|
Reference
1.Topaloglu, H., Evidence-based guideline summary: Diagnosis and treatment of limb-girdle and distal dystrophies: Report of the Guideline Development Subcommittee of the American Academy of Neurology and the Practice Issues Review Panel of the American Association of Neuromuscular & Electrodiagnostic Medicine. Neurology, 2015. 84(16): p. 1720. 2.Association, T.M.D., Limb-Girdle Muscular Dystrophy (LGMD). 3.Chang, S.W., et al., NRIP, a novel calmodulin binding protein, activates calcineurin to dephosphorylate human papillomavirus E2 protein. J Virol, 2011. 85(13): p. 6750-63. 4.Chiang, T.A., et al., Important prognostic factors for the long-term survival of lung cancer subjects in Taiwan. BMC Cancer, 2008. 8: p. 324. 5.Han, C.P., et al., Nuclear Receptor Interaction Protein (NRIP) expression assay using human tissue microarray and immunohistochemistry technology confirming nuclear localization. J Exp Clin Cancer Res, 2008. 27: p. 25. 6.Chen, H.H., et al., NRIP/DCAF6 stabilizes the androgen receptor protein by displacing DDB2 from the CUL4A-DDB1 E3 ligase complex in prostate cancer. Oncotarget, 2017. 8(13): p. 21501-21515. 7.Chen, P.H., et al., Nuclear receptor interaction protein, a coactivator of androgen receptors (AR), is regulated by AR and Sp1 to feed forward and activate its own gene expression through AR protein stability. Nucleic Acids Res, 2008. 36(1): p. 51-66. 8.Tsai, T.C., et al., NRIP, a novel nuclear receptor interaction protein, enhances the transcriptional activity of nuclear receptors. J Biol Chem, 2005. 280(20): p. 20000-9. 9.Chen, H.H., et al., NRIP is newly identified as a Z-disc protein, activating calmodulin signaling for skeletal muscle contraction and regeneration. J Cell Sci, 2015. 128(22): p. 4196-209. 10.Ehret, G.B., et al., Follow-up of a major linkage peak on chromosome 1 reveals suggestive QTLs associated with essential hypertension: GenNet study. Eur J Hum Genet, 2009. 17(12): p. 1650-7. 11.Knollmann, B.C. and D.M. Roden, A genetic framework for improving arrhythmia therapy. Nature, 2008. 451(7181): p. 929-36. 12.Sons, J.W., Principles of anatomy and physiology. 2006. 13.Dai, D.F., P.S. Rabinovitch, and Z. Ungvari, Mitochondria and cardiovascular aging. Circ Res, 2012. 110(8): p. 1109-24. 14.Chapter 24: Phosphorylation. 1999. 15.Pernas, L. and L. Scorrano, Mito-Morphosis: Mitochondrial Fusion, Fission, and Cristae Remodeling as Key Mediators of Cellular Function. Annu Rev Physiol, 2016. 78: p. 505-31. 16.Verma, S.K., V.N. Garikipati, and R. Kishore, Mitochondrial dysfunction and its impact on diabetic heart. Biochim Biophys Acta, 2016. 17.Sabbah, H.N., Targeting mitochondrial dysfunction in the treatment of heart failure. Expert Rev Cardiovasc Ther, 2016. 14(12): p. 1305-1313. 18.Boland, M.L., A.H. Chourasia, and K.F. Macleod, Mitochondrial dysfunction in cancer. Front Oncol, 2013. 3: p. 292. 19.Adam-Vizi, V. and C. Chinopoulos, Bioenergetics and the formation of mitochondrial reactive oxygen species. Trends Pharmacol Sci, 2006. 27(12): p. 639-45. 20.Zhang, Y., et al., Differential expression profiling between the relative normal and dystrophic muscle tissues from the same LGMD patient. J Transl Med, 2006. 4: p. 53. 21.Wang, Y.Y., et al., Loss of SLC9A3 decreases CFTR protein and causes obstructed azoospermia in mice. PLoS Genet, 2017. 13(4): p. e1006715. 22.Readnower, R.D., et al., Standardized bioenergetic profiling of adult mouse cardiomyocytes. Physiol Genomics, 2012. 44(24): p. 1208-13. 23.Schaper, J., E. Meiser, and G. Stammler, Ultrastructural morphometric analysis of myocardium from dogs, rats, hamsters, mice, and from human hearts. Circ Res, 1985. 56(3): p. 377-91. 24.Geoffrey S. Pitt, S.O.M., Calmodulin and CaMKII as Ca2+ Switches for Cardiac Ion Channels. 2014: p. 189-195. 25.Rokita, A.G. and M.E. Anderson, New therapeutic targets in cardiology: arrhythmias and Ca2+/calmodulin-dependent kinase II (CaMKII). Circulation, 2012. 126(17): p. 2125-39. 26.Zarain-Herzberg, A., R. Estrada-Aviles, and J. Fragoso-Medina, Regulation of sarco(endo)plasmic reticulum Ca2+-ATPase and calsequestrin gene expression in the heart. Can J Physiol Pharmacol, 2012. 90(8): p. 1017-28. 27.Donald M. Bers, P.D.a.E.G., Ph.D., CaMKII Regulation of Cardiac Ion Channels. J Cardiovasc Pharmacol, 2009: p. 180-187. 28.Tilley, D.G., G protein-dependent and G protein-independent signaling pathways and their impact on cardiac function. Circ Res, 2011. 109(2): p. 217-30. 29.Westenbrink, B.D., et al., The promise of CaMKII inhibition for heart disease: preventing heart failure and arrhythmias. Expert Opin Ther Targets, 2013. 17(8): p. 889-903. 30.Azevedo, P.S., et al., Cardiac Remodeling: Concepts, Clinical Impact, Pathophysiological Mechanisms and Pharmacologic Treatment. Arq Bras Cardiol, 2016. 106(1): p. 62-9. 31.Burchfield, J.S., M. Xie, and J.A. Hill, Pathological ventricular remodeling: mechanisms: part 1 of 2. Circulation, 2013. 128(4): p. 388-400. 32.Mukherjee, S., et al., SOD2, the principal scavenger of mitochondrial superoxide, is dispensable for embryogenesis and imaginal tissue development but essential for adult survival. Fly (Austin), 2011. 5(1): p. 39-46. 33.Ago, T., et al., Upregulation of Nox4 by hypertrophic stimuli promotes apoptosis and mitochondrial dysfunction in cardiac myocytes. Circ Res, 2010. 106(7): p. 1253-64. 34.Hansford, R.G., B.A. Hogue, and V. Mildaziene, Dependence of H2O2 formation by rat heart mitochondria on substrate availability and donor age. J Bioenerg Biomembr, 1997. 29(1): p. 89-95. 35.Vega, R.B., J.L. Horton, and D.P. Kelly, Maintaining ancient organelles: mitochondrial biogenesis and maturation. Circ Res, 2015. 116(11): p. 1820-34. 36.henriques, c., FDA Grants Orphan Drug Status to Resolaris as Treatment for Limb Girdle MD. Muscular Dystrophy News Today, March 2, 2017.
|