跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2025/01/25 18:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇賢德
研究生(外文):Hsien-Te Su
論文名稱:長期舞蹈與鋼琴訓練之大腦神經協同作用
論文名稱(外文):Coordination of Cerebral White Matter Tracts in the Long-term Dance and Piano Training
指導教授:曾文毅曾文毅引用關係
指導教授(外文):Wen-Yih Isaac Tseng
口試日期:2017-07-13
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫療器材與醫學影像研究所
學門:醫藥衛生學門
學類:其他醫藥衛生學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:75
中文關鍵詞:擴散頻譜造影白質神經纖維共變性網絡舞蹈家鋼琴家圖論
外文關鍵詞:Diffusion spectrum imagingTract covarianceDancerPianistGraph theory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:253
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
研究目的:舞蹈家與鋼琴家雖同為藝術家,但是在專業的訓練養成上有很大的差異。兩者均需要長時間且高強度的訓練,進而邁向該領域的大師。舞蹈家的訓練是屬於全身性的訓練,舞者必須整合視覺、聽覺與身體動作的資訊來完成舞蹈動作。但就鋼琴家的訓練來說比較針對身體局部特定區域的訓練,主要是整合聽覺與細微的手部動作的資訊。近期的研究顯示大腦白質結構的變化可以用來辨別所對應之訓練。然而目前針對長期舞蹈與鋼琴訓練之大腦結構網絡型態還未明確,我們假設長期舞蹈或鋼琴訓練可以重塑受訓者的大腦白質連結體之間的協同作用。本研究我們使用一種嶄新的大腦白質神經纖維之共變性分析(tract covariance analysis)去觀察長期接受舞蹈及鋼琴訓練後大腦白質神經纖維之共變性變化,進而利用圖形理論(graph theory)分析作為新的途徑比較接受不同訓練之大腦網路結構變化。

研究方法:我們招收29名受正規舞蹈藝術訓練之在學學生、31名受正規鋼琴藝術訓練之學生與37名未受過相關藝術訓練的控制組,我們於3T磁振造影儀進行97位受試者之磁振造影擴散頻譜影像(diffusion spectrum imaging, DSI)掃描,觀察腦部內白質神經纖維束之水分子擴散特性,計算水分子在白質神經纖維中之非等向性指標(generalized fractional anisotropy, GFA),透過全腦基於神經束之自動化分析(Tract-based automatic analysis, TBAA)來擷取全腦主要76條神經纖維束之GFA值,我們平均每條神經纖維束之路徑上的GFA值後進行神經纖維束之共變性分析。神經纖維束之共變性是使用淨相關(partial correlation)的方法控制年齡和性別之影響後,進行76條神經纖維束中任意兩條在同一群體受試者之間之共變性分析,並以多重比較的方法控制錯誤發現率(false discovery rate)來移除圖形中不真實的連結。在這篇論文中,我們將大腦白質神經纖維之共變性變化矩陣(tract covariance matrix)並搭配圖形理論分析大腦結構網路,另外再將大腦網絡參數之組間比較拆成兩個層面來探討,第一層先探討經過長期訓練之舞者與鋼琴家合在一起稱為藝術家組的腦結構網絡參數與沒有經過訓練的控制組是否有差異;第二層再將舞者與鋼琴家分成各自一組。分別各自作組間比較。我們利用排列檢定(permutation test)進行組間大腦網絡參數分析。

研究結果與討論:在藝術家與控制組的比較中,我們發現在經長期藝術訓練的族群大腦網絡結構會有比較好的整體效率(global efficiency),這些神經束包括連結腳趾運動皮質區的皮質脊髓束(corticospinal tract of the toe component)以及連結兩側海馬迴的連合纖維(callosal fibers connecting bilateral hippocampi),另外我們也觀察到藝術家有較佳的局部效率(local efficiency),這些神經束包括上縱束(superior longitudinal fasciculus I)、連結腳趾運動皮質區的皮質脊髓束、丘腦與運動感覺皮質區(thalamus to postcentral gyrus)以及連結兩側運動輔助皮質區的連合纖維(callosal fibers connecting bilateral supplementary motor areas),這些結果顯示經過長期的藝術訓練可以改變腦部運動感覺區域的網絡結構轉向更優化的網絡組織。在鋼琴家與舞者的比較中,我們發現舞者在一些關於高等視覺(bilateral perpendicular fasciculi)、認知功能(left uncinated fasciculus and callosal fibers connecting bilateral orbitofrontal cortices)與運動感覺(left frontal-striatum to precentral gyrus and callosal fibers connecting bilateral supplementary motor areas)相關的神經束有比較高的局部效率。我們的研究結果顯示長期舞蹈訓練與長期鋼琴訓練會造成不同的大腦結構改變,而這些改變不僅僅是白質結構的改變還包括大腦神經網絡協同作用的改變,而這些系統性的改變,將會讓經過長期該項技能訓練的人在執行該項技能時更有效率。我們的工作提供了一個網路層級的代表,將研究人類大腦的視野從區域到全域。腦網路的拓撲結構可能為主要的潛在影響,有助於我們了解大腦在經過長期訓練後重組的變化。而白質神經纖維束之共變性這樣的分析方把可以幫助我們更加了解神經可塑性與長期藝術訓練對我們大腦網絡所造成的影響。
Introduction: Dancers and pianists receive shared and distinct protocols of training, both require long-term and intense physical training to master their skills. Dancers engage the whole body and require the integration of visual, auditory and motor information. In comparison, pianists engage specific parts of the body and primarily require the integration of auditory and motor information. Recent studies have shown that dancers and pianists exhibit different patterns of change in brain structures, which might associate with different training experiences. However, the brain structures at the network levels corresponding to long-term training remain unexplored. Here, we hypothesized that these two types of long-term training modulate the brain networks differently. We proposed a novel metric called tract covariance to indicate connection between any pair of tracts, and used graph theory analysis to characterize the topological properties of tract covariance in these two types of trainees.

