跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/15 08:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳欣苢
研究生(外文):Hsin-Yi Chen
論文名稱:第一部分 山欖葉部之成分研究(III):分離、三萜皂苷之分析與其醣基之確認第二部分 大葉山欖果仁之活性成分研究
論文名稱(外文):Part I Chemical investigation of Planchonella obovata leaf (III): isolation, analysis of triterpenoid glycosides and confirmation of their glycon moietiesPart II Bioactive constituents from Palaquium formosanum kernel
指導教授:李水盛
口試日期:2017-07-31
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:藥學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:286
中文關鍵詞:山欖大葉山欖山欖科三萜皂苷1D TOCSY細胞毒性原花青素旋轉異構物氫暨碳譜標定
外文關鍵詞:Planchonella obovataPalaquium formosanumSapotaceaetriterpenoid glycosides1D TOCSYcytotoxicityproanthocyanidinsrotamers1H & 13C NMR assignment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:330
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
第一部分 山欖葉部之成分研究(III):分離、三萜皂苷之分析與其醣基之確認
山欖(Planchonella obovata)為常青樹木,是臺灣三種山欖科植物其中之一。本論文為延續本實驗室先前對其正丁醇可溶之高極性成分探討。使用Sephadex LH-20、逆向管柱層析得到2個新化合物,6β-hydroxy-conyzasaponin G (8)和glycerol 1,2-disinapate 3-α-glucuronide (9),和5個已知化合物。
通過薄層層析法分析Mi-saponin B和C酸水解產物,得知皂苷裡單醣的組成。將這些單醣做成trimethylsilyl L-cysteine衍生物,接著利用氣相層析分析,即可鑑定出這些單醣的絕對立體結構。這些單醣為D-apiose、L-arabinose、D-xylose、D-glucose和L-rhamnose。
第二部分 大葉山欖果仁之活性成分研究
山欖科植物大葉山欖(Palaquium formosanum)為高大之喬木,原生於菲律賓和台灣。其果仁酒精萃取物的正丁醇可溶層對PC-3前列腺癌細胞具有好的細胞毒性,因而將正丁醇可溶層經Sephadex LH-20分離。富含皂苷的組分具有細胞毒殺性,因而針對此一部分進行分離,得到1個新的化合物,3''-O-rhamnopyranosyl-arganin C (10),以及11個已知的oleanane-type皂苷(11–21)。這些化合物的1H和13C訊號相當複雜,需要經由1D NMR (1H和13C)、2D NMR (1H−1H COSY、NOESY、HSQC和HMBC),以及選擇性激發1D TOCSY圖譜進行繁複的分析而確立。本研究修正不少文獻之1H和13C NMR標定,而且這些圖譜是在methanol-d4紀錄,方便日後用於鑑定類似的三萜皂苷之參考。這些化合物加上五個來自山欖的三萜皂苷一起做活性試驗,結果顯示arganin C具有好的抗PC-3前列腺癌細胞活性,IC50為13.8 μM。本研究亦歸納這些三萜皂苷結構與抗PC-3前列腺癌細胞活性關係。
另一方面,正丁醇可溶層對甲型葡萄糖水解酶亦有甚佳之抑制活性,在10 μg/mL下達87.8%抑制率。該層依活性導引進行分離,得到10個類黃酮成分(22–31)和兩個megastigmane glycosides (32和33)。其中四個為二聚原花青素(dimeric proanthocyanidins)以4α→8方式相接,由於axial rotation使之產生旋轉異構物(rotational isomers)。因此 prodelphinidin B3 (28)、catechin-(4α→8)-gallocatechin (29)、gallocatechin-(4α→8)-gallocatechin (30)和gallocatechin-(4α→8)-epigallocate chin gallate (31), 1H和13C NMR 圖譜相當複雜。藉由2D ROESY圖譜了解rotamers的特性,再經由分析2D NMR (1H−1H COSY、ROESY、HSQC和HMBC),將這些rotamers完整的1H和13C NMR資料加以標定,此亦為首次之報告。
Part I. Chemical investigation of Planchonella obovata leaf (III): isolation, analysis of triterpenoid glycosides and confirmation of their glycon moieties
Planchonella obovata is an evergreen tree, one of the three Sapotaceae plants in Taiwan. This thesis is a continuation of our previous study on the chemical investigation of the polar components in the n-BuOH soluble fraction. Further separation through Sephadex LH-20 and reversed-phase C-18 columns led to the isolation of two new compounds, 6β-hydroxy-conyzasaponin G (8) and glycerol 1,2-disinapate 3-α-glucuronide (9), and five known compounds.
