|
1.Ideker, T. and N.J. Krogan, Differential network biology. Molecular systems biology, 2012. 8(1): p. 565. 2.Sanchez-Mejias, A. and Y. Tay, Competing endogenous RNA networks: tying the essential knots for cancer biology and therapeutics. Journal of hematology & oncology, 2015. 8(1): p. 30. 3.Salmena, L., et al., A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell, 2011. 146(3): p. 353-358. 4.Le, T.D., et al., Computational methods for identifying miRNA sponge interactions. Briefings in bioinformatics, 2016: p. bbw042. 5.Wang, K., et al., Genome-wide identification of post-translational modulators of transcription factor activity in human B cells. Nature biotechnology, 2009. 27(9): p. 829-837. 6.Zhou, X., J. Liu, and W. Wang, Construction and investigation of breast-cancer-specific ceRNA network based on the mRNA and miRNA expression data. IET systems biology, 2014. 8(3): p. 96-103. 7.Xu, J., et al., The mRNA related ceRNA–ceRNA landscape and significance across 20 major cancer types. Nucleic acids research, 2015. 43(17): p. 8169-8182. 8.Shao, T., et al., Identification of module biomarkers from the dysregulated ceRNA–ceRNA interaction network in lung adenocarcinoma. Molecular Biosystems, 2015. 11(11): p. 3048-3058. 9.Chiu, Y.-C., et al., Analyzing differential regulatory networks modulated by continuous-state genomic features in glioblastoma multiforme. IEEE/ACM transactions on computational biology and bioinformatics, 2016. 10.Paci, P., T. Colombo, and L. Farina, Computational analysis identifies a sponge interaction network between long non-coding RNAs and messenger RNAs in human breast cancer. BMC systems biology, 2014. 8(1): p. 83. 11.Sumazin, P., et al., An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways in glioblastoma. Cell, 2011. 147(2): p. 370-381. 12.Bosia, C., A. Pagnani, and R. Zecchina, Modelling competing endogenous RNA networks. PLoS One, 2013. 8(6): p. e66609. 13.Ala, U., et al., Integrated transcriptional and competitive endogenous RNA networks are cross-regulated in permissive molecular environments. Proceedings of the National Academy of Sciences, 2013. 110(18): p. 7154-7159. 14.Figliuzzi, M., E. Marinari, and A. De Martino, MicroRNAs as a selective channel of communication between competing RNAs: a steady-state theory. Biophysical journal, 2013. 104(5): p. 1203-1213. 15.Olshen, A.B., et al., Circular binary segmentation for the analysis of array‐based DNA copy number data. Biostatistics, 2004. 5(4): p. 557-572. 16.Chou, C.-H., et al., miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic acids research, 2015. 44(D1): p. D239-D247. 17.Xiao, F., et al., miRecords: an integrated resource for microRNA–target interactions. Nucleic acids research, 2008. 37(suppl_1): p. D105-D110. 18.Paraskevopoulou, M.D., et al., DIANA-microT web server v5. 0: service integration into miRNA functional analysis workflows. Nucleic acids research, 2013. 41(W1): p. W169-W173. 19.Gaidatzis, D., et al., Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC bioinformatics, 2007. 8(1): p. 69. 20.Wang, X., miRDB: a microRNA target prediction and functional annotation database with a wiki interface. Rna, 2008. 14(6): p. 1012-1017. 21.John, B., et al., Human microRNA targets. PLoS biology, 2004. 2(11): p. e363. 22.Kertesz, M., et al., The role of site accessibility in microRNA target recognition. Nature genetics, 2007. 39(10): p. 1278-1284. 23.Miranda, K.C., et al., A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell, 2006. 126(6): p. 1203-1217. 24.Lewis, B.P., C.B. Burge, and D.P. Bartel, Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. cell, 2005. 120(1): p. 15-20. 25.Sen, A. and M.S. Srivastava, On tests for detecting change in mean. The Annals of statistics, 1975: p. 98-108. 26.Linn, S.C., et al., Gene expression patterns and gene copy number changes in dermatofibrosarcoma protuberans. The American journal of pathology, 2003. 163(6): p. 2383-2395. 27.Zhu, C., et al., MicroRNA-183 promotes migration and invasion of CD133+/CD326+ lung adenocarcinoma initiating cells via PTPN4 inhibition. Tumor Biology, 2016. 37(8): p. 11289-11297. 28.Chen, Y., et al., MiR-142-3p Overexpression Increases Chemo-Sensitivity of NSCLC by Inhibiting HMGB1-Mediated Autophagy. Cellular Physiology and Biochemistry, 2017. 41(4): p. 1370-1382. 29.Chuang, J.C., et al., ERBB2-Mutated Metastatic Non–Small Cell Lung Cancer: Response and Resistance to Targeted Therapies. Journal of Thoracic Oncology, 2017. 12(5): p. 833-842. 30.Arcila, M.E., et al., Prevalence, clinicopathologic associations, and molecular spectrum of ERBB2 (HER2) tyrosine kinase mutations in lung adenocarcinomas. Clinical Cancer Research, 2012. 31.Ferone, G., et al., SOX2 is the determining oncogenic switch in promoting lung squamous cell carcinoma from different cells of origin. Cancer Cell, 2016. 30(4): p. 519-532. 32.Devarakonda, S., D. Morgensztern, and R. Govindan, Clinical applications of The Cancer Genome Atlas project (TCGA) for squamous cell lung carcinoma. Oncology, 2013. 27(9): p. 899-899. 33.Zhao, B., et al., MicroRNA let-7c inhibits migration and invasion of human non-small cell lung cancer by targeting ITGB3 and MAP4K3. Cancer letters, 2014. 342(1): p. 43-51. 34.Kawano, O., et al., PIK3CA mutation status in Japanese lung cancer patients. Lung cancer, 2006. 54(2): p. 209-215. 35.Samuels, Y., et al., High frequency of mutations of the PIK3CA gene in human cancers. Science, 2004. 304(5670): p. 554-554. 36.Wang, L., et al., PIK3CA mutations frequently coexist with EGFR/KRAS mutations in non-small cell lung cancer and suggest poor prognosis in EGFR/KRAS wildtype subgroup. PloS one, 2014. 9(2): p. e88291.
|