Materials and Methods: Participants included people with long-term dance training (age: 22.76 ± 2.65 years, 6 males and 23 females), people with long-term piano training (age: 21.42 ± 1.26 years, 9 males and 22 females) and untrained controls (age: 23.11 ± 1.68 years, 9 males and 28 females). They received scanning of the head using diffusion spectrum imaging (DSI) on a 3T MRI scanner to obtain information about white matter microstructural property. We used whole brain tract-based automatic analysis to obtain a 2D connectogram for each DSI dataset. The connectogram provides generalized fractional anisotropy (GFA) profiles of 76 white matter tract bundles. We averaged the 100 values of each tract profile to obtain a mean GFA value for each tract. Tract covariance was defined as the partial correlation (controlling age and sex) between each pair of tracts in variations of GFA values across subjects. Correction for multiple comparisons was done using a false discovery rate at 0.05 to remove spurious connections in the tract covariance matrix. For each group, we analyzed the network properties of tract covariance matrix by graph theory. Statistical comparison of the network properties between groups was performed. We performed the comparison at two levels: (i) untrained controls versus trainees including dancers and pianists, and (ii) long-term dance trainees versus long-term piano trainees, using a nonparametric permutation test procedure.

Results and Discussions: As compared with controls, trainees exhibited higher nodal global efficiency in the right corticospinal tract (CST) of the toe component and lower global efficiency in the anterior commissure, CF connecting bilateral hippocampi and CF connecting bilateral precuneus. Trainees also showed higher nodal local efficiency in the right superior longitudinal fasciculus (SLF) I, the right CST of the toe component, the left thalamus to precentral gyrus, the right thalamus to the postcentral gyrus and the CF connecting bilateral supplementary motor areas (SMA). The increase in nodal global and local efficiency in trainees suggests that long-term training induce a shift towards a more optimal topological organization. By comparing with pianists, analysis of nodal local efficiency revealed that dancers had greater involvement of tracts related to high level visual, cognition, motor-sensory processing including the bilateral perpendicular fasciculi, the right uncinate fasciculus, the left frontal-striatum (FS) to the precentral gyrus, the CF connecting bilateral orbitofrontal cortices and the CF connecting bilateral SMA. On the other hand, pianists had higher nodal global efficiency in the left stria terminalis and CF connecting bilateral amygdales. We did not observe any significant differences in global topological properties between trainees and controls, dancers and pianists. Our findings indicate that people with long-term dance training have different structural network properties from those of people with long-term piano training. This possibly reflects a network-level reorganization that might lead to a more efficient organization in subjects with specific training. In summary, tract covariance matrix combined with graph theory analysis can provide a network-level representation of training effects in the human brain.
