跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/01/14 18:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳人豪
研究生(外文):Jen-Hau Chen
論文名稱:40至55歲婦女罹患骨少症之風險預測
論文名稱(外文):Predicting the Risk of Osteopenia for Women Aged 40-55
指導教授:季瑋珠季瑋珠引用關係
口試日期:2017-06-23
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:流行病學與預防醫學研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:72
中文關鍵詞:骨少症骨質疏鬆症預測模型婦女
外文關鍵詞:osteopeniaosteoporosisprediction modelwomen
相關次數:
  • 被引用被引用:0
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
研究背景及目的:骨質疏鬆症是重要的公共衛生議題,骨質疏鬆症會增加骨折風險及隨後的罹病率與死亡率。目前所知有多個因子與低骨密度有關。過去研究著重於建立停經後婦女骨質疏鬆症的預測模型,然而骨少症的預測模型有其需要性。本研究目的乃針對40-55歲女性,建立一個預測骨少症風險的模型。
研究方法:本研究為橫斷式研究,招募了1350位在西元2009至2010年間參加某健檢中心健康檢查之40到55歲女性。本研究的主要依變項為骨少症(-1 ≥ 骨密度T質 > -2.5)。本研究的潛在干擾因子包括年齡、體重或身體質量指數、腰圍、吸菸狀態、酒精攝取、規則運動與否、血壓(收縮壓/舒張壓)、血清空腹血糖、膽固醇、三酸甘油脂、肌酸酐、鹼性磷酸酶的濃度、補充鈣與否、以及停經狀態。
研究結果:本研究建立「骨質疏鬆症臨床前期評估工具」(Osteoporosis Preclinical Assessment Tool, OPAT),此預測模型包括數個在生物學上與骨少症有關的重要變數,以及多變項分析有統計上顯著關係(p < 0.05)的變數。這些變數包括年齡、停經狀態、體重及血清鹼性磷酸酶濃度。OPAT的總分介於0到7分,可將女性區分為低、中及高風險等三組,此工具的預測力(receiver operating characteristic curve, 曲線下的面積)為0.77,比亞太骨質疏鬆症風險評估工具(Osteoporosis Self-assessment Tool for Asians)的預測力0.69還要好。本預測模型中的血清總鹼性磷酸酶濃度易於常規之健康檢查時取得,能顯著增加預測40-55歲的女性骨少症的敏感性(McNemar檢定,p = 0.004)。
結論:我們的研究結果建立了一個重要的骨少症預測模型,可用於臨床前期評估40-55歲婦女罹患骨質疏鬆症之風險。
Background: Osteoporosis is a major public health issue because it has been associated with increased fracture risk and the subsequent morbidity and mortality. Several factors have been related to low bone mineral density (BMD). Previous prediction models have focused on osteoporosis in postmenopausal women. A prediction tool for osteopenia is needed. The objective of the study was to establish a prediction model for osteopenia risk in women aged 40-55 years.
Methods: This was a cross-sectional study. A total of 1,350 Taiwanese women aged 40 to 55 years old were recruited from a certain health check-up center between 2009 and 2010. The outcome was osteopenia (-1 ≥ BMD T-score > -2.5). Factors considered as potential confounders included age, body weight or body mass index, waist circumference, smoking, alcohol intake, regular exercise, blood pressure (systolic/diastolic), fasting glucose, cholesterol, triglyceride, creatinine, alkaline phosphatase (ALP), calcium supplement and menopause status.
Results: The Osteoporosis Preclinical Assessment Tool (OPAT) developed in this study was based on variables with biological importance to osteopenia and variables that remained significant (p < 0.05) in the multivariable analysis, which included age, menopausal status, weight, and alkaline phosphatase level. The OPAT had a total score that ranged from 0 to 7, and categorized women into high-, moderate-, and low-risk groups. The predictive ability of the OPAT (area under the receiver operating characteristic curve (AUC) = 0.77) was significantly better than that of the Osteoporosis Self-assessment Tool for Asians (AUC = 0.69). The inclusion of serum total alkaline phosphatase level in the model, which was easy to obtain from routine health checkups, significantly enhanced the sensitivity (McNemar test, p=0.004) for detecting osteopenia in women aged 40-55 years.
Conclusion: The findings provide an important tool for identifying women at risk of osteoporosis at the preclinical phase.
