Renal Data System 2015 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am J Kidney Dis, 2016. 67(3 Suppl 1): p. Svii, S1-305.
7. National Kidney, F., K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis, 2002. 39(2 Suppl 1): p. S1-266.
8. Lambers Heerspink, H.J., V. Perkovic, and D. de Zeeuw, Is doubling of serum creatinine a valid clinical ''hard'' endpoint in clinical nephrology trials? Nephron Clin Pract, 2011. 119(3): p. c195-9; discussion c199.
9. Jun, M., T.C. Turin, M. Woodward, V. Perkovic, H.J. Lambers Heerspink, B.J. Manns, M. Tonelli, and B.R. Hemmelgarn, Assessing the Validity of Surrogate Outcomes for ESRD: A Meta-Analysis. J Am Soc Nephrol, 2015. 26(9): p. 2289-302.
10. Badve, S.V., S.C. Palmer, C.M. Hawley, E.M. Pascoe, G.F. Strippoli, and D.W. Johnson, Glomerular filtration rate decline as a surrogate end point in kidney disease progression trials. Nephrol Dial Transplant, 2016. 31(9): p. 1425-36.
11. Iseki, K., C. Iseki, Y. Ikemiya, and K. Fukiyama, Risk of developing end-stage renal disease in a cohort of mass screening. Kidney Int, 1996. 49(3): p. 800-5.
12. Shulman, N.B., C.E. Ford, W.D. Hall, M.D. Blaufox, D. Simon, H.G. Langford, and K.A. Schneider, Prognostic value of serum creatinine and effect of treatment of hypertension on renal function. Results from the hypertension detection and follow-up program. The Hypertension Detection and Follow-up Program Cooperative Group. Hypertension, 1989. 13(5 Suppl): p. I80-93.
13. Eriksen, B.O. and O.C. Ingebretsen, The progression of chronic kidney disease: a 10-year population-based study of the effects of gender and age. Kidney Int, 2006. 69(2): p. 375-82.
14. Astor, B.C., K. Matsushita, R.T. Gansevoort, M. van der Velde, M. Woodward, A.S. Levey, P.E. Jong, J. Coresh, C. Chronic Kidney Disease Prognosis, B.C. Astor, K. Matsushita, R.T. Gansevoort, M. van der Velde, M. Woodward, A.S. Levey, P.E. de Jong, J. Coresh, M. El-Nahas, K.U. Eckardt, B.L. Kasiske, J. Wright, L. Appel, T. Greene, A. Levin, O. Djurdjev, D.C. Wheeler, M.J. Landray, J.N. Townend, J. Emberson, L.E. Clark, A. Macleod, A. Marks, T. Ali, N. Fluck, G. Prescott, D.H. Smith, J.R. Weinstein, E.S. Johnson, M.L. Thorp, J.F. Wetzels, P.J. Blankestijn, A.D. van Zuilen, V. Menon, M. Sarnak, G. Beck, F. Kronenberg, B. Kollerits, M. Froissart, B. Stengel, M. Metzger, G. Remuzzi, P. Ruggenenti, A. Perna, H.J. Heerspink, B. Brenner, D. de Zeeuw, P. Rossing, H.H. Parving, P. Auguste, K. Veldhuis, Y. Wang, L. Camarata, B. Thomas, and T. Manley, Lower estimated glomerular filtration rate and higher albuminuria are associated with mortality and end-stage renal disease. A collaborative meta-analysis of kidney disease population cohorts. Kidney Int, 2011. 79(12): p. 1331-40.
15. Lin, C.M., M.C. Yang, S.J. Hwang, and J.M. Sung, Progression of stages 3b-5 chronic kidney disease--preliminary results of Taiwan national pre-ESRD disease management program in Southern Taiwan. J Formos Med Assoc, 2013. 112(12): p. 773-82.
