跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2024/12/09 14:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊開文
研究生(外文):Kai-Wen Chuang
論文名稱:肢帶型肌肉失養症所引起之心臟功能異常與NRIP(細胞核受體交互作用蛋白質)異常調控的關係
論文名稱(外文):Dysregulation of Nuclear Receptor Interaction Protein (NRIP) Contributes to Cardiac Dysfunction Associated with Limb-Girdle Muscular Dystrophy
指導教授:楊鎧鍵
指導教授(外文):Kai-Chien Yang
口試日期:2017-07-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:藥理學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:74
中文關鍵詞:心臟收縮異常NRIP(細胞核受體交互作用蛋白)粒線體功能異常粒線體活性氧物種肢帶型肌肉失養症
外文關鍵詞:limb girdle muscular dystrophynuclear receptor interaction proteinreactive oxygen speciesmitochondrial dysfunctionfatty acid oxidation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:254
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
肢帶型肌肉失養症 (Limb Girdle Muscular Dystrophy, LGMD)是一群退化性肌肉疾病的統稱,通常會有四肢骨骼肌無力的情形,依據不同的疾病亞型影響不同的肌肉組織。在心臟部分,此類型的肌肉失養症可能會造成收縮異常抑或是心源性猝死(sudden cardiac death)。然而經由LGMD所引起心肌異常的分子機轉並不為人所知。細胞核受體交互作用蛋白質(Nuclear Receptor Interaction Protein, NRIP, Dcaf6, IQWD1)是一個鈣離子依賴型的鈣調蛋白結合蛋白(calcium-dependent calmodulin-binding protein),在LGMD患者的骨骼肌當中表現量下降;而在NRIP基因剃除小鼠(Nrip-/-)當中,也發現他們有和LGMD患者相同的肌肉功能低落(muscle weakness)的現象。然而,目前LGMD所引起的心臟功能異常以及其和NRIP的關係機轉並不清楚。
  因此,本研究利用NRIP橫紋肌專一性基因剔除小鼠(MCK-Cretg/+; Nripfl/fx)針對橫紋肌如骨骼肌、心肌等做基因剔除,想要探討:(1) NRIP缺失對於心臟收縮功能的影響以及之間的分子機轉;(2) 未來NRIP是否能作為治療LGMD所引起之心臟疾病的目標基因。
  NRIP在橫紋肌的專一性剔除曾被報導和骨骼肌的收縮功能有密切相關,在我們的研究中,發現NRIP對於心臟亦有相似的影響,MCK-Cretg/+; Nripfl/fx相對於正常的wild-type老鼠心臟收縮功能較差(左心室射血分數[LVEF] 43.447 ± 1.660% vs 57.844 ± 5.344% in MCK-Cretg/+; Nripfl/fx and WT, respectively, P<0.01.) 測量自MCK-Cretg/+; Nripfl/fx左心室分離心肌細胞之收縮強度(contractility)、鈣離子流動速率(calcium transient)以及肌漿網內含鈣量(sarcoplasmic reticulum calcium store)和wild-type小鼠之細胞相比都有明顯的下降。然而,我們利用次世代高核酸定序(Next generation sequencing)發現調控鈣離子之相關基因,如:L-type Ca2+ channel以及SERCA2a,在NRIP缺失與WT之間的表現量並沒有顯著差異。由於心臟收縮功能與ATP的產生有密切相關,又粒線體為細胞中主要的能量產生胞器,我們利用穿透式電子顯微鏡的技術,觀察心肌上的粒線體,發現NRIP缺失小鼠有粒線體結構上的異常,尤以cristae密度下降最為明顯;我們研究也發現,粒線體中的活性氧物種(Reactive oxygen species, ROS)在NRIP缺失時上升且NAD+/NADH 比例下降。在HL1心肌細胞中敲弱 (knockdown) NRIP亦會導致粒線體中的ROS增加、呼吸鏈功能異常且ATP產量下降;MCK-Cretg/+; Nripfl/fx的心肌細胞當中也有相同的結果。此外,我們研究也指出MCK-Cretg/+; Nripfl/fx會影響脂肪酸氧化(fatty acid oxidation)相關基因,並且使得脂肪酸氧化作用增加,導致NAD+及NADH含量失衡。我們也發現,在MCK-Cretg/+; Nripfl/fx小鼠中給予粒線體ROS抑制劑-mitoTEMPO可減少粒線體中的ROS,且有效的回復心臟收縮功能(左心室射血分數[LVEF] 50.299 ± 0.704 % vs 44.362 ± 1.903% in mitoTEMPO treated MCK-Cretg/+; Nripfl/fx and phosphate buffer saline [PBS] treated MCK-Cretg/+; Nripfl/fx, respectively, P<0.05)。另外,利用NAD+的前驅物-菸鹼酸(nicotinic acid)亦能有效的在MCK-Cretg/+; Nripfl/fx小鼠中提升其心臟功能(左心室射血分數 [LVEF] 55.887 ± 1.981 % vs 45.227 ± 1.672 % in nicotinic acid treated MCK-Cretg/+; Nripfl/fx and phosphate buffer saline [PBS] treated MCK-Cretg/+; Nripfl/fx, respectively, P<0.05)。
  因此本研究發現NRIP缺失會導致粒線體cristae密度下降、粒線體中的ROS上升,造成粒線體氧化壓力上升、呼吸鏈功能異常、ATP產量下降,最終使得心臟收縮能力下降。我們的結果推測粒線體的ROS上升是由於NAD+/NADH比例下降,且造成此比例下降的主要原因為脂肪酸氧化過程增加,使NAD+、NADH含量失衡,最終造成粒線體氧化壓力上升、ATP產量下降,導致心臟功能受損。針對NRIP在心臟方面的相關研究,對於LGMD所引起的心臟功能異常病人能提供一個新的治療標的。