Verification letter from the oral examination committee I
Acknowledgements II
Chinese abstract III
English abstract V
Table of contents VII
List of figures IX
List of tables X
List of appendices XI
Chapter 1. Introduction 1
Chapter 2. Literature Review 3
2.1 Importance of osteoporosis 3
2.2 Classification of osteoporosis 5
2.3 Bone mineral density and its measurement 6
2.4 Factors affecting bone mineral density 7
2.4.1 Age 7
2.4.2 Ethnicity 7
2.4.3 Anthropometric measures 7
2.4.4 Nutrients 8
2.4.5 Hormones 8
2.4.6 Medical comorbidities 9
2.4.7 Medications 10
2.4.8 Physical activity 11
2.4.9 Smoking and alcohol drinking 11
2.5 Bone turnover markers 12
2.6 Prediction of osteopenia 13
2.7 Aims 15
Chapter 3. Materials and Methods 16
3.1 Study population 16
3.2 Measurement of BMD 17
3.3 Measurement of demographic factors 18
3.4 Measurement of clinical factors and comorbidities 19
3.5 Statistical analyses 20
3.6 Point-based prediction model 21
Chapter 4. Results 23
4.1 Characteristics of the study population 23
4.2 Variable selection and the prediction model for osteopenia risk 24
4.3 Predictive performance of the model 25
Chapter 5. Discussion 26
5.1 Main findings 26
5.2 Comparison with prior studies 27
5.3 Strengths and limitations 29
5.4 Conclusions 31
References 32
Figure 1. Flowchart of participant recruitment 44
Figure 2. The distributions of bone mineral density 45
Figure 3. The distributions of bone mineral density by menopause status 46
Figure 4. The distributions of age 47
Figure 5. The distributions of age by menopause status 48
Figure 6. The distributions of weight 49
Figure 7. The distributions of weight by menopause status 50
Figure 8. The distributions of alkaline phosphatase 51
Figure 9. The distributions of alkaline phosphatase by menopause status 52
Figure 10. Splines curves of bone mineral density against age, weight and alkaline phosphatase 53
Figure 11. Splines curves of bone mineral density against age, weight and alkaline phosphatase by menopause status 54
Figure 12. Distribution of women with osteopenia and normal BMD by low, moderate and high risk. 55
Figure 13. ROC curves (a) and (b) calibration plots for the classification of women aged 40-55 with osteopenia and normal BMD. 56
Table 1. Comparisons of different prediction tools for osteoporosis, low BMD, and osteopenia 57
Table 2. Characteristics of study subjects 59
Table 3. Final multivariable logistic regression model for predicting osteopenia risk in women aged 40 to 55 years (OPAT) 60
Table 4. Summary statistics for different models 61
Appendix 1. Certificates of institutional review board 62
Appendix 2. Published paper 64
1. Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. Lancet. 2011;377(9773):1276-1287.
2. World Health Organization. WHO Scientific group on the assessment of osteoporosis at primary health care level. 2004; http://www.who.int/chp/topics/Osteoporosis.pdf. Accessed Feb. 24, 2017.
3. Vestergaard P, Rejnmark L, Mosekilde L. Osteoporosis is markedly underdiagnosed: a nationwide study from Denmark. Osteoporos Int. 2005;16(2):134-141.
4. National Osteoporosis Foundation. America''s Bone Health: The State of Osteoporosis and Low Bone Mass in Our Nation. Washington, DC. 2002; https://www.nof.org/about-us/nof-background/. Accessed Feb 24, 2017.
5. Hendrickx G, Boudin E, Van Hul W. A look behind the scenes: the risk and pathogenesis of primary osteoporosis. Nat Rev Rheumatol. 2015;11(8):462-474.
6. Leslie WD, Schousboe JT. A review of osteoporosis diagnosis and treatment options in new and recently updated guidelines on case finding around the world. Curr Osteoporos Rep. 2011;9(3):129-140.
7. U.S. Preventive Services Task Force. Screening for osteoporosis: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2011;154(5):356-364.
8. Papaioannou A, Morin S, Cheung AM, et al. 2010 clinical practice guidelines for the diagnosis and management of osteoporosis in Canada: summary. CMAJ. 2010;182(17):1864-1873.
9. Schuit SC, van der Klift M, Weel AE, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone. 2004;34(1):195-202.
10. Stone KL, Seeley DG, Lui LY, et al. BMD at multiple sites and risk of fracture of multiple types: long-term results from the Study of Osteoporotic Fractures. J Bone Miner Res. 2003;18(11):1947-1954.