誌謝 i
中文摘要 ii
英文摘要 iv
目錄 vii
Contents of Figures x
Contents of Tables xi
Chapter 1 Introduction 1
1.1 Neuroplasticity of Brain Structure after Long-term Art Training 1
1.1.1 Structural Neuroplasticity in Piano Training 1
1.1.2 Structural Neuroplasticity in Dance Training 3
1.2 Introduction to Structural Covariance and Network Analysis 5
1.3 Imaging Tract Covariance 7
1.4 Aim and Hypotheses of the Thesis 9
Chapter 2 Materials and Methods 13
2.1 Participants 13
2.2 Image Acquisition 14
2.3 DSI Data Quality Assurance 15
2.4 DSI Data Reconstruction 16
2.5 Analyses 18
2.5.1 Tract-based Automatic Analysis (TBAA) 18
2.5.2 Threshold Free Cluster Weighted (TFCW) Scores for Group Analysis 19
2.5.3 White Matter Tract Covariance Analysis 21
2.5.4 Network Analysis 21
2.5.5 Statistical Analysis 26
2.5.6 Correlation Analyses 27
Chapter 3 Results 28
3.1 Training-induced Modulation of White Matter Tracts 28
3.2 Relationship between GFA value and Training Duration 33
3.3 Group Difference in Topological Properties between Subjects with Long-term Art Training and Untrained Controls 35
3.4 Different Types of Art Training on Network Properties 38
Chapter 4 Discussion 40
4.1 Summary of Main Findings 40
4.2 Training-induced Alterations of Fiber Tracts 42
4.3 Anatomical Coupling of Tracts in Long-term Art Training 51
4.4 Difference in Topological Properties at Different Types of Training 56
Chapter 5 Conclusion 60
Chapter 6 Limitations and Future Directions 61
References 62
Appendix 72
Achard, S., Bullmore, E. (2007) Efficiency and cost of economical brain functional networks. PLoS Comput Biol, 3:e17.
Achard, S., Salvador, R., Whitcher, B., Suckling, J., Bullmore, E. (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci, 26:63-72.
Albouy, G., Sterpenich, V., Balteau, E., Vandewalle, G., Desseilles, M., Dang-Vu, T., Darsaud, A., Ruby, P., Luppi, P.H., Degueldre, C., Peigneux, P., Luxen, A., Maquet, P. (2008) Both the hippocampus and striatum are involved in consolidation of motor sequence memory. Neuron, 58:261-72.
Albouy, G., Sterpenich, V., Vandewalle, G., Darsaud, A., Gais, S., Rauchs, G., Desseilles, M., Boly, M., Dang-Vu, T., Balteau, E., Degueldre, C., Phillips, C., Luxen, A., Maquet, P. (2012) Neural correlates of performance variability during motor sequence acquisition. Neuroimage, 60:324-31.
Alexander, A.L., Hurley, S.A., Samsonov, A.A., Adluru, N., Hosseinbor, A.P., Mossahebi, P., Tromp do, P.M., Zakszewski, E., Field, A.S. (2011) Characterization of cerebral white matter properties using quantitative magnetic resonance imaging stains. Brain Connect, 1:423-46.
Alexander, D.C., Hubbard, P.L., Hall, M.G., Moore, E.A., Ptito, M., Parker, G.J., Dyrby, T.B. (2010) Orientationally invariant indices of axon diameter and density from diffusion MRI. Neuroimage, 52:1374-89.
Amunts, K., Kedo, O., Kindler, M., Pieperhoff, P., Mohlberg, H., Shah, N.J., Habel, U., Schneider, F., Zilles, K. (2005) Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. Anat Embryol (Berl), 210:343-52.
Andrews, T.J., Halpern, S.D., Purves, D. (1997) Correlated size variations in human visual cortex, lateral geniculate nucleus, and optic tract. J Neurosci, 17:2859-68.
Avery, S.N., Clauss, J.A., Winder, D.G., Woodward, N., Heckers, S., Blackford, J.U. (2014) BNST neurocircuitry in humans. Neuroimage, 91:311-23.
Avram, A.V., Sarlls, J.E., Barnett, A.S., Ozarslan, E., Thomas, C., Irfanoglu, M.O., Hutchinson, E., Pierpaoli, C., Basser, P.J. (2016) Clinical feasibility of using mean apparent propagator (MAP) MRI to characterize brain tissue microstructure. Neuroimage, 127:422-34.
Bangert, M., Peschel, T., Schlaug, G., Rotte, M., Drescher, D., Hinrichs, H., Heinze, H.J., Altenmuller, E. (2006) Shared networks for auditory and motor processing in professional pianists: evidence from fMRI conjunction. Neuroimage, 30:917-26.
Barazany, D., Basser, P.J., Assaf, Y. (2009) In vivo measurement of axon diameter distribution in the corpus callosum of rat brain. Brain, 132:1210-20.
Basser, P.J. (1995) Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed, 8:333-44.
Bassett, D.S., Bullmore, E. (2006) Small-world brain networks. Neuroscientist, 12:512-23.
Baumann, S., Koeneke, S., Schmidt, C.F., Meyer, M., Lutz, K., Jancke, L. (2007) A network for audio-motor coordination in skilled pianists and non-musicians. Brain Res, 1161:65-78.
Bengtsson, S.L., Nagy, Z., Skare, S., Forsman, L., Forssberg, H., Ullen, F. (2005) Extensive piano practicing has regionally specific effects on white matter development. Nat Neurosci, 8:1148-50.