Background: Limb-girdle muscular dystrophy (LGMD), a muscular dystrophy that predominantly affects proximal limb muscles, frequently involves the heart, leading to contractile dysfunction or sudden cardiac death. The molecular basis underlying LGMD-associated myocardial dysfunction, however, remains elusive. Nuclear receptor interaction protein (NRIP), a Ca2+-dependent calmodulin-binding protein also known as DCAF6 or IQWD1, is downregulated in the skeletal muscles of patients with LGMD. Mice with targeted deletion of NRIP (Nrip-/-) were found to have muscle weakness that mimics LGMD. We sought to test mechanistically the hypothesis that reduced NRIP expression could contribute to cardiac dysfunction observed with LGMD.
Purpose: To investigate the molecular mechanisms via which NRIP deficiency contributes to cardiac dysfunction and to further explore potential therapeutic approach against NRIP deficiency-induced cardiac dysfunction and LGMD-related cardiomyopathy.
Methods and Results: Striated muscle-specific Nrip knockout mice (MCK-Cretg/+; Nripfl/fx) were found to have markedly reduced cardiac contractile function, compared to WT control (left ventricular ejection fraction [LVEF] 43.447 ± 1.660% vs 57.844 ± 5.344 % in MCK-Cretg/+; Nripfl/fx and WT, respectively, P<0.01). Isolated MCK-Cretg/+; Nripfl/fx LV myocytes showed significantly reduced contractility, peak Ca2+ transient amplitudes, and rate of Ca2+ transient decay, compared with WT LV cells. RNA sequencing did not reveal significant differences in the expression levels of Ca2+ handling proteins such as L-type Ca2+ channels and SERCA2a, between MCK-Cretg/+; Nripfl/fx and WT LV. Electron microscopy discovered changes in mitochondrial morphology with reduced cristae density in MCK-Cretg/+; Nripfl/fx LV, which was accompanied with increased mitochondrial ROS levels and reduced NAD+/NADH ratio. In addition, fatty acid oxidation associated genes were increased in MCK-Cretg/+; Nripfl/fx mice, which may result in an imbalance of the amount of NADH and NAD+. Knocking down NRIP in mouse HL1 cardiomyocytes led to increased mitochondrial ROS, impaired mitochondrial respiratory function and reduced ATP production, which were also observed in isolated LV myocytes from MCK-Cretg/+; Nripfl/fx mice. Treatment with mitochondria-directed antioxidant mitoTEMPO significantly attenuated the contractile dysfunction observed in MCK-Cretg/+; Nripfl/fx mice (left ventricular ejection fraction [LVEF] 50.299 ± 0.704 % vs 44.362 ± 1.903% in mitoTEMPO treated MCK-Cretg/+; Nripfl/fx and phosphate buffer saline [PBS] treated MCK-Cretg/+; Nripfl/fx, respectively, P<0.05). Treatment with nicotinic acid, a NAD+ precursor, also significantly enhanced the contractile function observed in MCK-Cretg/+; Nripfl/fx mice (left ventricular ejection fraction [LVEF] 55.887 ± 1.981 % vs 45.227 ± 1.672 % in nicotinic acid treated MCK-Cretg/+; Nripfl/fx and phosphate buffer saline [PBS] treated MCK-Cretg/+; Nripfl/fx mice, respectively, P<0.05) through reversed the imbalance of NADH and NAD+.