16. Tonelli, M., P. Muntner, A. Lloyd, B.J. Manns, M.T. James, S. Klarenbach, R.R. Quinn, N. Wiebe, B.R. Hemmelgarn, and N. Alberta Kidney Disease, Using proteinuria and estimated glomerular filtration rate to classify risk in patients with chronic kidney disease: a cohort study. Ann Intern Med, 2011. 154(1): p. 12-21.
17. de Goeij, M.C., M. Liem, D.J. de Jager, N. Voormolen, Y.W. Sijpkens, J.I. Rotmans, E.W. Boeschoten, F.W. Dekker, D.C. Grootendorst, N. Halbesma, and P.-S. Group, Proteinuria as a risk marker for the progression of chronic kidney disease in patients on predialysis care and the role of angiotensin-converting enzyme inhibitor/angiotensin II receptor blocker treatment. Nephron Clin Pract, 2012. 121(1-2): p. c73-82.
18. Chen, C.H., H.Y. Wu, C.L. Wang, F.J. Yang, P.C. Wu, S.C. Hung, W.C. Kan, C.W. Yang, C.K. Chiang, J.W. Huang, and K.Y. Hung, Proteinuria as a Therapeutic Target in Advanced Chronic Kidney Disease: a Retrospective Multicenter Cohort Study. Sci Rep, 2016. 6: p. 26539.
19. Jafar, T.H., P.C. Stark, C.H. Schmid, M. Landa, G. Maschio, P.E. de Jong, D. de Zeeuw, S. Shahinfar, R. Toto, A.S. Levey, and A.S. Group, Progression of chronic kidney disease: the role of blood pressure control, proteinuria, and angiotensin-converting enzyme inhibition: a patient-level meta-analysis. Ann Intern Med, 2003. 139(4): p. 244-52.
20. Peralta, C.A., K.C. Norris, S. Li, T.I. Chang, M.K. Tamura, S.E. Jolly, G. Bakris, P.A. McCullough, M. Shlipak, and K. Investigators, Blood pressure components and end-stage renal disease in persons with chronic kidney disease: the Kidney Early Evaluation Program (KEEP). Arch Intern Med, 2012. 172(1): p. 41-7.
21. Foley, R.N., A.M. Murray, S. Li, C.A. Herzog, A.M. McBean, P.W. Eggers, and A.J. Collins, Chronic kidney disease and the risk for cardiovascular disease, renal replacement, and death in the United States Medicare population, 1998 to 1999. J Am Soc Nephrol, 2005. 16(2): p. 489-95.
22. Chuahirun, T., A. Khanna, K. Kimball, and D.E. Wesson, Cigarette smoking and increased urine albumin excretion are interrelated predictors of nephropathy progression in type 2 diabetes. Am J Kidney Dis, 2003. 41(1): p. 13-21.
23. Kang, D.H. and W. Chen, Uric acid and chronic kidney disease: new understanding of an old problem. Semin Nephrol, 2011. 31(5): p. 447-52.
24. Maesaka, J.K. and S. Fishbane, Regulation of renal urate excretion: a critical review. Am J Kidney Dis, 1998. 32(6): p. 917-33.
25. Wright, A.F., I. Rudan, N.D. Hastie, and H. Campbell, A ''complexity'' of urate transporters. Kidney Int, 2010. 78(5): p. 446-52.
26. Bobulescu, I.A. and O.W. Moe, Renal transport of uric acid: evolving concepts and uncertainties. Adv Chronic Kidney Dis, 2012. 19(6): p. 358-71.
27. Takiue, Y., M. Hosoyamada, M. Kimura, and H. Saito, The effect of female hormones upon urate transport systems in the mouse kidney. Nucleosides Nucleotides Nucleic Acids, 2011. 30(2): p. 113-9.
28. Richette, P., F. Perez-Ruiz, M. Doherty, T.L. Jansen, G. Nuki, E. Pascual, L. Punzi, A.K. So, and T. Bardin, Improving cardiovascular and renal outcomes in gout: what should we target? Nat Rev Rheumatol, 2014. 10(11): p. 654-61.