Benjamini, Y., Yekutieli, D. (2001) The control of the false discovery rate in multiple testing under dependency. Annals of Statistics, 29:1165-1188.
Bennett, I.J., Greenia, D.E., Maillard, P., Sajjadi, S.A., DeCarli, C., Corrada, M.M., Kawas, C.H. (2017) Age-related white matter integrity differences in oldest-old without dementia. Neurobiol Aging, 56:108-114.
Bermudez, P., Lerch, J.P., Evans, A.C., Zatorre, R.J. (2009) Neuroanatomical correlates of musicianship as revealed by cortical thickness and voxel-based morphometry. Cereb Cortex, 19:1583-96.
Blair, H.T., Schafe, G.E., Bauer, E.P., Rodrigues, S.M., LeDoux, J.E. (2001) Synaptic plasticity in the lateral amygdala: a cellular hypothesis of fear conditioning. Learn Mem, 8:229-42.
Bohland, J.W., Wu, C., Barbas, H., Bokil, H., Bota, M., Breiter, H.C., Cline, H.T., Doyle, J.C., Freed, P.J., Greenspan, R.J., Haber, S.N., Hawrylycz, M., Herrera, D.G., Hilgetag, C.C., Huang, Z.J., Jones, A., Jones, E.G., Karten, H.J., Kleinfeld, D., Kotter, R., Lester, H.A., Lin, J.M., Mensh, B.D., Mikula, S., Panksepp, J., Price, J.L., Safdieh, J., Saper, C.B., Schiff, N.D., Schmahmann, J.D., Stillman, B.W., Svoboda, K., Swanson, L.W., Toga, A.W., Van Essen, D.C., Watson, J.D., Mitra, P.P. (2009) A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale. PLoS Comput Biol, 5:e1000334.
Bonini, F., Burle, B., Liégeois-Chauvel, C., Régis, J., Chauvel, P., Vidal, F. (2014) Action monitoring and medial frontal cortex: leading role of supplementary motor area. Science, 343:888-891.
Brodal, H.P., Osnes, B., Specht, K. (2017) Listening to Rhythmic Music Reduces Connectivity within the Basal Ganglia and the Reward System. Frontiers in Neuroscience, 11.
Bullmore, E., Sporns, O. (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci, 10:186-98.
Bullmore, E., Sporns, O. (2012) The economy of brain network organization. Nat Rev Neurosci, 13:336-49.
Bullmore, E.T., Suckling, J., Overmeyer, S., Rabe-Hesketh, S., Taylor, E., Brammer, M.J. (1999) Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain. Ieee Transactions on Medical Imaging, 18:32-42.
Cantallops, I., Routtenberg, A. (1999) Activity-dependent regulation of axonal growth: posttranscriptional control of the GAP-43 gene by the NMDA receptor in developing hippocampus. J Neurobiol, 41:208-20.
Carreiras, M., Seghier, M.L., Baquero, S., Estevez, A., Lozano, A., Devlin, J.T., Price, C.J. (2009) An anatomical signature for literacy. Nature, 461:983-6.
Chen, Y.J., Lo, Y.C., Hsu, Y.C., Fan, C.C., Hwang, T.J., Liu, C.M., Chien, Y.L., Hsieh, M.H., Liu, C.C., Hwu, H.G., Tseng, W.Y. (2015) Automatic whole brain tract-based analysis using predefined tracts in a diffusion spectrum imaging template and an accurate registration strategy. Hum Brain Mapp, 36:3441-58.
Chen, Z.J., He, Y., Rosa-Neto, P., Germann, J., Evans, A.C. (2008) Revealing modular architecture of human brain structural networks by using cortical thickness from MRI. Cereb Cortex, 18:2374-81.
Chiang, C.W., Wang, Y., Sun, P., Lin, T.H., Trinkaus, K., Cross, A.H., Song, S.K. (2014) Quantifying white matter tract diffusion parameters in the presence of increased extra-fiber cellularity and vasogenic edema. Neuroimage, 101:310-9.
Choi, M.-H., Kim, J.-H., Yeon, H.-W., Choi, J.-S., Park, J.-Y., Jun, J.-H., Lee, B.-Y., Kim, H.-J., Tack, G.-R., Chung, S.-C. (2011) Effects of gender and age on anterior commissure volume. Neuroscience Letters, 500:92-94.
Corballis, M.C. (1995) Visual integration in the split brain. Neuropsychologia, 33:937-59.