Conclusion: NRIP depletion leads to impaired cardiac contractility, Ca2+ homeostasis and mitochondrial function as a result of increased mitochondrial oxidative stress secondary to aberrant NAD+/NADH ratio which was caused by the increment of fatty acid oxidation associated genes. Targeting NRIP and mitochondrial oxidative stress could be a potential therapeutic approach to treat or prevent cardiac dysfunction associated with LGMD.
目錄
致謝 III
中文摘要 IV
英文摘要 VI
目錄 IX
表目錄 XIII
CHAPTER 1. INTRODUCTION 1
1.1 LIMB-GIRDLE MUSCULAR DYSTROPHY (LGMD): 1
1.2 NUCLEAR RECEPTOR INTERACTION PROTEIN (NRIP) 1
1.3 CALCIUM HOMEOSTASIS IN CARDIOMYOCYTES 2
1.4 ADENOSINE TRIPHOSPHATE (ATP) IS REQUIRED FOR SARCOMERE CONTRACTION IN CARDIOMYOCYTES 3
1.5 MITOCHONDRIA, THE ENERGY PRODUCER, PRODUCE ATP THROUGH ELECTRON TRANSPORT CHAIN (ETC) 4
1.5.1 IMPAIRED MITOCHONDRIAL FUNCTION CONTRIBUTES TO CARDIOVASCULAR DISEASES 5
1.5.2 THE ABERRANT OF MITOCHONDRIAL DYNAMICS, INCREASING OF MITOCHONDRIAL REACTIVE OXYGEN SPECIES (ROS) INTERFERE MITOCHONDRIAL FUNCTION 6
1.6 NADH/NAD+ RATIO AND ROS PRODUCTION IN MITOCHONDRIA 6
1.7 AIM OF THE STUDY 8
CHAPTER 2. MATERIAL AND METHODS 9
2.1 ECHOCARDIOGRAPHY 9
2.2 ISOLATION OF ADULT MICE CARDIOMYOCYTE 9
2.3 CALCIUM TRANSIENT AND CONTRACTILITY MEASUREMENT 10
2.4 HL-1 CARDIOMYOCYTE CELL CULTURE 11
2.4.1 ESTABLISH NRIP KNOCKDOWN STABLE LINE IN HL-1 CELLS 11
2.5 RNA EXTRACTION AND QUANTITATIVE REAL-TIME POLYMERASE CHAIN REACTION 12
2.6 PROTEIN EXTRACTION AND WESTERN BLOT 12
2.7 RNASEQ LIBRARY PREPARATION 13
2.7.1 RNA SEQUENCING DATA PROCESSING 14
2.8 TRANSMISSION ELECTRON MICROSCOPY 14
2.9 MEASUREMENT OF MITOCHONDRIAL FUNCTION IN ADULT CARDIOMYOCYTE WITH SEAHORSE XF24 EXTRACELLULAR FLUX ANALYZER 15
2.10 MEASUREMENT OF MITOCHONDRIAL ROS WITH MITO SOX RED STAINING IN NRIP CONDITIONAL KNOCKOUT MICE DERIVED CARDIOMYOCYTE 15
2.11 MEASUREMENT OF QUANTIFICATION OF NAD+, NADH AND NAD+/NADH RATIO 16
2.12 MEASUREMENT OF QUANTIFICATION OF ATP LEVELS 16
2.13 MASSON’S TRICHROME STAINING 16
2.14 MITO-TEMPO AND NICOTINIC ACID TREATMENT WAS USED TO DECREASE MITOCHONDRIAL ROS AND INCREASE NAD+/NADH RATIO RESPECTIVELY 17
CHAPTER 3. RESULTS 18
3.1 NRIP WAS DOWNREGULATED IN THE MYOCARDIUM FROM BOTH HF PATIENTS AND MOUSE FAILING HEART INDUCED BY  AGONIST 18
3.2 ECHOCARDIOGRAPHY REVEALED IMPAIRED CARDIAC FUNCTION IN NRIP CONDITIONAL KNOCKOUT MICE 19