29. Wang, J., T. Qin, J. Chen, Y. Li, L. Wang, H. Huang, and J. Li, Hyperuricemia and risk of incident hypertension: a systematic review and meta-analysis of observational studies. PLoS One, 2014. 9(12): p. e114259.
30. Mazzali, M., J. Kanellis, L. Han, L. Feng, Y.Y. Xia, Q. Chen, D.H. Kang, K.L. Gordon, S. Watanabe, T. Nakagawa, H.Y. Lan, and R.J. Johnson, Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure-independent mechanism. Am J Physiol Renal Physiol, 2002. 282(6): p. F991-7.
31. Kodama, S., K. Saito, Y. Yachi, M. Asumi, A. Sugawara, K. Totsuka, A. Saito, and H. Sone, Association between serum uric acid and development of type 2 diabetes. Diabetes Care, 2009. 32(9): p. 1737-42.
32. Lv, Q., X.F. Meng, F.F. He, S. Chen, H. Su, J. Xiong, P. Gao, X.J. Tian, J.S. Liu, Z.H. Zhu, K. Huang, and C. Zhang, High serum uric acid and increased risk of type 2 diabetes: a systemic review and meta-analysis of prospective cohort studies. PLoS One, 2013. 8(2): p. e56864.
33. Zhu, Y., Y. Hu, T. Huang, Y. Zhang, Z. Li, C. Luo, Y. Luo, H. Yuan, I. Hisatome, T. Yamamoto, and J. Cheng, High uric acid directly inhibits insulin signalling and induces insulin resistance. Biochem Biophys Res Commun, 2014. 447(4): p. 707-14.
34. Wheeler, J.G., K.D. Juzwishin, G. Eiriksdottir, V. Gudnason, and J. Danesh, Serum uric acid and coronary heart disease in 9,458 incident cases and 155,084 controls: prospective study and meta-analysis. PLoS Med, 2005. 2(3): p. e76.
35. Kim, S.Y., J.P. Guevara, K.M. Kim, H.K. Choi, D.F. Heitjan, and D.A. Albert, Hyperuricemia and coronary heart disease: a systematic review and meta-analysis. Arthritis Care Res (Hoboken), 2010. 62(2): p. 170-80.
36. Braga, F., S. Pasqualetti, S. Ferraro, and M. Panteghini, Hyperuricemia as risk factor for coronary heart disease incidence and mortality in the general population: a systematic review and meta-analysis. Clin Chem Lab Med, 2016. 54(1): p. 7-15.
37. Li, M., X. Hu, Y. Fan, K. Li, X. Zhang, W. Hou, and Z. Tang, Hyperuricemia and the risk for coronary heart disease morbidity and mortality a systematic review and dose-response meta-analysis. Sci Rep, 2016. 6: p. 19520.
38. Khosla, U.M., S. Zharikov, J.L. Finch, T. Nakagawa, C. Roncal, W. Mu, K. Krotova, E.R. Block, S. Prabhakar, and R.J. Johnson, Hyperuricemia induces endothelial dysfunction. Kidney Int, 2005. 67(5): p. 1739-42.
39. Hong, Q., K. Qi, Z. Feng, Z. Huang, S. Cui, L. Wang, B. Fu, R. Ding, J. Yang, X. Chen, and D. Wu, Hyperuricemia induces endothelial dysfunction via mitochondrial Na+/Ca2+ exchanger-mediated mitochondrial calcium overload. Cell Calcium, 2012. 51(5): p. 402-10.
40. Puddu, P., G.M. Puddu, E. Cravero, L. Vizioli, and A. Muscari, Relationships among hyperuricemia, endothelial dysfunction and cardiovascular disease: molecular mechanisms and clinical implications. J Cardiol, 2012. 59(3): p. 235-42.