11. Jaglal SB. Bone density testing. In: Stewart DE, Cheung AM, Ferris LE, Hyman I, Cohen MM, Williams JI, eds. Toronto, Ont: Ontario Women''s Health Council: Ontario Women''s Health Status Report; 2002:391.
12. Ontario Health Insurance Plan: database. Toronto (ON): Institute for Clinical and Evaluative Sciences; 2009.
13. MacLean C, Newberry S, Maglione M, et al. Systematic review: comparative effectiveness of treatments to prevent fractures in men and women with low bone density or osteoporosis. Ann Intern Med. 2008;148(3):197-213.
14. Consensus development conference: prophylaxis and treatment of osteoporosis. Osteoporos Int. 1991;1(2):114-117.
15. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J Bone Miner Res. 2007;22(3):465-475.
16. Kanis JA. Assessment of osteoporosis at the primary health-care level. World Health Organization Scientific Group, Technical Report, Sheffield, UK. WHO Collaborating Centre, University of Sheffield, UK.;2008.
17. Dawson-Hughes B, Looker AC, Tosteson AN, Johansson H, Kanis JA, Melton LJ, 3rd. The potential impact of the National Osteoporosis Foundation guidance on treatment eligibility in the USA: an update in NHANES 2005-2008. Osteoporos Int. 2012;23(3):811-820.
18. Kanis JA, Johnell O, Oden A, Jonsson B, De Laet C, Dawson A. Risk of hip fracture according to the World Health Organization criteria for osteopenia and osteoporosis. Bone. 2000;27(5):585-590.
19. Wright NC, Looker AC, Saag KG, et al. The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res. 2014;29(11):2520-2526.
20. Barrett-Connor E, Siris ES, Wehren LE, et al. Osteoporosis and fracture risk in women of different ethnic groups. J Bone Miner Res. 2005;20(2):185-194.
21. Yang TS, Chen YR, Chen YJ, Chang CY, Ng HT. Osteoporosis: prevalence in Taiwanese women. Osteoporos Int. 2004;15(4):345-347.
22. Yang NP, Deng CY, Chou YJ, et al. Estimated prevalence of osteoporosis from a Nationwide Health Insurance database in Taiwan. Health Policy. 2006;75(3):329-337.
23. Lin YC, Pan WH. Bone mineral density in adults in Taiwan: results of the Nutrition and Health Survey in Taiwan 2005-2008 (NAHSIT 2005-2008). Asia Pac J Clin Nutr. 2011;20(2):283-291.
24. Kanis JA. Diagnosis of osteoporosis and assessment of fracture risk. Lancet. 2002;359(9321):1929-1936.
25.Johnell O, Kanis JA, Odén A, et al. Mortality after osteoporotic fractures. Osteoporos Int. 2004;15(1):38-42.
26. Haleem S, Lutchman L, Mayahi R, Grice JE, Parker MJ. Mortality following hip fracture: Trends and geographical variations over the last 40 years. Injury. 2008;39(10):1157-1163.
27. Lau EM. Osteoporosis: A worldwide problem and the implications in Asia. Ann Acad Med Singapore. 2002;31(1):67-68.
28. Tuppurainen M, Kroger H, Saarikoski S, Honkanen R, Alhava E. The effect of gynecological risk factors on lumbar and femoral bone mineral density in peri- and postmenopausal women. Maturitas. 1995;21(2):137-145.
29. Kroger H, Tuppurainen M, Honkanen R, Alhava E, Saarikoski S. Bone mineral density and risk factors for osteoporosis--a population-based study of 1600 perimenopausal women. Calcif Tissue Int. 1994;55(1):1-7.
30. Ho SC, Chen YM, Woo JL. Educational level and osteoporosis risk in postmenopausal Chinese women. Am J Epidemiol. 2005;161(7):680-690.
31. Takada H, Washino K, Iwata H. Risk factors for low bone mineral density among females: the effect of lean body mass. Prev Med. 1997;26(5 Pt 1):633-638.
32. Szulc P, Marchand F, Duboeuf F, Delmas PD. Cross-sectional assessment of age-related bone loss in men: the MINOS study. Bone. 2000;26(2):123-129.
33. Looker AC, Orwoll ES, Johnston CC, et al. Prevalence of Low Femoral Bone Density in Older U.S. Adults from NHANES III. J Bone Miner Res. 1997;12(11):1761-1768.
34. Papaioannou A, Kennedy CC, Cranney A, et al. Risk factors for low BMD in healthy men age 50 years or older: a systematic review. Osteoporos Int. 2009;20(4):507-518.