The monosaccharide compositions in these glycosides were determined by TLC analysis of the acid hydrolysates of Mi-saponins B and C. The absolute configurations of these monosaccharides was determined by GC analysis of the corresponding trimethylsilyl L-cysteine derivative. These monosaccharides are determined as D-apiose, L-arabinose, D-xylose, D-glucose, and L-rhamnose.
Part II Bioactive constituents from Palaquium formosanum kernel
Palaquium formosanum (Sapotaceae) is a tall tree indigenous to Philippines and Taiwan. The n-BuOH-soluble fraction of the ethanol extact of the P. formosanum kernel being cytotoxic against PC-3 prostate cancer cell line was further fractionated by Sephadex LH-20. The fractions rich in saponins showed cytotoxicity were further separated mainly by RP-18 columns.This effort led to the isolation of one new, 3''-O-rhamnopyranosyl-arganin C (10), and 11 known oleanane-type saponins (11–21). The 1H and 13C NMR spectra of these compounds are quite complex and their assignments were established by analysis of 1D NMR (1H and 13C), 2D NMR (1H−1H COSY, NOESY, HSQC, and HMBC), and selectively excited 1D TOCSY spectra. This work revised some reported 1H and 13C NMR assignments, and these data being recorded in methanol-d4 are friendly to the user as a reference for identifying the related triterpenoid saponins. Bioassay of these isolated compounds and five from Planchonella obovata leaf indicated arganin C to be most potent against PC-3 prostate cancer cells with the IC50 value of 13.8 μM. Some structure and activity relationships were also drawn.
The n-BuOH-soluble fraction also displayed potent inhibitory activity against α-glucosidase (87.8% at 10 μg/mL). Further investigation of this fraction via the bioassay-guide approach yielded ten flavonoids (22–31). Four of them (28–31) are dimeric proanthocyanidins with 4α→8 linkage, arising rotational isomers from axial rotation. Thus, the 1H and 13C NMR spectra of prodelphinidin B3 (28), catechin-(4α→8)-gallocatechin (29), gallocatechin-(4α→8)-gallocatechin (30), and gallocatechin-(4α→8)-epigallocatechin gallate (31) were quite complex. The conformations of these rotamers were identified through analysis of 2D ROESY spectra. The complete 1H and 13C NMR assignments of these rotamers were made by extensive analysis of 2D NMR (1H−1H COSY, ROESY, HSQC, and HMBC), and this is the first report for such assignments.
總目錄
中文摘要 i
英文摘要(Abstract) iii
目錄 v
圖目錄 viii
表目錄 xiv
流程圖目錄 xvi
專有名詞縮寫(Abbreviations of Terminology) xvii
目錄
第一部分 1
1 緒論 1
1.1 研究目的 1
1.2 植物簡介 2
1.3 Planchonella屬植物成分之相關研究 3
1.4 白血病簡介 6
1.5 治療APL方式 8
2 實驗結果與討論 10
2.1 化合物1–9結構解析 10
2.1.1 類黃酮之結構解析 11