3.3 CONTRACTILITY, CALCIUM TRANSIENT AND SARCOPLASMIC RETICULUM (SR) CALCIUM STORE WERE DECREASED IN LV MYOCYTES FROM MCK-CRETG/+; NRIPFL/FX MICE 19
3.4 THE DISRUPTION OF CALCIUM HOMEOSTASIS IN MCK-CRETG/+; NRIPFL/FX MOUSE CM WAS NOT ASSOCIATED WITH ABERRANT EXPRESSION OF GENES/PROTEINS THAT ARE INVOLVED IN CM CALCIUM HANDLING 20
3.5 NRIP DEFICIENCY LEADS TO REDUCED CELLULAR RESPIRATION AND ATP GENERATION IN MOUSE CARDIOMYOCYTE CELL LINE (HL-1) AND IN ISOLATED ADULT CARDIOMYOCYTES. 21
3.6 MITOCHONDRIAL FATTY ACID OXIDATION WAS DISRUPTED BY THE DECREASE OF NRIP AND RESULT IN INCREASING OF MITOCHONDRIAL ROS AND DECREASING OF NAD+/NADH RATIO 23
3.7 NRIP DEFICIENCY-INDUCED CARDIAC DYSFUNCTION COULD BE REVERSED WITH MITOTEMPO AND NICOTINIC ACID TREATMENT THROUGH IMPROVED MITOCHONDRIAL FUNCTION 25
CHAPTER 4. DISCUSSION 28
4.1 THE DISRUPTION OF CALCIUM HOMEOSTASIS CAUSED BY NRIP DEFICIENCY WAS INDEPENDENT OF CA2+/CALMODULIN-DEPENDENT PROTEIN KINASE II (CAMKII) ACTIVATION AND CALCIUM HOMEOSTASIS ASSOCIATED FACTORS’ GENE EXPRESSION 28
4.2 STRIATED MUSCLE-SPECIFIC DELETION OF NRIP LEADS TO CARDIOMYOPATHY THROUGH MITOCHONDRIAL DYSFUNCTION RATHER THAN CELL APOPTOSIS, CARDIAC FIBROSIS AND HYPERTROPHY SIGNALING PATHWAY 30
4.3 MITOCHONDRIAL FATTY ACID OXIDATION MAY CONTRIBUTE TO IMPAIRED MITOCHONDRIAL FUNCTION THROUGH INCREASING OF NADH 31
4.4 NUCLEAR RECEPTOR INTERACTION PROTEIN (NRIP) COULD BE THE THERAPEUTIC TARGET OF LIMB GIRDLE MUSCULAR DYSTROPHY (LGMD) INDUCED CARDIOMYOPATHY 33
REFERENCE 36
FIGURES AND TABLES 39
APPENDIX 62

圖目錄
FIGURE I. CALCIUM HOMEOSTASIS IN CARDIOMYOCYTE 3
FIGURE II. ELECTRON TRANSPORT CHAIN (ETC) IS THE MAIN PROCESS TO GENERATE ATP IN MITOCHONDRIA 5
FIGURE III. THE RELATIONSHIP BETWEEN THE NADH/NAD+ RATIO AND ROS FORMATION 7
FIGURE 1. NRIP WAS DOWNREGULATED IN HEART FAILURE PATIENTS AND HEART FAILING MICE MODEL 40
FIGURE 2. ECHOCARDIOGRAPHY REVEALED A SIGNIFICANTLY DECREASED IN CARDIAC FUNCTION OF MCK-CRETG/+; NRIPFL/FX MICE 42
FIGURE 3. DEFICIENCY OF NRIP IN CARDIAC MUSCLE LEAD TO IMPAIRED CARDIAC CONTRACTILITY WITHOUT CAUSING CARDIAC HYPERTROPHY, DILATION OR FIBROSIS 45
FIGURE 4. CALCIUM HOMEOSTASIS IN ISOLATED CARDIOMYOCYTES WAS DISRUPTED WHEN ABSENCE OF NRIP 46