35. Walker MD, Novotny R, Bilezikian JP, Weaver CM. Race and diet interactions in the acquisition, maintenance, and loss of bone. J Nutr. 2008;138(6):1256S-1260S.
36. Araujo AB, Travison TG, Harris SS, Holick MF, Turner AK, McKinlay JB. Race/ethnic differences in bone mineral density in men. Osteoporos Int. 2007;18(7):943-953.
37. Bohannon AD. Osteoporosis and African American women. J Womens Health Gend Based Med. 1999;8(5):609-615.
38. Walker MD, Babbar R, Opotowsky AR, et al. A referent bone mineral density database for Chinese American women. Osteoporos Int. 2006;17(6):878-887.
39. Finkelstein JS, Lee ML, Sowers M, et al. Ethnic variation in bone density in premenopausal and early perimenopausal women: effects of anthropometric and lifestyle factors. J Clin Endocrinol Metab. 2002;87(7):3057-3067.
40. Cauley JA, Fullman RL, Stone KL, et al. Factors associated with the lumbar spine and proximal femur bone mineral density in older men. Osteoporos Int. 2005;16(12):1525-1537.
41. Marcus R, Greendale G, Blunt BA, et al. Correlates of bone mineral density in the postmenopausal estrogen/progestin interventions trial. J Bone Miner Res. 1994;9(9):1467-1476.
42. Ribot C, Tremollieres F, Pouilles JM, Bonneu M, Germain F, Louvet JP. Obesity and postmenopausal bone loss: the influence of obesity on vertebral density and bone turnover in postmenopausal women. Bone. 1987;8(6):327-331.
43. Bevier WC, Wiswell RA, Pyka G, Kozak KC, Newhall KM, Marcus R. Relationship of body composition, muscle strength, and aerobic capacity to bone mineral density in older men and women. J Bone Miner Res. 1989;4(3):421-432.
44. Reid IR, Ames R, Evans MC, et al. Determinants of total body and regional bone mineral density in normal postmenopausal women--a key role for fat mass. J Clin Endocrinol Metab. 1992;75(1):45-51.
45. Chen Y, Xiang J, Wang Z, et al. Associations of Bone Mineral Density with Lean Mass, Fat Mass, and Dietary Patterns in Postmenopausal Chinese Women: A 2-Year Prospective Study. PLoS One. 2015;10(9):e0137097.
46. Reid IR, Ames RW, Evans MC, Sharpe SJ, Gamble GD. Determinants of the rate of bone loss in normal postmenopausal women. J Clin Endocrinol Metab. 1994;79(4):950-954.
47. Holm K, Dan A, Wilbur J, Li S, Walker J. A longitudinal study of bone density in midlife women. Health Care Women Int. 2002;23(6-7):678-691.
48. New SA, Bolton-Smith C, Grubb DA, Reid DM. Nutritional influences on bone mineral density: a cross-sectional study in premenopausal women. Am J Clin Nutr. 1997;65(6):1831-1839.
49. Cumming RG. Calcium intake and bone mass: a quantitative review of the evidence. Calcif Tissue Int. 1990;47(4):194-201.
50. Welten DC, Kemper HC, Post GB, van Staveren WA. A meta-analysis of the effect of calcium intake on bone mass in young and middle aged females and males. J Nutr. 1995;125(11):2802-2813.
51. Hannan MT, Felson DT, Dawson-Hughes B, et al. Risk factors for longitudinal bone loss in elderly men and women: the Framingham Osteoporosis Study. J Bone Miner Res. 2000;15(4):710-720.
52. Khaw KT, Sneyd MJ, Compston J. Bone density parathyroid hormone and 25-hydroxyvitamin D concentrations in middle aged women. BMJ. 1992;305(6848):273-277.
53. Ooms ME, Roos JC, Bezemer PD, van der Vijgh WJ, Bouter LM, Lips P. Prevention of bone loss by vitamin D supplementation in elderly women: a randomized double-blind trial. J Clin Endocrinol Metab. 1995;80(4):1052-1058.
54. Hui SL, Slemenda CW, Johnston CC, Appledorn CR. Effects of age and menopause on vertebral bone density. Bone Miner. 1987;2(2):141-146.
55. Ribot C, Tremollieres F, Pouilles JM, Louvet JP, Guiraud R. Influence of the menopause and aging on spinal density in French women. Bone Miner. 1988;5(1):89-97.
56. Hedlund LR, Gallagher JC. The effect of age and menopause on bone mineral density of the proximal femur. J Bone Miner Res. 1989;4(4):639-642.