2.1.1.1 Isorhamnetin (1)、kaempferol (2)、quercetin (3)和quercetin 3-O-robinobioside (7)之結構解析 11
2.1.2 木脂素類(lignan)成分之結構解析 14
2.1.2.1 (+)-Lyoniresinol 3a-O-β-D-glucopyranoside (4)之結構解析 14
2.1.2.2 (–)-Lyoniresinol 3a-O-β-D-glucopyranoside (5)之結構解析 16
2.1.3 新木脂素類(neolignan)成分之結構解析 18
2.1.3.1 (7S,8R)-Dihydrodehydrodiconiferyl alcohol (6)之結構解析 18
2.1.4 三萜皂苷類成分之結構解析 20
2.1.4.1 6β-Hydroxy-conyzasaponin G (8)之結構解析 20
2.1.5 Glycerol 1,2-disinapate 3-α-glucuronide (9)之結構解析 24
2.2 鑑定山欖成分的醣基立體組態 27
2.3 藥理活性試驗結果 30
2.4 討論 31
3 實驗部分 32
3.1 儀器與器材 32
3.1.1 理化性質測定儀器 32
3.1.2 成分分離之儀器與器材 32
3.1.3 試藥及溶劑 33
3.2 植物來源 34
3.3 山欖葉部成分之分離 34
3.3.1 山欖葉正丁醇可溶層之成分分離 34
3.3.2 化合物1–5之分離 34
3.3.3 化合物6和7之分離 35
3.3.4 化合物8和9之分離 35
3.4 鑑定醣基的立體組態 37
3.5 細胞毒性試驗(由詹社紅進行) 38
3.5.1 細胞和試藥 38
3.5.2 樣品配置 38
3.5.3 細胞毒性測試(MTT assay) 38
3.6 化合物之物理數據 39
第二部分 大葉山欖果仁之活性成分研究 42
1 緒論 42
1.1 研究目的 42
1.2 植物簡介 43
1.3 Palaquium屬植物成分之相關研究 44
1.4 前列腺癌簡介 46
1.4.1 流行病學 46
1.4.2 前列腺癌分期與治療方式 46
2 實驗結果與討論 50
2.1 化合物結構解析 50
2.1.1 三萜皂苷類(triterpenoid glycoside)成分 52
2.1.1.1 16α-Hydroxyprotobassic acid glycosides之結構解析 52
2.1.1.2 Protobassic acid glycosides之結構解析 76
2.1.2 類黃酮(flavonols)成分 82
2.1.2.1 (+)-Catechin (22)與(+)-gallocatechin (23)之結構解析 82
2.1.2.2 (+)-Catechin-3-O-gallate (24)與(−)-epicatechin-3-O-gallate (25)之結構解析 84
2.1.2.3 (+)-Gallocatechin-3-O-gallate (26)與(−)-epigallocatechin-3-O-gallate (27)之結構解析 86
2.1.2.4 Prodelphinidin B3 (28)之結構解析 88
2.1.2.5 Catechin-(4α→8)-gallocatechin (29)之結構解析 92
2.1.2.6 Gallocatechin-(4α→8)-gallocatechin (30)之結構解析 96
2.1.2.7 Gallocatechin-(4α→8)-epigallocatechin gallate (31)之結構解析 100
2.1.3 Megastigmane glycosides成分 104
2.1.3.1 Actinidioionoside (32)之結構解析 104
2.1.3.2 Dihydrophaseic acid 4''-O-β-D-glucopyranoside (33)之結構解析 106
2.2 藥理活性試驗結果 108
2.2.1 細胞毒性試驗結果 108
2.2.2 甲型葡萄糖水解酶抑制活性測試 109
2.3 討論 110
3 實驗部分 111
3.1 儀器與器材 111
3.1.1 理化性質測定儀器 111
3.1.2 成分分離之儀器與材料 111
3.1.3 試劑與溶媒 112
3.1.4 甲基葡萄糖水解酶抑制活性測試之酶、試劑與儀器 112
3.2 植物來源 114
3.3 萃取與純化 114
3.3.1 大葉山欖果仁之萃取 114
3.3.2 正丁醇可溶層之成分分離 114
3.3.2.1 化合物10–12、15、18–21之分離 114
3.3.2.2 化合物13–14、16–17之分離 115
3.3.2.3 化合物32和33之分離 117
3.3.2.4 化合物22之分離 117
3.3.2.5 化合物23之分離 117
3.3.2.6 化合物28和29之分離 117
3.3.2.7 化合物24、25和30之分離 118
3.3.2.8 化合物26與27之分離 118
3.3.2.9 化合物31之分離 118
3.4 細胞毒性試驗(由劉如芳博士進行) 120
3.4.1 細胞和試藥 120
3.4.2 樣品配置 120
3.4.3 細胞毒性試驗(CCK-8 assay) 120
3.5 甲型葡萄水解酶抑制活性試驗 121
3.5.1 試藥與試劑的配製 121
3.5.2 實驗步驟 121
3.6 化合物之物理數據 123
參考資料 131
附圖 137
1. Lee, S.-S.; Tseng, C.-C.; Chen, C.-K., Three new benzophenone glucosides from the leaves of Planchonella obovata. Helvetica Chimica Acta 2010, 93, 522-529.
2. Chen, H.-Y. Chemical investigation of the leaves of Planchonella obovata (R. Br.) Pierre (II). Master Thesis, National Taiwan University, 2011.