41. Choi, H.K. and G. Curhan, Soft drinks, fructose consumption, and the risk of gout in men: prospective cohort study. BMJ, 2008. 336(7639): p. 309-12.
42. Choi, H.K., W. Willett, and G. Curhan, Fructose-rich beverages and risk of gout in women. JAMA, 2010. 304(20): p. 2270-8.
43. Cox, C.L., K.L. Stanhope, J.M. Schwarz, J.L. Graham, B. Hatcher, S.C. Griffen, A.A. Bremer, L. Berglund, J.P. McGahan, N.L. Keim, and P.J. Havel, Consumption of fructose- but not glucose-sweetened beverages for 10 weeks increases circulating concentrations of uric acid, retinol binding protein-4, and gamma-glutamyl transferase activity in overweight/obese humans. Nutr Metab (Lond), 2012. 9(1): p. 68.
44. Sanchez-Lozada, L.G., E. Tapia, A. Jimenez, P. Bautista, M. Cristobal, T. Nepomuceno, V. Soto, C. Avila-Casado, T. Nakagawa, R.J. Johnson, J. Herrera-Acosta, and M. Franco, Fructose-induced metabolic syndrome is associated with glomerular hypertension and renal microvascular damage in rats. Am J Physiol Renal Physiol, 2007. 292(1): p. F423-9.
45. Kanbay, M., T. Jensen, Y. Solak, M. Le, C. Roncal-Jimenez, C. Rivard, M.A. Lanaspa, T. Nakagawa, and R.J. Johnson, Uric acid in metabolic syndrome: From an innocent bystander to a central player. Eur J Intern Med, 2016. 29: p. 3-8.
46. Li, L., C. Yang, Y. Zhao, X. Zeng, F. Liu, and P. Fu, Is hyperuricemia an independent risk factor for new-onset chronic kidney disease?: A systematic review and meta-analysis based on observational cohort studies. BMC Nephrol, 2014. 15: p. 122.
47. Nashar, K. and L.F. Fried, Hyperuricemia and the progression of chronic kidney disease: is uric acid a marker or an independent risk factor? Adv Chronic Kidney Dis, 2012. 19(6): p. 386-91.
48. Dousdampanis, P., K. Trigka, C.G. Musso, and C. Fourtounas, Hyperuricemia and chronic kidney disease: an enigma yet to be solved. Ren Fail, 2014. 36(9): p. 1351-9.
49. Suliman, M.E., R.J. Johnson, E. Garcia-Lopez, A.R. Qureshi, H. Molinaei, J.J. Carrero, O. Heimburger, P. Barany, J. Axelsson, B. Lindholm, and P. Stenvinkel, J-shaped mortality relationship for uric acid in CKD. Am J Kidney Dis, 2006. 48(5): p. 761-71.
50. Weiner, D.E., H. Tighiouart, E.F. Elsayed, J.L. Griffith, D.N. Salem, A.S. Levey, and M.J. Sarnak, The relationship between nontraditional risk factors and outcomes in individuals with stage 3 to 4 CKD. Am J Kidney Dis, 2008. 51(2): p. 212-23.
51. Madero, M., M.J. Sarnak, X. Wang, T. Greene, G.J. Beck, J.W. Kusek, A.J. Collins, A.S. Levey, and V. Menon, Uric acid and long-term outcomes in CKD. Am J Kidney Dis, 2009. 53(5): p. 796-803.
52. Nacak, H., M. van Diepen, A.R. Qureshi, J.J. Carrero, T. Stijnen, F.W. Dekker, and M. Evans, Uric acid is not associated with decline in renal function or time to renal replacement therapy initiation in a referred cohort of patients with Stage III, IV and V chronic kidney disease. Nephrol Dial Transplant, 2015. 30(12): p. 2039-45.