57. Mazzuoli G, Acca M, Pisani D, et al. Annual skeletal balance and metabolic bone marker changes in healthy early postmenopausal women: results of a prospective study. Bone. 2000;26(4):381-386.
58. Richelson LS, Wahner HW, Melton LJ, 3rd, Riggs BL. Relative contributions of aging and estrogen deficiency to postmenopausal bone loss. N Engl J Med. 1984;311(20):1273-1275.
59. Bone HG, Greenspan SL, McKeever C, et al. Alendronate and estrogen effects in postmenopausal women with low bone mineral density. Alendronate/Estrogen Study Group. J Clin Endocrinol Metab. 2000;85(2):720-726.
60. Nelson HD, Helfand M, Woolf SH, Allan JD. Screening for Postmenopausal Osteoporosis: A Review of the Evidence for the U.S. Preventive Services Task Force. Ann Intern Med. 2002;137(6):529-541.
61. Finkelstein JS, Brockwell SE, Mehta V, et al. Bone mineral density changes during the menopause transition in a multiethnic cohort of women. J Clin Endocrinol Metab. 2008;93(3):861-868.
62. Grey AB, Evans MC, Stapleton JP, Reid IR. Body weight and bone mineral density in postmenopausal women with primary hyperparathyroidism. Ann Intern Med. 1994;121(10):745-749.
63. Karga H, Papapetrou PD, Korakovouni A, Papandroulaki F, Polymeris A, Pampouras G. Bone mineral density in hyperthyroidism. Clin Endocrinol (Oxf). 2004;61(4):466-472.
64. Silvennoinen JA, Karttunen TJ, Niemela SE, Manelius JJ, Lehtola JK. A controlled study of bone mineral density in patients with inflammatory bowel disease. Gut. 1995;37(1):71-76.
65. Bonkovsky HL, Hawkins M, Steinberg K, et al. Prevalence and prediction of osteopenia in chronic liver disease. Hepatology. 1990;12(2):273-280.
66. Terpos E, Dimopoulos MA. Myeloma bone disease: pathophysiology and management. Ann Oncol. 2005;16(8):1223-1231.
67. Pear BL. Skeletal manifestations of the lymphomas and leukemias. Semin Roentgenol. 1974;9(3):229-240.
68. Diamond T, Stiel D, Posen S. Osteoporosis in hemochromatosis: iron excess, gonadal deficiency, or other factors? Ann Intern Med. 1989;110(6):430-436.
69. Thrailkill KM, Lumpkin CK, Bunn RC, Kemp SF, Fowlkes JL. Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. Am J Physiol Endocrinol Metab. 2005;289(5):E735-E745.
70. Bonds DE, Larson JC, Schwartz AV, et al. Risk of Fracture in Women with Type 2 Diabetes: the Women’s Health Initiative Observational Study. J Clin Endocrinol Metab. 2006;91(9):3404-3410.
71. Janghorbani M, Van Dam RM, Willett WC, Hu FB. Systematic Review of Type 1 and Type 2 Diabetes Mellitus and Risk of Fracture. Am J Epidemiol. 2007;166(5):495-505.
72. Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporos Int. 2007;18(4):427-444.
73. Ma L, Oei L, Jiang L, et al. Association between bone mineral density and type 2 diabetes mellitus: a meta-analysis of observational studies. Eur J Epidemiol. 2012;27(5):319-332.
74. Villareal DT, Apovian CM, Kushner RF, Klein S. Obesity in older adults: technical review and position statement of the American Society for Nutrition and NAASO, The Obesity Society. Am J Clin Nutr. 2005;82(5):923-934.
75. McTigue KM, Hess R, Ziouras J. Obesity in Older Adults: A Systematic Review of the Evidence for Diagnosis and Treatment[ast]. Obesity. 2006;14(9):1485-1497.
76. Laet C, Kanis J, Odén A, et al. Body mass index as a predictor of fracture risk: A meta-analysis. Osteoporos Int. 2005;16(11):1330-1338.
77. Reid IR, Plank LD, Evans MC. Fat mass is an important determinant of whole body bone density in premenopausal women but not in men. J Clin Endocrinol Metab. 1992;75(3):779-782.
78. Fu X, Ma X, Lu H, He W, Wang Z, Zhu S. Associations of fat mass and fat distribution with bone mineral density in pre- and postmenopausal Chinese women. Osteoporos Int. 2011;22(1):113-119.