3. Huang, T. C.; Hsieh, T. H.; Cheng, W. T., Flora of Taiwan. 2nd ed.; Editorial committee of the Flora of Taiwan: Taipei, 1996; Vol. IV, p 83-87.
4. Cambie, R. C.; Ser, N. A.; Kokubun, T., Heartwood constituents of Planchonella vitiensis. Biochemical Systematics and Ecology 1997, 25, 677-678.
5. Eade, R. A.; Hunt, K.; Simes, J. J. H.; Stern, W., Extractives of Australian timbers. IX. The saponin of Planchonella pohlmanianum. Australian Journal of Chemistry 1969, 22, 2703-2707.
6. Lee, T. H.; Juang, S. H.; Hsu, F. L., Triterpene acids from the leaves of Planchonella duclitan (Blanco) Bakhuizan. Journal of the Chinese Chemical Society 2005, 52, 1275-1280.
7. Hart, N. K.; Johns, S. R.; Lamber, J. A., Alkaloids of the Sapotaceae: trans-β-methylthioacrylate and tiglate esters of (−)-isoretronecanol from a Planchonella species. Australian Journal of Chemistry 1968, 21, 1393-1395.
8. Hart, N.; Lamberton, J., Pyrrolizidine alkaloids from Planchonella species (family Sapotaceae). Australian Journal of Chemistry 1966, 19, 1259-1264.
9. 臺灣衛生福利部統計處 105年國人死因統計結果分析. http://www.mohw.gov.tw/cp-16-33598-1.html.
10. Greaves, W. O.; Bueso-Ramos, C. E., Emerging cancer therapeutics: leukemia. Popat, U., Ed. Springer New York: New York, 2011; pp. 15-40.
11. Tallman, M. S.; Altman, J. K., How I treat acute promyelocytic leukemia. Blood 2009, 114, 5126-5135.
12. Coombs, C. C.; Tavakkoli, M.; Tallman, M. S., Acute promyelocytic leukemia: where did we start, where are we now, and the future. Blood Cancer Journal 2015, 5, e304.
13. Shustov, A. R., The treatment of adult acute lymphoblastic leukemia (ALL): risk stratification and strategies. In Leukemia and Related Disorders: Integrated Treatment Approaches, Estey, E. H.; Appelbaum, F. R., Eds. Springer New York: New York, 2012; pp 37-66.
14. Coveler, A.; Oehler, V. G., Chronic myeloid leukemia (CML). In Leukemia and related disorders: integrated treatment approaches, Estey, E. H.; Appelbaum, F. R., Eds. Springer New York: New York, 2012; pp 97-147.
15. Gutman, J. A.; Smith, K. M.; Pagel, J. M.; Pagel, J. M., Chronic lymphocytic leukemia (CLL). In Leukemia and related disorders: integrated treatment approaches, Estey, E. H.; Appelbaum, F. R., Eds. Springer New York: New York, 2012; pp 67-96.
16. Sanz, M. A.; Grimwade, D.; Tallman, M. S.; Lowenberg, B.; Fenaux, P.; Estey, E. H.; Naoe, T.; Lengfelder, E.; Büchner, T.; Döhner, H.; Burnett, A. K.; Lo-Coco, F., Management of acute promyelocytic leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood 2009, 113, 1875-1891.
17. Breccia, M.; Latagliata, R.; Carmosino, I.; Cannella, L.; Diverio, D.; Guarini, A.; De Propris, M. S.; Petti, M. C.; Avvisati, G.; Cimino, G.; Mandelli, F.; Lo-Coco, F., Clinical and biological features of acute promyelocytic leukemia patients developing retinoic acid syndrome during induction treatment with all-trans retinoic acid and idarubicin. Haematologica 2008, 93, 1918-1920.
18. Chen, G.; Jin, H.; Li, X.; Zhang, Q.; Shen, Y.; Yan, S.; Zhang, W., Chemical constituents from Rhododendron spinuliferum. Chemistry of Natural Compounds 2009, 45, 725-727.
19. Ren, G.; Hou, J.; Fang, Q.; Sun, H.; Liu, X.; Zhang, L.; Wang, P. G., Synthesis of flavonol 3-O-glycoside by UGT78D1. Glycoconjugate Journal 2012, 29, 425-432.
20. Jiang, C.-L.; Tsai, S.-F.; Lee, S.-S., Flavonoids from Curcuma longa leaves and their NMR assignments. Natural Product Communications 2015, 10, 63-66.