53. Uchida, S., W.X. Chang, T. Ota, Y. Tamura, T. Shiraishi, T. Kumagai, S. Shibata, Y. Fujigaki, M. Hosoyamada, K. Kaneko, Z.Y. Shen, and S. Fujimori, Targeting Uric Acid and the Inhibition of Progression to End-Stage Renal Disease--A Propensity Score Analysis. PLoS One, 2015. 10(12): p. e0145506.
54. Sturm, G., B. Kollerits, U. Neyer, E. Ritz, F. Kronenberg, and M.S. Group, Uric acid as a risk factor for progression of non-diabetic chronic kidney disease? The Mild to Moderate Kidney Disease (MMKD) Study. Exp Gerontol, 2008. 43(4): p. 347-52.
55. Rodenbach, K.E., M.F. Schneider, S.L. Furth, M.M. Moxey-Mims, M.M. Mitsnefes, D.J. Weaver, B.A. Warady, and G.J. Schwartz, Hyperuricemia and Progression of CKD in Children and Adolescents: The Chronic Kidney Disease in Children (CKiD) Cohort Study. Am J Kidney Dis, 2015. 66(6): p. 984-92.
56. Chen, Y.R., Y. Yang, S.C. Wang, P.F. Chiu, W.Y. Chou, C.Y. Lin, J.M. Chang, T.W. Chen, S.H. Ferng, and C.L. Lin, Effectiveness of multidisciplinary care for chronic kidney disease in Taiwan: a 3-year prospective cohort study. Nephrol Dial Transplant, 2013. 28(3): p. 671-82.
57. Chen, Y.R., Y. Yang, S.C. Wang, W.Y. Chou, P.F. Chiu, C.Y. Lin, W.C. Tsai, J.M. Chang, T.W. Chen, S.H. Ferng, and C.L. Lin, Multidisciplinary care improves clinical outcome and reduces medical costs for pre-end-stage renal disease in Taiwan. Nephrology (Carlton), 2014. 19(11): p. 699-707.
58. Kohl, M., M. Plischke, K. Leffondre, and G. Heinze, PSHREG: a SAS macro for proportional and nonproportional subdistribution hazards regression. Comput Methods Programs Biomed, 2015. 118(2): p. 218-33.
59. Chow, S.C., J. Shao, and H. Wang, Sample Size Calculations in Clinical Research, Second Edition. 2008: p. 174-179.
60. Coresh, J., T.C. Turin, K. Matsushita, Y. Sang, S.H. Ballew, L.J. Appel, H. Arima, S.J. Chadban, M. Cirillo, O. Djurdjev, J.A. Green, G.H. Heine, L.A. Inker, F. Irie, A. Ishani, J.H. Ix, C.P. Kovesdy, A. Marks, T. Ohkubo, V. Shalev, A. Shankar, C.P. Wen, P.E. de Jong, K. Iseki, B. Stengel, R.T. Gansevoort, A.S. Levey, and C.K.D.P. Consortium, Decline in estimated glomerular filtration rate and subsequent risk of end-stage renal disease and mortality. JAMA, 2014. 311(24): p. 2518-31.
61. Kumagai, T., T. Ota, Y. Tamura, W.X. Chang, S. Shibata, and S. Uchida, Time to target uric acid to retard CKD progression. Clin Exp Nephrol, 2016.
62. Sanchez-Lozada, L.G., M.A. Lanaspa, M. Cristobal-Garcia, F. Garcia-Arroyo, V. Soto, D. Cruz-Robles, T. Nakagawa, M.A. Yu, D.H. Kang, and R.J. Johnson, Uric acid-induced endothelial dysfunction is associated with mitochondrial alterations and decreased intracellular ATP concentrations. Nephron Exp Nephrol, 2012. 121(3-4): p. e71-8.
63. Kang, D.H., T. Nakagawa, L. Feng, S. Watanabe, L. Han, M. Mazzali, L. Truong, R. Harris, and R.J. Johnson, A role for uric acid in the progression of renal disease. J Am Soc Nephrol, 2002. 13(12): p. 2888-97.