FIGURE 5. THE CARDIAC CONTRACTILE DYSFUNCTION WAS NOT CAUSED BY DYSREGULATION OF CALCIUM HOMEOSTASIS, FIBROSIS AND CARDIAC HYPERTROPHY 49
FIGURE 6. NRIP DEFICIENCY LED TO MITOCHONDRIAL MORPHOLOGICAL CHANGED AND DYSFUNCTION 50
FIGURE 7. THE DEFICIENCY OF NRIP DISRUPTS MITOCHONDRIAL FUNCTION BY INCREASING ROS INSTEAD OF MITOCHONDRIAL DYNAMICS 52
FIGURE 8. THE INCREASED NADH LEVEL AND NADH/NAD+ RATIO OBSERVED IN NRIP-DEFICIENT CM IS LIKELY ATTRIBUTED TO INCREASED FATTY ACID OXIDATION ACTIVITY 54
FIGURE 9. THE CARDIAC CONTRACTILITY DYSFUNCTION FOUND IN MCK-CRETG/+; NRIPFL/FX MICE WOULD BE REVERSED AFTER MITOTEMPO (MITO) TREATMENT 57
FIGURE 10. THE CARDIAC CONTRACTILITY DYSFUNCTION FOUND IN MCK-CRETG/+; NRIPFL/FX MICE WOULD BE PARTIALLY REVERSED AFTER NICOTINIC ACID TREATMENT. 61
FIGURE S 1. GENERATION OF NRIP-KNOCKOUT MICE 67
FIGURE S 2. NEXT GENERATION RNA SEQUENCING OF WILD-TYPE AND MCK-CRETG/+; NRIPFL/FX MICE HEART 68
FIGURE S 3. NRIP DEFICIENCY DID NOT HAVE ANY EFFECT ON CARDIAC HYPERTROPHY IN 35 WEEK-OLD AGED MICE 68
FIGURE S 4. THE AMOUNT OF MITOCHONDRIA IN WILD-TYPE AND MCK-CRETG/+; NRIPFL/FX MICE REMAINED THE SAME 69
FIGURE S 5. MITOCHONDRIAL ROS WAS INDEPENDENT TO THE EXPRESSION OF NOX4 AND MNSOD2 IN BOTH KNOCKDOWN HL1 CELL AND MCK-CRETG/+; NRIPFL/FX MICE HEART 70
FIGURE S 6: HEART FAILURE MAKERS, ATRIAL NATRIURETIC FACTOR (ANF) AND CONNEXIN 43 (CX43), IN THEIR TRANSCRIPT LEVEL, THERE WAS NO DIFFERENCE BETWEEN MCK-CRETG/+; NRIPFL/FX AND WILD-TYPE 71
FIGURE S 7: NRIP DEFICIENCY DID NOT DISRUPT THE ACTIVATION OF NFAT AND PHOSPHORYLATION OF CAMKII. 71
FIGURE S 8: THERE WERE SOME CALCIUM HOMEOSTASIS ASSOCIATED GENES WERE DOWN/UP REGULATION IN MCK-CRETG/+; NRIPFL/FX MICE HEART FROM RNA SEQUENCING RESULTS, HOWEVER, WE DID NOT FURTHER EXPLORE THEIR RELATED PATHWAYS DUE TO THEIR UNCHANGED PROTEIN LEVEL 72
FIGURE S 9: NRIP DEFICIENCY DID NOT DISRUPT CELL SURVIVAL AND FIBROSIS ASSOCIATED PATHWAY 73
FIGURE S 10: THE ACTIVITY OF MITOCHONDRIA COMPLEX II (SDH STAINING) AND IV (COX STAINING) REMAINED THE SAME IN WILD-TYPE AND MCK-CRETG/+; NRIPFL/FX MICE HEART 74
Reference

1.Topaloglu, H., Evidence-based guideline summary: Diagnosis and treatment of limb-girdle and distal dystrophies: Report of the Guideline Development Subcommittee of the American Academy of Neurology and the Practice Issues Review Panel of the American Association of Neuromuscular & Electrodiagnostic Medicine. Neurology, 2015. 84(16): p. 1720.