Coynel, D., Marrelec, G., Perlbarg, V., Pelegrini-Issac, M., Van de Moortele, P.F., Ugurbil, K., Doyon, J., Benali, H., Lehericy, S. (2010) Dynamics of motor-related functional integration during motor sequence learning. Neuroimage, 49:759-66.
Cross, E.S., Hamilton, A.F., Kraemer, D.J., Kelley, W.M., Grafton, S.T. (2009) Dissociable substrates for body motion and physical experience in the human action observation network. Eur J Neurosci, 30:1383-92.
Dehaene, S., Pegado, F., Braga, L.W., Ventura, P., Nunes Filho, G., Jobert, A., Dehaene-Lambertz, G., Kolinsky, R., Morais, J., Cohen, L. (2010) How learning to read changes the cortical networks for vision and language. Science, 330:1359-64.
Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U., May, A. (2004) Neuroplasticity: changes in grey matter induced by training. Nature, 427:311-2.
Driemeyer, J., Boyke, J., Gaser, C., Büchel, C., & May, A. (2008) Changes in gray matter induced by learning—revisited. PLoS One, 3:e2669.
Elbert, T., Rockstroh, B. (2004) Reorganization of Human Cerebral Cortex: The Range of Changes Following Use and Injury. The Neuroscientist, 10:129-141.
Engel, A., Hijmans, B.S., Cerliani, L., Bangert, M., Nanetti, L., Keller, P.E., Keysers, C. (2014) Inter-individual differences in audio-motor learning of piano melodies and white matter fiber tract architecture. Hum Brain Mapp, 35:2483-97.
Evans, A.C. (2013) Networks of anatomical covariance. Neuroimage, 80:489-504.
Fernandez-Seara, M.A., Aznarez-Sanado, M., Mengual, E., Loayza, F.R., Pastor, M.A. (2009) Continuous performance of a novel motor sequence leads to highly correlated striatal and hippocampal perfusion increases. Neuroimage, 47:1797-808.
Fornito, A., Zalesky, A., Breakspear, M. (2015) The connectomics of brain disorders. Nat Rev Neurosci, 16:159-72.
Franz, E.A. (2012) The allocation of attention to learning of goal-directed actions: a cognitive neuroscience framework focusing on the Basal Ganglia. Front Psychol, 3:535.
Gaser, C., Schlaug, G. (2003a) Brain structures differ between musicians and non-musicians. Journal of Neuroscience, 23:9240-9245.
Gaser, C., Schlaug, G. (2003b) Gray matter differences between musicians and nonmusicians. Ann Ny Acad Sci, 999:514-517.
Gheysen, F., Van Opstal, F., Roggeman, C., Van Waelvelde, H., Fias, W. (2010) Hippocampal contribution to early and later stages of implicit motor sequence learning. Exp Brain Res, 202:795-807.
Giacosa, C., Karpati, F.J., Foster, N.E., Penhune, V.B., Hyde, K.L. (2016) Dance and music training have different effects on white matter diffusivity in sensorimotor pathways. Neuroimage, 135:273-86.
Halwani, G.F., Loui, P., Ruber, T., Schlaug, G. (2011) Effects of practice and experience on the arcuate fasciculus: comparing singers, instrumentalists, and non-musicians. Front Psychol, 2:156.
Han, Y., Yang, H., Lv, Y.T., Zhu, C.Z., He, Y., Tang, H.H., Gong, Q.Y., Luo, Y.J., Zang, Y.F., Dong, Q. (2009) Gray matter density and white matter integrity in pianists'' brain: a combined structural and diffusion tensor MRI study. Neurosci Lett, 459:3-6.
Hanggi, J., Koeneke, S., Bezzola, L., Jancke, L. (2010) Structural Neuroplasticity in the Sensorimotor Network of Professional Female Ballet Dancers. Human Brain Mapping, 31:1196-1206.
Hattori, T., Ito, K., Nakazawa, C., Numasawa, Y., Watanabe, M., Aoki, S., Mizusawa, H., Ishiai, S., Yokota, T. (2017) Structural connectivity in spatial attention network: reconstruction from left hemispatial neglect. Brain Imaging Behav.
He, Y., Chen, Z., Evans, A. (2008) Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer''s disease. J Neurosci, 28:4756-66.
He, Y., Chen, Z., Gong, G.L., Evans, A. (2009a) Neuronal Networks in Alzheimer''s Disease. Neuroscientist, 15:333-350.
He, Y., Chen, Z.J., Evans, A.C. (2007) Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cereb Cortex, 17:2407-19.
He, Y., Wang, J., Wang, L., Chen, Z.J., Yan, C., Yang, H., Tang, H., Zhu, C., Gong, Q., Zang, Y., Evans, A.C. (2009b) Uncovering intrinsic modular organization of spontaneous brain activity in humans. PLoS One, 4:e5226.