21. Ohashi, K.; Watanabe, H.; Okumura, Y.; Uji, T.; Kitagawa, I., Indonesian medicinal plants. XII. Four isomaric lignan-glucosides from the bark of Aegle marmelos (Rutaceae). Chemical and Pharmaceutical Bulletin 1994, 42, 1924-1926.
22. Silva, V. C. d.; Silva, G. H.; Bolzani, V. d. S.; Lopes, M. N., Isolation of lignans glycosides from Alibertia sessilis (Vell.) K. Schum. (Rubiaceae) by preparative high-performance liquid chromatography. Eclética Química 2006, 31, 55-58.
23. Wen, Q.; Lin, X.; Liu, Y.; Xu, X.; Liang, T.; Zheng, N.; Kintoko; Huang, R., Phenolic and lignan glycosides from the butanol extract of Averrhoa carambola L. root. Molecules 2012, 17, 12330.
24. (a) Kasahara, H.; Jiao, Y.; Bedgar, D. L.; Kim, S.-J.; Patten, A. M.; Xia, Z.-Q.; Davin, L. B.; Lewis, N. G., Pinus taeda phenylpropenal double-bond reductase: purification, cDNA cloning, heterologous expression in Escherichia coli, and subcellular localization in P. taeda. Phytochemistry 2006, 67, 1765-1780; (b) Kuang, H.-X.; Xia, Y.-G.; Yang, B.-Y.; Wang, Q.-H.; Lü, S.-W., Lignan constituents from Chloranthus japonicus Sieb. Archives of Pharmacal Research 2009, 32, 329-334.
25. Shukla, Y. N.; Thakur, R. S.; Pachaly, P., A bidesmosidic oleanolic acid saponin from Panax pseudo-ginseng. Phytochemistry 1992, 31, 1046-1048.
26. Hara, S.; Okabe, H.; Mihashi, K., Gas-liquid chromatographic separation of aldose enantiomers as trimethylsilyl ethers of methyl 2-(polyhydroxyalkyl)-thiazolidi ne-4(R)-carboxylates. Chemical and Pharmaceutical Bulletin 1987, 35, 501-506.
27. Sargent, J. M.; Taylor, C. G., Appraisal of the MTT assay as a rapid test of chemosensitivity in acute myeloid leukaemia. British Journal of Cancer 1989, 60, 206-210.
28. Yuasa, K.; Ide, T.; Otsuka, H.; Ogimi, C.; Hirata, E.; Takushi, A.; Takeda, Y., Lignan and neolignan glycosides from stems of Alangium premnifolium. Phytochemistry 1997, 45, 611-615.
29. Park, C. H.; Kim, K. H.; Lee, I. K.; Lee, S. Y.; Choi, S. U.; Lee, J. H.; Lee, K. R., Phenolic constituents of Acorus gramineus. Archives of Pharmacal Research 2011, 34, 1289-1296.
30. Brasseur, T.; Angenot, L., Flavonol glycosides from leaves of Strychnos variabilis. Phytochemistry 1986, 25, 563-564.
31. (a) Zhang, J.; Kurita, M.; Shinozaki, T.; Ukiya, M.; Yasukawa, K.; Shimizu, N.; Tokuda, H.; Masters, E. T.; Akihisa, M.; Akihisa, T., Triterpene glycosides and other polar constituents of shea (Vitellaria paradoxa) kernels and their bioactivities. Phytochemistry 2014, 108, 157-170; (b) Chen, H.-Y.; Guh, J.-H.; Chan, S.-H.; Lee, S.-S., Cytotoxic protobassic acid glycosides from Planchonella obovata leaf. Phytochemistry Letters 2015, 11, 229-235.
32. Saha, S.; Walia, S.; Kumar, J.; Parmar, B. S., Structure-biological activity relationships in triterpenic saponins: the relative activity of protobassic acid and its derivatives against plant pathogenic fungi. Pest Management Science 2010, 66, 825-831.
33. Ragasa, C.; Torres, O.; Bernardo, L.; Madrazo, L.; Mandia, E.; Shen, C. C., Chemical constituents of Palaquium luzoniense. Chemistry of Natural Compounds 2015, 51, 181-182.
34. Gunasekera, S. P.; Kumar, V.; Sultanbawa, M. U. S.; Balasubramaniam, S., Triterpenoids and steroids of some Sapotaceae and their chemotaxonomic significance. Phytochemistry 1977, 16, 923-926.