79. Bhupathiraju SN, Dawson-Hughes B, Hannan MT, Lichtenstein AH, Tucker KL. Centrally located body fat is associated with lower bone mineral density in older Puerto Rican adults. Am J Clin Nutr. 2011;94(4):1063-1070.
80. Gilsanz V, Chalfant J, Mo AO, Lee DC, Dorey FJ, Mittelman SD. Reciprocal Relations of Subcutaneous and Visceral Fat to Bone Structure and Strength. J Clin Endocrinol Metab. 2009;94(9):3387-3393.
81. Cappuccio FP, Meilahn E, Zmuda JM, Cauley JA. High blood pressure and bone-mineral loss in elderly white women: a prospective study. Lancet. 1999;354(9183):971-975.
82. Gotoh M, Mizuno K, Ono Y, Takahashi M. High Blood Pressure, Bone-Mineral Loss and Insulin Resistance in Women. Hypertens Res. 2005;28(7):565-570.
83. Yamaguchi T, Kanazawa I, Yamamoto M, et al. Associations between components of the metabolic syndrome versus bone mineral density and vertebral fractures in patients with type 2 diabetes. Bone. 2009;45(2):174-179.
84. Dennison EM, Syddall HE, Aihie Sayer A, Martin HJ, Cooper C. Lipid profile, obesity and bone mineral density: the Hertfordshire Cohort Study. QJM. 2007;100(5):297-303.
85. von Muhlen D, Safii S, Jassal S, Svartberg J, Barrett-Connor E. Associations between the metabolic syndrome and bone health in older men and women: the Rancho Bernardo Study. Osteoporos Int. 2007;18(10):1337-1344.
86. Adami S, Braga V, Zamboni M, et al. Relationship between lipids and bone mass in 2 cohorts of healthy women and men. Calcif Tissue Int. 2004;74(2):136-142.
87. Hsu Y-H, Venners SA, Terwedow HA, et al. Relation of body composition, fat mass, and serum lipids to osteoporotic fractures and bone mineral density in Chinese men and women. Am J Clin Nutr. 2006;83(1):146-154.
88. Lee KS, Cho JH, Park CH, et al. Relationship between Plasma Lipids and Osteoporosis in Korean Postmenopausal Women. J Korean Geriatr Soc. 2011;15(2):99-106.
89. Reid IR, Evans MC, Stapleton J. Lateral Spine Densitometry Is a More Sensitive Indicator of Glucocorticoid-Induced Bone Loss. J Bone Miner Res. 1992;7(10):1221-1225.
90. Reid IR, Evans MC, Wattie DJ, Ames R, Cundy TF. Bone mineral density of the proximal femur and lumbar spine in glucocorticoid-treated asthmatic patients. Osteoporos Int. 1992;2(2):103-105.
91. Stephen LJ, McLellan AR, Harrison JH, et al. Bone density and antiepileptic drugs: a case-controlled study. Seizure. 1999;8(6):339-342.
92. Caraballo PJ, Gabriel SE, Castro MR, Atkinson EJ, Melton LJ, 3rd. Changes in bone density after exposure to oral anticoagulants: a meta-analysis. Osteoporos Int. 1999;9(5):441-448.
93. Cui L, Li T, Liu Y, et al. Salvianolic acid B prevents bone loss in prednisone-treated rats through stimulation of osteogenesis and bone marrow angiogenesis. PLoS One. 2012;7(4):e34647.
94. Coupland CA, Cliffe SJ, Bassey EJ, Grainge MJ, Hosking DJ, Chilvers CE. Habitual physical activity and bone mineral density in postmenopausal women in England. Int J Epidemiol. 1999;28(2):241-246.
95. Nguyen TV, Sambrook PN, Eisman JA. Bone loss, physical activity, and weight change in elderly women: the Dubbo Osteoporosis Epidemiology Study. J Bone Miner Res. 1998;13(9):1458-1467.
96. Waugh EJ, Lam MA, Hawker GA, et al. Risk factors for low bone mass in healthy 40-60 year old women: a systematic review of the literature. Osteoporos Int. 2009;20(1):1-21.
97. Martyn-St James M, Carroll S. Meta-analysis of walking for preservation of bone mineral density in postmenopausal women. Bone. 2008;43(3):521-531.
98. Chien MY, Wu YT, Hsu AT, Yang RS, Lai JS. Efficacy of a 24-week aerobic exercise program for osteopenic postmenopausal women. Calcif Tissue Int. 2000;67(6):443-448.
