跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/16 21:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳雅文
研究生(外文):Christine Chen
論文名稱:將疾病歸因於多重途徑:以因果圓派建模之方法
論文名稱(外文):Attributing Diseases to Multiple Pathways: a Causal-Pie Modeling Approach
指導教授:李文宗李文宗引用關係
口試日期:2017-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:流行病學與預防醫學研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:31
中文關鍵詞:流行病學方法歸因罹病途徑因果圓派模式
外文關鍵詞:epidemiologic methodsattributiondisease pathwayscausal-pie model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:224
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
探究暴露和疾病的關係是流行病學的宗旨。研究者有時會對由「果」(疾病)溯「因」(暴露)有興趣,即所謂的「歸因」。然而,目前的歸因方法未能考慮罹病的途徑。本研究中,我們以因果圓派模式為基礎,提出一個方法將疾病歸因於多重罹病途徑。我們針對三種不同的目的進行疾病的歸因,分別是罹病途徑的歸因、介入計畫的評估和侵權行為責任的分配。我們以一範例資料呈現本研究方法,並附上簡單易用的程式。我們推薦本研究方法成為流行病學研究分析的常規方法。
Characterizing exposure-disease associations is the central tenet of epidemiology. Researchers may want to evaluate exposure-disease associations by assessing whether “outcomes” (diseases) are induced by “causes” (exposures), which is the so-called “attribution”. However, current methods for disease attribution did not take disease pathways into consideration. In this paper, we propose a method to attribute diseases to multiple pathways based on the causal-pie model. The proposed method can be used to attribute diseases to pathways, to evaluate the intervention strategies and to apportion responsibility in tort-law liability issues. Our method is illustrated by an example data and an easy-to-use code is provided. We recommend the present method for routine use during the analysis of the epidemiologic data.
口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
圖目錄 vi
表目錄 vii
第一章 前言 1
第二章 方法 3
2.1中介變數和疾病的發生 3
2.2疾病歸因 4
第三章 範例 8
第四章 討論 10
參考文獻 18
附錄 21
1. Rothman KJ, Greenland S, Lash TL, eds. Modern epidemiology. 3rd ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2008.
2. Bollen KA. Structural equations with latent variables. New York, NY: Wiley; 1989.
3. Kaplan D. Structural equation modeling: foundations and extensions. 2nd ed. Thousand Oaks, CA: Sage; 2009.
4. Kline RB. Principles and practice of structural equation modeling. 4th ed. New York, NY: Guilford; 2015.
5. Robins JM, Greenland S. Identifiability and exchangeability for direct and indirect effects. Epidemiology. 1992;3:143-155.
6. Pearl J. Direct and indirect effects. in Proceedings of the seventeenth conference on uncertainty in artificial intelligence. 2001. Morgan Kaufmann Publishers Inc.
7. VanderWeele TJ. A unification of mediation and interaction: a 4-way decomposition. Epidemiology. 2014;25:749-761.
8. Cole P, MacMahon B. Attributable risk percent in case-control studies. Brit J prev soc Med. 1971;25:242-244.
9. Miettinen OS. Proportion of disease caused or prevented by a given exposure, trait or intervention. Am J Epidemiol. 1974;99:325-332.
10. Walter S. The estimation and interpretation of attributable risk in health research. Biometrics. 1976;32:829-849.
11. Bruzzi P, Green SB, Byar DP, Brinton LA, Schairer C. Estimating the population attributable risk for multiple risk factors using case-control data. Am J Epidemiol. 1985;122:904-914.
12. Benichou J. A review of adjusted estimators of attributable risk. Stat Methods Med Res. 2001;10:195-216.
13. Liao SF, Lee WC. Weighing the causal pies in case-control studies. Ann Epidemiol. 2010;20:568-573.
14. Lee WC. Completion potentials of sufficient component causes. Epidemiology. 2012;23:446-453.
15. Eide GE, Gefeller O. Sequential and average attributable fractions as aids in the selection of preventive strategies. J Clin Epidemiol. 1995;48:645-655.
16. Land M, Gefeller O. A game‐theoretic approach to partitioning attributable risks in epidemiology. Biom J. 1997;39:777-792.
17. Land M, Vogel C, Gefeller O. Partitioning methods for multifactorial risk attribution. Stat Methods Med Res. 2001;10:217-230.
18. McElduff P, Attia J, Ewald B, Cockburn J, Heller R. Estimating the contribution of individual risk factors to disease in a person with more than one risk factor. J Clin Epidemiol. 2002;55:588-592.
19. Llorca J, Delgado-Rodrı́guez M. A new way to estimate the contribution of a risk factor in populations avoided nonadditivity. J Clin Epidemiol. 2004;57:479-483.
20. Rabe C, Lehnert-Batar A, Gefeller O. Generalized approaches to partitioning the attributable risk of interacting risk factors can remedy existing pitfalls. J Clin Epidemiol. 2007;60:461-468.
21. Rothman KJ. Causes. Am J Epidemiol. 1976;104:587-592.
22. Hafeman DM. A sufficient cause based approach to the assessment of mediation. Eur J Epidemiol. 2008;23:711-721.
23. Gatto NM, Campbell UB. Redundant causation from a sufficient cause perspective. Epidemiol Persp Innov. 2010;7:5.
24. Suzuki E, Yamamoto E, Tsuda T. On the relations between excess fraction, attributable fraction, and etiologic fraction. Am J Epidemiol. 2012;175:567-575.
25. Lee WC. Assessing causal mechanistic interactions: a peril ratio index of synergy based on multiplicativity. PLOS ONE. 2013;8:e67424.
26. Richiardi L, Bellocco R, Zugna D. Mediation analysis in epidemiology: methods, interpretation and bias. Int J Epidemiol. 2013;42:1511-1519.
27. Robins JM, Greenland S. Estimability and estimation of excess and etiologic fractions. Stat Med. 1989;8:845-859.
28. Vansteelandt S, VanderWeele TJ. Natural direct and indirect effects on the exposed: effect decomposition under weaker assumptions. Biometrics. 2012;68:1019-1027.
29. Tchetgen EJT, VanderWeele TJ. Identification of natural direct effects when a confounder of the mediator is directly affected by exposure. Epidemiology. 2014;25:282-291.
30. VanderWeele TJ, Vansteelandt S, Robins JM. Effect decomposition in the presence of an exposure-induced mediator-outcome confounder. Epidemiology. 2014;25:300-306.
31. Kalbfleisch J, Lawless JF. The analysis of panel data under a Markov assumption. J Am Stat Assoc. 1985;80:863-871.
32. Kay R. A Markov model for analysing cancer markers and disease states in survival studies. Biometrics. 1986;42:855-865.
33. Jackson CH. Multi-state models for panel data: the msm package for R. J Stat Softw 2011;38:1-28.
34. Welton NJ, Ades A. Estimation of Markov chain transition probabilities and rates from fully and partially observed data: uncertainty propagation, evidence synthesis, and model calibration. Med Decis Making. 2005;25:633-645.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top