35. Heilbron, I. M.; Kennedy, T.; Spring, F. S., 66. The unsaturated centre of the triterpene alcohol lupeol. Journal of the Chemical Society 1938, 329-334.
36. Siegel, R. L.; Miller, K. D.; Jemal, A., Cancer statistics, 2017. CA: A Cancer Journal for Clinicians 2017, 67, 7-30.
37. Huggins, C.; Hodges, C. V., Studies on prostatic cancer. I. The effect of castration, of estrogen and of androgen injection on serum phosphatases in metastatic carcinoma of the prostate. Cancer Research 1941, 1, 293-297.
38. Lorente, D.; Mateo, J.; Perez-Lopez, R.; de Bono, J. S.; Attard, G., Sequencing of agents in castration-resistant prostate cancer. The Lancet Oncology 2015, 16, e279-e292.
39. Litwin, M. S.; Tan, H., The diagnosis and treatment of prostate cancer: a review. The Journal of the American Medical Association 2017, 317, 2532-2542.
40. Kao, J.; Zucker, A.; Timmins, J.; Taramangalam, S.; Pettit, J.; Woodall, A. J.; Loizides, E.; Wong, A. T., Effect of modern, high-quality prostate intensity-modulated radiation therapy on outcome: Evidence from a community radiation oncology program. Molecular and Clinical Oncology 2017, 7, 252-258.
41. Leapman, M. S.; Carroll, P. R., What is the best way not to treat prostate cancer? Urologic Oncology: Seminars and Original Investigations 2017, 35, 42-50.
42. Francini, E.; Taplin, M.-E., Prostate cancer: developing novel approaches to castration-sensitive disease. Cancer 2017, 123, 29-42.
43. Harris, W. P.; Mostaghel, E. A.; Nelson, P. S.; Montgomery, B., Androgen deprivation therapy: progress in understanding mechanisms of resistance and optimizing androgen depletion. Nature Clinical Practice Urology 2009, 6, 76-85.
44. (a) Perlmutter, M. A.; Lepor, H., Androgen deprivation therapy in the treatment of advanced prostate cancer. Reviews in Urology 2007, 9, S3-S8; (b) Gunner, C.; Gulamhusein, A.; Rosario, D. J., The modern role of androgen deprivation therapy in the management of localised and locally advanced prostate cancer. Journal of Clinical Urology 2016, 9, 24-29.
45. West, T. A.; Kiely, B. E.; Stockler, M. R., Estimating scenarios for survival time in men starting systemic therapies for castration-resistant prostate cancer: a systematic review of randomised trials. European Journal of Cancer 2014, 50, 1916-1924.
46. (a) Petrylak, D. P.; Tangen, C. M.; Hussain, M. H. A.; Lara, P. N. J.; Jones, J. A.; Taplin, M. E.; Burch, P. A.; Berry, D.; Moinpour, C.; Kohli, M.; Benson, M. C.; Small, E. J.; Raghavan, D.; Crawford, E. D., Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N. Engl. J. Med. 2004, 351 (15), 1513-1520; (b) Tannock, I. F.; de Wit, R.; Berry, W. R.; Horti, J.; Pluzanska, A.; Chi, K. N.; Oudard, S.; Théodore, C.; James, N. D.; Turesson, I.; Rosenthal, M. A.; Eisenberger, M. A., Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. The New England Journal of Medicine 2004, 351, 1502-1512.
47. Shelley, M.; Harrison, C.; Coles, B.; Stafforth, J.; Wilt, T.; Mason, M., Chemotherapy for hormone-refractory prostate cancer. Cochrane Database of Systematic Reviews 2006.
48. Diamond, E.; del Carmen Garcias, M.; Karir, B.; Tagawa, S. T., The evolving role of cytotoxic chemotherapy in the management of patients with metastatic prostate cancer. Curr. Treat. Options Oncol. 2015, 16 (2), 9.
49. Nigam, S. K.; Li, X.-C.; Wang, D.-Z.; Misra, G.; Yang, C.-R., Triterpenoidal saponins from Madhuca butyracea. Phytochemistry 1992, 31, 3169-3172.
50. Charrouf, Z.; Wieruszeski, J. M.; Fkih-Tetouani, S.; Y, L.; Charrouf, M.; Fournet, B., Triterpenoid saponins from Argania spinosa. Phytochemistry 1992, 31, 2079-2086.