2.Association, T.M.D., Limb-Girdle Muscular Dystrophy (LGMD).
3.Chang, S.W., et al., NRIP, a novel calmodulin binding protein, activates calcineurin to dephosphorylate human papillomavirus E2 protein. J Virol, 2011. 85(13): p. 6750-63.
4.Chiang, T.A., et al., Important prognostic factors for the long-term survival of lung cancer subjects in Taiwan. BMC Cancer, 2008. 8: p. 324.
5.Han, C.P., et al., Nuclear Receptor Interaction Protein (NRIP) expression assay using human tissue microarray and immunohistochemistry technology confirming nuclear localization. J Exp Clin Cancer Res, 2008. 27: p. 25.
6.Chen, H.H., et al., NRIP/DCAF6 stabilizes the androgen receptor protein by displacing DDB2 from the CUL4A-DDB1 E3 ligase complex in prostate cancer. Oncotarget, 2017. 8(13): p. 21501-21515.
7.Chen, P.H., et al., Nuclear receptor interaction protein, a coactivator of androgen receptors (AR), is regulated by AR and Sp1 to feed forward and activate its own gene expression through AR protein stability. Nucleic Acids Res, 2008. 36(1): p. 51-66.
8.Tsai, T.C., et al., NRIP, a novel nuclear receptor interaction protein, enhances the transcriptional activity of nuclear receptors. J Biol Chem, 2005. 280(20): p. 20000-9.
9.Chen, H.H., et al., NRIP is newly identified as a Z-disc protein, activating calmodulin signaling for skeletal muscle contraction and regeneration. J Cell Sci, 2015. 128(22): p. 4196-209.
10.Ehret, G.B., et al., Follow-up of a major linkage peak on chromosome 1 reveals suggestive QTLs associated with essential hypertension: GenNet study. Eur J Hum Genet, 2009. 17(12): p. 1650-7.
11.Knollmann, B.C. and D.M. Roden, A genetic framework for improving arrhythmia therapy. Nature, 2008. 451(7181): p. 929-36.
12.Sons, J.W., Principles of anatomy and physiology. 2006.
13.Dai, D.F., P.S. Rabinovitch, and Z. Ungvari, Mitochondria and cardiovascular aging. Circ Res, 2012. 110(8): p. 1109-24.
14.Chapter 24: Phosphorylation. 1999.
15.Pernas, L. and L. Scorrano, Mito-Morphosis: Mitochondrial Fusion, Fission, and Cristae Remodeling as Key Mediators of Cellular Function. Annu Rev Physiol, 2016. 78: p. 505-31.
16.Verma, S.K., V.N. Garikipati, and R. Kishore, Mitochondrial dysfunction and its impact on diabetic heart. Biochim Biophys Acta, 2016.