64. Ryu, E.S., M.J. Kim, H.S. Shin, Y.H. Jang, H.S. Choi, I. Jo, R.J. Johnson, and D.H. Kang, Uric acid-induced phenotypic transition of renal tubular cells as a novel mechanism of chronic kidney disease. Am J Physiol Renal Physiol, 2013. 304(5): p. F471-80.
65. Mazzali, M., Y.G. Kim, S. Suga, K.L. Gordon, D.H. Kang, J.A. Jefferson, J. Hughes, S.D. Kivlighn, H.Y. Lan, and R.J. Johnson, Hyperuricemia exacerbates chronic cyclosporine nephropathy. Transplantation, 2001. 71(7): p. 900-5.
66. Sanchez-Lozada, L.G., E. Tapia, J. Santamaria, C. Avila-Casado, V. Soto, T. Nepomuceno, B. Rodriguez-Iturbe, R.J. Johnson, and J. Herrera-Acosta, Mild hyperuricemia induces vasoconstriction and maintains glomerular hypertension in normal and remnant kidney rats. Kidney Int, 2005. 67(1): p. 237-47.
67. Mazali, F.C., R.J. Johnson, and M. Mazzali, Use of uric acid-lowering agents limits experimental cyclosporine nephropathy. Nephron Exp Nephrol, 2012. 120(1): p. e12-9.
68. Omori, H., N. Kawada, K. Inoue, Y. Ueda, R. Yamamoto, I. Matsui, J. Kaimori, Y. Takabatake, T. Moriyama, Y. Isaka, and H. Rakugi, Use of xanthine oxidase inhibitor febuxostat inhibits renal interstitial inflammation and fibrosis in unilateral ureteral obstructive nephropathy. Clin Exp Nephrol, 2012. 16(4): p. 549-56.
69. Khanna, D., J.D. Fitzgerald, P.P. Khanna, S. Bae, M.K. Singh, T. Neogi, M.H. Pillinger, J. Merill, S. Lee, S. Prakash, M. Kaldas, M. Gogia, F. Perez-Ruiz, W. Taylor, F. Liote, H. Choi, J.A. Singh, N. Dalbeth, S. Kaplan, V. Niyyar, D. Jones, S.A. Yarows, B. Roessler, G. Kerr, C. King, G. Levy, D.E. Furst, N.L. Edwards, B. Mandell, H.R. Schumacher, M. Robbins, N. Wenger, R. Terkeltaub, and R. American College of, 2012 American College of Rheumatology guidelines for management of gout. Part 1: systematic nonpharmacologic and pharmacologic therapeutic approaches to hyperuricemia. Arthritis Care Res (Hoboken), 2012. 64(10): p. 1431-46.
70. Carnovale, C., M. Venegoni, and E. Clementi, Allopurinol overuse in asymptomatic hyperuricemia: a teachable moment. JAMA Intern Med, 2014. 174(7): p. 1031-2.
71. Kang, Y., M.J. Kim, H.N. Jang, E.J. Bae, S. Yun, H.S. Cho, S.H. Chang, and D.J. Park, Rhabdomyolysis associated with initiation of febuxostat therapy for hyperuricaemia in a patient with chronic kidney disease. J Clin Pharm Ther, 2014. 39(3): p. 328-30.
72. Kanji, T., M. Gandhi, C.M. Clase, and R. Yang, Urate lowering therapy to improve renal outcomes in patients with chronic kidney disease: systematic review and meta-analysis. BMC Nephrol, 2015. 16: p. 58.
73. Sircar, D., S. Chatterjee, R. Waikhom, V. Golay, A. Raychaudhury, S. Chatterjee, and R. Pandey, Efficacy of Febuxostat for Slowing the GFR Decline in Patients With CKD and Asymptomatic Hyperuricemia: A 6-Month, Double-Blind, Randomized, Placebo-Controlled Trial. Am J Kidney Dis, 2015. 66(6): p. 945-50.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