51. Lavaud, C.; Massiot, G.; Becchi, M.; Misra, G.; Nigam, S. K., Saponins from three species of Mimusops. Phytochemistry 1996, 41, 887-893.
52. Li, X.-C.; Liu, Y.-Q.; Wang, D.-Z.; Yang, C.-R.; Nigam, S. K.; Misra, G., Triterpenoid saponins from Madhuca butyracea. Phytochemistry 1994, 37, 827-829.
53. Eskander, J.; Lavaud, C.; Pouny, I.; Soliman, H. S. M.; Abdel-Khalik, S. M.; Mahmoud, I. I., Saponins from the seeds of Mimusops laurifolia. Phytochemistry 2006, 67, 1793-1799.
54. Alaoui, A.; Charrouf, Z.; Soufiaoui, M.; Carbone, V.; Malorni, A.; Pizza, C.; Piacente, S., Triterpenoid saponins from the shells of Argania spinosa seeds. Journal of Agricultural and Food Chemistry 2002, 50, 4600-4603.
55. Korver, O.; Wilkins, C. K., Circular dichroism spectra of flavanols. Tetrahedron 1971, 27, 5459-5465.
56. (a) Bilia, A. R.; Morelli, I.; Hamburger, M.; Hostetmann, K., Flavans and A-type proanthocyanidins from Prunus prostrata. Phytochemistry 1996, 43, 887-892; (b) Lin, H.-Y.; Kuo, Y.-H.; Lin, Y.-L.; Chiang, W., Antioxidative effect and active components from leaves of lotus (Nelumbo nucifera). Journal of Agricultural and Food Chemistry 2009, 57, 6623-6629.
57. Lin, G.; Chang, L.; Liu, Y.; Xiang, Z.; Chen, J.; Yang, Z., Enantioselective total syntheses of (+)-gallocatechin, (−)-epigallocatechin, and 8-C-ascorbyl-(−)-epigallo catechin. Chemistry–An Asian Journal 2013, 8, 700-704.
58. Saito, A.; Emoto, M.; Tanaka, A.; Doi, Y.; Shoji, K.; Mizushina, Y.; Ikawa, H.; Yoshida, H.; Matsuura, N.; Nakajima, N., Stereoselective synthesis of procyanidin B3-3-O-gallate and 3,3"-di-O-gallate, and their abilities as antioxidant and DNA polymerase inhibitor. Tetrahedron 2004, 60, 12043-12049.
59. (a) Choi, S.; Hong, Y.; Lee, B.; Park, J.; Jeong, H.; Kim, W.; Shin, S.; Yoon, K., Separation of polyphenols and caffeine from the acetone extract of fermented tea leaves (Camellia sinensis) using high-performance countercurrent chromatography. Molecules 2015, 20, 13216-13225; (b) Kim, H. J.; Lee, J. Y.; Kim, S. M.; Park, D.-A.; Jin, C.; Hong, S. P.; Lee, Y. S., A new epicatechin gallate and calpain inhibitory activity from Orostachys japonicus. Fitoterapia 2009, 80, 73-76.
60. Wilkins, C. K.; de Bruijn, J.; Korver, O.; Frost, D. J.; Weinges, K., Isolation and identification of (−)-gallocatechin gallate and circular dichroism of green tea flavanols. Journal of the Science of Food and Agriculture 1971, 22, 480-484.
61. Esatbeyoglu, T.; Juadjur, A.; Wray, V.; Winterhalter, P., Semisynthetic preparation and isolation of dimeric procyanidins B1–B8 from roasted hazelnut skins (Corylus avellana L.) on a large scale using countercurrent chromatography. Journal of Agricultural and Food Chemistry 2014, 62, 7101-7110.
62. Fujii, W.; Toda, K.; Kawaguchi, K.; Kawahara, S.-I.; Katoh, M.; Hattori, Y.; Fujii, H.; Makabe, H., Syntheses of prodelphinidin B3 and C2, and their antitumor activities through cell cycle arrest and caspase-3 activation. Tetrahedron 2013, 69, 3543-3550.
63. Petereit, F.; Kolodziej, H.; Nahrstedt, A., Flavan-3-ols and proanthocyanidins from Cistus incanus. Phytochemistry 1991, 30, 981-985.