17.Sabbah, H.N., Targeting mitochondrial dysfunction in the treatment of heart failure. Expert Rev Cardiovasc Ther, 2016. 14(12): p. 1305-1313.
18.Boland, M.L., A.H. Chourasia, and K.F. Macleod, Mitochondrial dysfunction in cancer. Front Oncol, 2013. 3: p. 292.
19.Adam-Vizi, V. and C. Chinopoulos, Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci, 2006. 27(12): p. 639-45.
20.Zhang, Y., et al., Differential expression profiling between the relative normal and dystrophic muscle tissues from the same LGMD patient. J Transl Med, 2006. 4: p. 53.
21.Wang, Y.Y., et al., Loss of SLC9A3 decreases CFTR protein and causes obstructed azoospermia in mice. PLoS Genet, 2017. 13(4): p. e1006715.
22.Readnower, R.D., et al., Standardized bioenergetic profiling of adult mouse cardiomyocytes. Physiol Genomics, 2012. 44(24): p. 1208-13.
23.Schaper, J., E. Meiser, and G. Stammler, Ultrastructural morphometric analysis of myocardium from dogs, rats, hamsters, mice, and from human hearts. Circ Res, 1985. 56(3): p. 377-91.
24.Geoffrey S. Pitt, S.O.M., Calmodulin and CaMKII as Ca2+ Switches for Cardiac Ion Channels. 2014: p. 189-195.
25.Rokita, A.G. and M.E. Anderson, New therapeutic targets in cardiology: arrhythmias and Ca2+/calmodulin-dependent kinase II (CaMKII). Circulation, 2012. 126(17): p. 2125-39.
26.Zarain-Herzberg, A., R. Estrada-Aviles, and J. Fragoso-Medina, Regulation of sarco(endo)plasmic reticulum Ca2+-ATPase and calsequestrin gene expression in the heart. Can J Physiol Pharmacol, 2012. 90(8): p. 1017-28.
27.Donald M. Bers, P.D.a.E.G., Ph.D., CaMKII Regulation of Cardiac Ion Channels. J Cardiovasc Pharmacol, 2009: p. 180-187.
28.Tilley, D.G., G protein-dependent and G protein-independent signaling pathways and their impact on cardiac function. Circ Res, 2011. 109(2): p. 217-30.
29.Westenbrink, B.D., et al., The promise of CaMKII inhibition for heart disease: preventing heart failure and arrhythmias. Expert Opin Ther Targets, 2013. 17(8): p. 889-903.
30.Azevedo, P.S., et al., Cardiac Remodeling: Concepts, Clinical Impact, Pathophysiological Mechanisms and Pharmacologic Treatment. Arq Bras Cardiol, 2016. 106(1): p. 62-9.
31.Burchfield, J.S., M. Xie, and J.A. Hill, Pathological ventricular remodeling: mechanisms: part 1 of 2. Circulation, 2013. 128(4): p. 388-400.
32.Mukherjee, S., et al., SOD2, the principal scavenger of mitochondrial superoxide, is dispensable for embryogenesis and imaginal tissue development but essential for adult survival. Fly (Austin), 2011. 5(1): p. 39-46.
33.Ago, T., et al., Upregulation of Nox4 by hypertrophic stimuli promotes apoptosis and mitochondrial dysfunction in cardiac myocytes. Circ Res, 2010. 106(7): p. 1253-64.
34.Hansford, R.G., B.A. Hogue, and V. Mildaziene, Dependence of H2O2 formation by rat heart mitochondria on substrate availability and donor age. J Bioenerg Biomembr, 1997. 29(1): p. 89-95.
35.Vega, R.B., J.L. Horton, and D.P. Kelly, Maintaining ancient organelles: mitochondrial biogenesis and maturation. Circ Res, 2015. 116(11): p. 1820-34.
36.henriques, c., FDA Grants Orphan Drug Status to Resolaris as Treatment for Limb Girdle MD. Muscular Dystrophy News Today, March 2, 2017.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