Herholz, S.C., Zatorre, R.J. (2012) Musical training as a framework for brain plasticity: behavior, function, and structure. Neuron, 76:486-502.
Hoenig, K., Muller, C., Herrnberger, B., Sim, E.J., Spitzer, M., Ehret, G., Kiefer, M. (2011) Neuroplasticity of semantic representations for musical instruments in professional musicians. Neuroimage, 56:1714-25.
Hofer, S., Frahm, J. (2006) Topography of the human corpus callosum revisited--comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. Neuroimage, 32:989-94.
Hong, S.B., Zalesky, A., Fornito, A., Park, S., Yang, Y.H., Park, M.H., Song, I.C., Sohn, C.H., Shin, M.S., Kim, B.N., Cho, S.C., Han, D.H., Cheong, J.H., Kim, J.W. (2014) Connectomic disturbances in attention-deficit/hyperactivity disorder: a whole-brain tractography analysis. Biol Psychiatry, 76:656-63.
Hsu, Y.C., Hsu, C.H., Tseng, W.Y. (2012) A large deformation diffeomorphic metric mapping solution for diffusion spectrum imaging datasets. Neuroimage, 63:818-34.
Hsu, Y.C., Lo, Y.C., Chen, Y.J., Wedeen, V.J., Isaac Tseng, W.Y. (2015) NTU-DSI-122: A diffusion spectrum imaging template with high anatomical matching to the ICBM-152 space. Hum Brain Mapp, 36:3528-41.
Huang, Z., Zhang, J.X., Yang, Z., Dong, G., Wu, J., Chan, A.S., Weng, X. (2010) Verbal memory retrieval engages visual cortex in musicians. Neuroscience, 168:179-89.
James, C.E., Britz, J., Vuilleumier, P., Hauert, C.A., Michel, C.M. (2008) Early neuronal responses in right limbic structures mediate harmony incongruity processing in musical experts. Neuroimage, 42:1597-608.
James, C.E., Oechslin, M.S., Van De Ville, D., Hauert, C.A., Descloux, C., Lazeyras, F. (2014) Musical training intensity yields opposite effects on grey matter density in cognitive versus sensorimotor networks. Brain Struct Funct, 219:353-66.
Jancke, L. (2009) The plastic human brain. Restorative Neurology and Neuroscience, 27:521-538.
Jancke, L., Langer, N., Hanggi, J. (2012) Diminished Whole-brain but Enhanced Peri-sylvian Connectivity in Absolute Pitch Musicians. Journal of Cognitive Neuroscience, 24:1447-1461.
Jäncke, L., Baumann, S., Koeneke, S., Meyer, M., Laeng, B., Peters, M., Lutz, K. (2006) Neural control of playing a reversed piano: empirical evidence for an unusual cortical organization of musical functions. Neuroreport, 17:447-451.
Jäncke, L., Peters, M., Himmelbach, M., Nösselt, T., Shah, J., Steinmetz, H. (2000) fMRI study of bimanual coordination. Neuropsychologia, 38:164-174.
Kaas, J.H. (2004) Evolution of somatosensory and motor cortex in primates. The Anatomical Record, 281A:1148-1156.
Kalil, K., Dent, E.W. (2014) Branch management: mechanisms of axon branching in the developing vertebrate CNS. Nat Rev Neurosci, 15:7-18.
Kandel, E.R., Markram, H., Matthews, P.M., Yuste, R., Koch, C. (2013) Neuroscience thinks big (and collaboratively). Nat Rev Neurosci, 14:659-64.
Karpati, F.J., Giacosa, C., Foster, N.E., Penhune, V.B., Hyde, K.L. (2017) Dance and music share gray matter structural correlates. Brain Res, 1657:62-73.
Kelly, C., Toro, R., Di Martino, A., Cox, C.L., Bellec, P., Castellanos, F.X., Milham, M.P. (2012) A convergent functional architecture of the insula emerges across imaging modalities. Neuroimage, 61:1129-42.
Khundrakpam, B.S., Lewis, J.D., Reid, A., Karama, S., Zhao, L., Chouinard-Decorte, F., Evans, A.C., Brain Development Cooperative, G. (2017) Imaging structural covariance in the development of intelligence. Neuroimage, 144:227-240.
Khundrakpam, B.S., Reid, A., Brauer, J., Carbonell, F., Lewis, J., Ameis, S., Karama, S., Lee, J., Chen, Z., Das, S., Evans, A.C., Brain Development Cooperative, G. (2013) Developmental changes in organization of structural brain networks. Cereb Cortex, 23:2072-85.