64. Barrett, M. W.; Klyne, W.; Scopes, P. M.; Fletcher, A. C.; Porter, L. J.; Haslam, E., Plant proanthocyanidins. Part 6. Chiroptical studies. Part 95. Circular dichroism of procyanidins. Journal of the Chemical Society, Perkin Transactions 1 1979, 2375-2377.
65. Sun, D.; Wong, H.; Foo, L. Y., Proanthocyanidin dimers and polymers from Quercus dentata. Phytochemistry 1987, 26, 1825-1829.
66. Hashimoto, F.; Nonaka, G.-I.; Nishioka, I., Tannins and related compounds. XC. : 8-C-Ascorbyl (−)-epigallocatechin 3-O-gallate and novel dimeric flavan-3-ols, oolonghomobisflavans A and B, from oolong Tea. Chemical and Pharmaceutical Bulletin 1989, 37, 3255-3263.
67. Mamdouh, N. S.; Sugimoto, S.; Matsunami, K.; Otsuka, H.; Kamel, M. S., Taxiphyllin 6′-O-gallate, actinidioionoside 6′-O-gallate and myricetrin 2″-O-sulfate from the leaves of Syzygium samarangense and their biological activities. Chemical and Pharmaceutical Bulletin 2014, 62, 1013-1018.
68. (a) Otsuka, H.; Hirata, E.; Shinzato, T.; Takeda, Y., Stereochemistry of megastigmane glucosides from Glochidion zeylanicum and Alangium premnifolium. Phytochemistry 2003, 62, 763-768; (b) Sueyoshi, E.; Liu, H.; Matsunami, K.; Otsuka, H.; Shinzato, T.; Aramoto, M.; Takeda, Y., Bridelionosides A–F: megastigmane glucosides from Bridelia glauca f. balansae. Phytochemistry 2006, 67, 2483-2493.
69. Lou, J.; Chu, G.; Zhou, G.; Jiang, J.; Huang, F.; Xu, J.; Zheng, S.; Jiang, W.; Lu, Y.; Li, X.; Chen, Z.; He, J., Comparison between two kinds of cigarette smoke condensates (CSCs) of the cytogenotoxicity and protein expression in a human B-cell lymphoblastoid cell line using CCK-8 assay, comet assay and protein microarray. Mutation Research 2010, 697, 55-59.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 王岱淇、馮丁樹,1993,農產品廢棄物焚化物性之研究,農業機械學刊, 2 , 1 - 11 。
2. 王岱淇、馮丁樹,1993,農產品廢棄物焚化物性之研究,農業機械學刊, 2 , 1 - 11 。
3. 林明瑞、彭慶仁,2015,小球藻 (Chlorella vulgaris) 於模擬煙道氣環境下之最適生長條件探討,科學與工程技術期刊, 11 , 41 – 52 。
4. 林明瑞、彭慶仁,2015,小球藻 (Chlorella vulgaris) 於模擬煙道氣環境下之最適生長條件探討,科學與工程技術期刊, 11 , 41 – 52 。
5. 洪昆源、潘富俊,2006,森林下層植物之相剋作用與生物量關係及其在林業上之應用,臺灣林業, 32 , 64 – 67 。
6. 洪昆源、潘富俊,2006,森林下層植物之相剋作用與生物量關係及其在林業上之應用,臺灣林業, 32 , 64 – 67 。
7. 莊義雄,1996,稻田收穫後稻草處理與利用,花蓮區農業專訊, 15 , 18 – 19 。
8. 莊義雄,1996,稻田收穫後稻草處理與利用,花蓮區農業專訊, 15 , 18 – 19 。
9. 許國恩、朱敬平、鍾裕仁,2009,放流水生物毒性測試之回顧與評析。中興工程季刊, 104 , 23 – 29 。
10. 許國恩、朱敬平、鍾裕仁,2009,放流水生物毒性測試之回顧與評析。中興工程季刊, 104 , 23 – 29 。
11. 蔡玉春、林大楨、劉宗榮、何禮剛,1996,欖仁樹鮮葉、陰乾鮮葉及乾燥落葉所含Punicalin及Punicalagin之高效液相層析法定量分析。中醫藥雜誌, 7 , 187 – 192 。
12. 蔡玉春、林大楨、劉宗榮、何禮剛,1996,欖仁樹鮮葉、陰乾鮮葉及乾燥落葉所含Punicalin及Punicalagin之高效液相層析法定量分析。中醫藥雜誌, 7 , 187 – 192 。