99. Ma D, Wu L, He Z. Effects of walking on the preservation of bone mineral density in perimenopausal and postmenopausal women: a systematic review and meta-analysis. Menopause. 2013;20(11):1216-1226.
100. Bocalini DS, Serra AJ, dos Santos L, Murad N, Levy RF. Strength training preserves the bone mineral density of postmenopausal women without hormone replacement therapy. J Aging Health. 2009;21(3):519-527.
101. Howe TE, Shea B, Dawson LJ, et al. Exercise for preventing and treating osteoporosis in postmenopausal women. Cochrane Database Syst Rev. 2011(7):CD000333.
102. Ryan PJ, Blake GM, Fogelman I. Postmenopausal screening for osteopenia. Br J Rheumatol. 1992;31(12):823-828.
103. Grainge MJ, Coupland CA, Cliffe SJ, Chilvers CE, Hosking DJ. Cigarette smoking, alcohol and caffeine consumption, and bone mineral density in postmenopausal women. The Nottingham EPIC Study Group. Osteoporos Int. 1998;8(4):355-363.
104. Ward KD, Klesges RC. A meta-analysis of the effects of cigarette smoking on bone mineral density. Calcif Tissue Int. 2001;68(5):259-270.
105. Baheiraei A, Pocock NA, Eisman JA, Nguyen ND, Nguyen TV. Bone mineral density, body mass index and cigarette smoking among Iranian women: implications for prevention. Bmc Musculoskel Dis. 2005;6.
106. Johnell O. Risk factors for osteoporosis: An epidemiological overview. Medicographia. 2006;28(86):9-12.
107. Ganry O, Baudoin C, Fardellone P. Effect of alcohol intake on bone mineral density in elderly women: The EPIDOS Study. Epidemiologie de l''Osteoporose. Am J Epidemiol. 2000;151(8):773-780.
108. Hlaing TT, Compston JE. Biochemical markers of bone turnover - uses and limitations. Ann Clin Biochem. 2014;51(Pt 2):189-202.
109. Tsai KS, Pan WH, Hsu SH, et al. Sexual differences in bone markers and bone mineral density of normal Chinese. Calcif Tissue Int. 1996;59(6):454-460.
110. Magnusson P, Larsson L, Magnusson M, Davie MW, Sharp CA. Isoforms of bone alkaline phosphatase: characterization and origin in human trabecular and cortical bone. J Bone Miner Res. 1999;14(11):1926-1933.
111. Golub EE, Harrison G, Taylor AG, Camper S, Shapiro IM. The role of alkaline phosphatase in cartilage mineralization. Bone Miner. 1992;17(2):273-278.
112. Green S, Anstiss CL, Fishman WH. Automated differential isoenzyme analysis. II. The fractionation of serum alkaline phosphatases into "liver", "intestinal" and "other" components. Enzymologia. 1971;41(1):9-26.
113. Melton LJ, Khosla S, Atkinson EJ, O''Fallon WM, Riggs BL. Relationship of Bone Turnover to Bone Density and Fractures. J Bone Miner Res. 1997;12(7):1083-1091.
114. Civitelli R, Armamento-Villareal R, Napoli N. Bone turnover markers: understanding their value in clinical trials and clinical practice. Osteoporos Int. 2009;20(6):843-851.
115. van Straalen JP, Sanders E, Prummel MF, Sanders GT. Bone-alkaline phosphatase as indicator of bone formation. Clin Chim Acta. 1991;201(1-2):27-33.
116. Alpers DH, Goodwin CL, Young GP. Quantitation of human intestinal and liver/bone alkaline phosphatase in serum by rocket electroimmunoassay. Anal Biochem. 1984;140(1):129-137.
117. Woitge HW, Seibel MJ, Ziegler R. Comparison of total and bone-specific alkaline phosphatase in patients with nonskeletal disorder or metabolic bone diseases. Clin Chem. 1996;42(11):1796-1804.
118. Mukaiyama K, Kamimura M, Uchiyama S, Ikegami S, Nakamura Y, Kato H. Elevation of serum alkaline phosphatase (ALP) level in postmenopausal women is caused by high bone turnover. Aging Clin Exp Res. 2015;27(4):413-418.
119. King AB, Fiorentino DM. Medicare Payment Cuts For Osteoporosis Testing Reduced Use Despite Tests'' Benefit In Reducing Fractures. Health Aff (Project Hope). 2011;30(12):2362-2370.