Kim, D.J., Bolbecker, A.R., Howell, J., Rass, O., Sporns, O., Hetrick, W.P., Breier, A., O''Donnell, B.F. (2013) Disturbed resting state EEG synchronization in bipolar disorder: A graph-theoretic analysis. Neuroimage Clin, 2:414-23.
Kowatari, Y., Lee, S.H., Yamamura, H., Nagamori, Y., Levy, P., Yamane, S., Yamamoto, M. (2009) Neural networks involved in artistic creativity. Hum Brain Mapp, 30:1678-90.
Krings, T., Topper, R., Foltys, H., Erberich, S., Sparing, R., Willmes, K., Thron, A. (2000) Cortical activation patterns during complex motor tasks in piano players and control subjects. A functional magnetic resonance imaging study. Neurosci Lett, 278:189-93.
Kuo, L.W., Chen, J.H., Wedeen, V.J., Tseng, W.Y. (2008) Optimization of diffusion spectrum imaging and q-ball imaging on clinical MRI system. Neuroimage, 41:7-18.
Lahav, A., Saltzman, E., Schlaug, G. (2007) Action representation of sound: audiomotor recognition network while listening to newly acquired actions. J Neurosci, 27:308-14.
Lasco, M.S., Jordan, T.J., Edgar, M.A., Petito, C.K., Byne, W. (2002) A lack of dimorphism of sex or sexual orientation in the human anterior commissure. Brain Res, 936:95-8.
Latora, V., Marchiori, M. (2001) Efficient behavior of small-world networks. Phys Rev Lett, 87:198701.
Latora, V., Marchiori, M. (2003) Economic small-world behavior in weighted networks. The European Physical Journal B - Condensed Matter, 32:249-263.
Lerch, J.P., Worsley, K., Shaw, W.P., Greenstein, D.K., Lenroot, R.K., Giedd, J., Evans, A.C. (2006) Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI. Neuroimage, 31:993-1003.
Lv, Y.T., Yang, H., Wang, D.Y., Li, S.Y., Han, Y., Zhu, C.Z., He, Y., Tang, H.H., Gong, Q.Y., Zang, Y.F. (2008) Correlations in spontaneous activity and gray matter density between left and right sensoritmotor areas of pianists. Neuroreport, 19:631-634.
Maren, S. (1999) Long-term potentiation in the amygdala: a mechanism for emotional learning and memory. Trends Neurosci, 22:561-7.
Mechelli, A., Friston, K.J., Frackowiak, R.S., Price, C.J. (2005) Structural covariance in the human cortex. J Neurosci, 25:8303-10.
Nigmatullina, Y., Hellyer, P.J., Nachev, P., Sharp, D.J., Seemungal, B.M. (2015) The neuroanatomical correlates of training-related perceptuo-reflex uncoupling in dancers. Cereb Cortex, 25:554-62.
Oldfield, R.C. (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9:97-113.
Ozarslan, E., Koay, C.G., Shepherd, T.M., Komlosh, M.E., Irfanoglu, M.O., Pierpaoli, C., Basser, P.J. (2013) Mean apparent propagator (MAP) MRI: a novel diffusion imaging method for mapping tissue microstructure. Neuroimage, 78:16-32.
Patel, M.D., Toussaint, N., Charles-Edwards, G.D., Lin, J.-P., Batchelor, P.G. (2010) Distribution and fibre field similarity mapping of the human anterior commissure fibres by diffusion tensor imaging. Magnetic Resonance Materials in Physics, Biology and Medicine, 23:399-408.
Raznahan, A., Lerch, J.P., Lee, N., Greenstein, D., Wallace, G.L., Stockman, M., Clasen, L., Shaw, P.W., Giedd, J.N. (2011) Patterns of coordinated anatomical change in human cortical development: a longitudinal neuroimaging study of maturational coupling. Neuron, 72:873-84.
Reese, T.G., Heid, O., Weisskoff, R.M., Wedeen, V.J. (2003) Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magn Reson Med, 49:177-82.
Rizzolatti, G., Craighero, L. (2004) The mirror-neuron system. Annu Rev Neurosci, 27:169-92.
Ruber, T., Lindenberg, R., Schlaug, G. (2015) Differential adaptation of descending motor tracts in musicians. Cereb Cortex, 25:1490-8.
Rubinov, M., Sporns, O. (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage, 52:1059-69.
Salimpoor, V.N., Benovoy, M., Larcher, K., Dagher, A., Zatorre, R.J. (2011) Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature Neuroscience, 14:257-262.
Sander, D., Grafman, J., Zalla, T. (2003) The human amygdala: an evolved system for relevance detection. Rev Neurosci, 14:303-16.
Schendan, H.E., Searl, M.M., Melrose, R.J., Stern, C.E. (2003) An FMRI study of the role of the medial temporal lobe in implicit and explicit sequence learning. Neuron, 37:1013-25.
Schneider, P., Scherg, M., Dosch, H.G., Specht, H.J., Gutschalk, A., Rupp, A. (2002) Morphology of Heschl''s gyrus reflects enhanced activation in the auditory cortex of musicians. Nat Neurosci, 5:688-94.
Schneider, P., Sluming, V., Roberts, N., Bleeck, S., Rupp, A. (2005) Structural, functional, and perceptual differences in Heschl''s gyrus and musical instrument preference. Ann N Y Acad Sci, 1060:387-94.
Sharda, M., Khundrakpam, B.S., Evans, A.C., Singh, N.C. (2016) Disruption of structural covariance networks for language in autism is modulated by verbal ability. Brain Struct Funct, 221:1017-32.
Smith, S.M., Nichols, T.E. (2009) Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage, 44:83-98.
Sporns, O. (2013) Making sense of brain network data. Nat Methods, 10:491-3.
Sporns, O., Tononi, G., Edelman, G.M. (2000) Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cereb Cortex, 10:127-41.
Sporns, O., Zwi, J.D. (2004) The small world of the cerebral cortex. Neuroinformatics, 2:145-62.
Steele, C.J., Bailey, J.A., Zatorre, R.J., Penhune, V.B. (2013) Early musical training and white-matter plasticity in the corpus callosum: evidence for a sensitive period. J Neurosci, 33:1282-90.
Steele, C.J., Penhune, V.B. (2010) Specific increases within global decreases: a functional magnetic resonance imaging investigation of five days of motor sequence learning. J Neurosci, 30:8332-41.
Suzuki, Y., Matsuzawa, H., Kwee, I.L., Nakada, T. (2003) Absolute eigenvalue diffusion tensor analysis for human brain maturation. NMR Biomed, 16:257-60.
Tononi, G., Sporns, O., Edelman, G.M. (1994) A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc Natl Acad Sci U S A, 91:5033-7.
Torrisi, S., O''Connell, K., Davis, A., Reynolds, R., Balderston, N., Fudge, J.L., Grillon, C., Ernst, M. (2015) Resting state connectivity of the bed nucleus of the stria terminalis at ultra-high field. Hum Brain Mapp, 36:4076-88.
Vértes, P.E., Alexander-Bloch, A.F., Gogtay, N., Giedd, J.N., Rapoport, J.L., Bullmore, E.T. (2012) Simple models of human brain functional networks. Proceedings of the National Academy of Sciences, 109:5868-5873.
van den Heuvel, M.P., Fornito, A. (2014) Brain networks in schizophrenia. Neuropsychol Rev, 24:32-48.
van den Heuvel, M.P., Sporns, O. (2013) Network hubs in the human brain. Trends Cogn Sci, 17:683-96.
Van Essen, D.C., Ugurbil, K. (2012) The future of the human connectome. Neuroimage, 62:1299-310.
Vaquero, L., Hartmann, K., Ripolles, P., Rojo, N., Sierpowska, J., Francois, C., Camara, E., van Vugt, F.T., Mohammadi, B., Samii, A., Munte, T.F., Rodriguez-Fornells, A., Altenmuller, E. (2016) Structural neuroplasticity in expert pianists depends on the age of musical training onset. Neuroimage, 126:106-19.
Watts, D.J., Strogatz, S.H. (1998) Collective dynamics of ''small-world'' networks. Nature, 393:440-442.
Yeatman, J.D., Weiner, K.S., Pestilli, F., Rokem, A., Mezer, A., Wandell, B.A. (2014) The vertical occipital fasciculus: a century of controversy resolved by in vivo measurements. Proc Natl Acad Sci U S A, 111:E5214-23.
Yeh, F.C., Wedeen, V.J., Tseng, W.Y. (2011) Estimation of fiber orientation and spin density distribution by diffusion deconvolution. Neuroimage, 55:1054-62.
Yendiki, A., Koldewyn, K., Kakunoori, S., Kanwisher, N., Fischl, B. (2014) Spurious group differences due to head motion in a diffusion MRI study. Neuroimage, 88:79-90.
Zatorre, R., McGill, J. (2005) Music, the food of neuroscience? Nature, 434:312-5.
Zatorre, R.J., Belin, P., Penhune, V.B. (2002) Structure and function of auditory cortex: music and speech. Trends Cogn Sci, 6:37-46.
Zatorre, R.J., Chen, J.L., Penhune, V.B. (2007) When the brain plays music: auditory-motor interactions in music perception and production. Nat Rev Neurosci, 8:547-58.
Zatorre, R.J., Fields, R.D., Johansen-Berg, H. (2012) Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat Neurosci, 15:528-36.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top