120. Jaglal S, Hawker G, Croxford R, et al. Impact of a change in physician reimbursement on bone mineral density testing in Ontario, Canada: a population-based study. CMAJ Open. 2014;2(2):E45-50.
121. Richy F, Gourlay M, Ross PD, et al. Validation and comparative evaluation of the osteoporosis self-assessment tool (OST) in a Caucasian population from Belgium. QJM. 2004;97(1):39-46.
122. Nayak S, Edwards DL, Saleh AA, Greenspan SL. Systematic review and meta-analysis of the performance of clinical risk assessment instruments for screening for osteoporosis or low bone density. Osteoporos Int. 2015;26(5):1543-1554.
123. Koh LKH, Ben Sedrine W, Torralba TP, et al. A simple tool to identify Asian women at increased risk of osteoporosis. Osteoporos Int. 2001;12(8):699-705.
124. Cadarette SM, Jaglal SB, Kreiger N, McIssac WJ, Darlington GA, Tu JV. Development and validation of the Osteoporosis Risk Assessment Instrument to facilitate selection of women for bone densitometry. CMAJ. 2000;162(9):1289-1294.
125. Sedrine WB, Chevallier T, Zegels B, et al. Development and assessment of the Osteoporosis Index of Risk (OSIRIS) to facilitate selection of women for bone densitometry. Gynecol Endocrinol. 2002;16(3):245-250.
126. Lydick E, Cook K, Turpin J, Melton M, Stine R, Byrnes C. Development and validation of a simple questionnaire to facilitate identification of women likely to have low bone density. Am J Manag Care. 1998;4(1):37-48.
127. Hawker G, Mendel A, Lam MA, et al. A clinical decision rule to enhance targeted bone mineral density testing in healthy mid-life women. Osteoporos Int. 2012;23(7):1931-1938.
128. Demir B, Haberal A, Geyik P, et al. Identification of the risk factors for osteoporosis among postmenopausal women. Maturitas. 2008;60(3-4):253-256.
129. Jeon YK, Lee JG, Kim SS, et al. Association between bone mineral density and metabolic syndrome in pre- and postmenopausal women. Endocr J. 2011;58(2):87-93.
130. Sheng YH, Chen JH, Chiou JM, et al. Association of Renal Function and Menopausal Status with Bone Mineral Density in Middle-aged Women. Sci Rep. 2015;5:14956.
131. Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): the TRIPOD statement. Ann Intern Med. 2015;162(1):55-63.
132. Steyerberg EW, Vergouwe Y. Towards better clinical prediction models: seven steps for development and an ABCD for validation. Eur Heart J. 2014;35(29):1925-1931.
133. Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3(1):32-35.
134. Zweig MH, Campbell G. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem. 1993;39(4):561-577.
135. Molinaro AM, Simon R, Pfeiffer RM. Prediction error estimation: a comparison of resampling methods. Bioinformatics. 2005;21(15):3301-3307.
136. Pencina MJ, D''Agostino RB, Sr., Steyerberg EW. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med. 2011;30(1):11-21.
137. Pencina MJ, D''Agostino RB, Sr., D''Agostino RB, Jr., Vasan RS. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med. 2008;27(2):157-172.
138. Hsu SH, Tsai KS. Different age-related trends of bone and nonbone forms of alkaline phosphatase in Chinese men and women. Clin Chem. 1997;43(1):186-188.
139. Jarava C, Armas JR, Salgueira M, Palma A. Bone alkaline phosphatase isoenzyme in renal osteodystrophy. Nephrol Dial Transplant. 1996;3:43-46.
140. Tsai K, Twu S, Chieng P, Yang R, Lee T. Prevalence of vertebral fractures in chinese men and women in urban Taiwanese communities. Calcif Tissue Int. 1996;59(4):249-253.
141. Tang BM, Eslick GD, Nowson C, Smith C, Bensoussan A. Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: a meta-analysis. Lancet. 2007;370(9588):657-666.
142. Weaver CM, Alexander DD, Boushey CJ, et al. Calcium plus vitamin D supplementation and risk of fractures: an updated meta-analysis from the National Osteoporosis Foundation. Osteoporos Int. 2016;27(1):367-376.
143. Bischoff-Ferrari HA, Dawson-Hughes B, Baron JA, et al. Calcium intake and hip fracture risk in men and women: a meta-analysis of prospective cohort studies and randomized controlled trials. Am J Clin Nutr. 2007;86(6):1780-1790.
144. Tsiaras WG, Weinstock MA. Factors influencing vitamin D status. Acta Derm Venereol. 2011;91(2):115-124.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