(54.236.58.220) 您好!臺灣時間:2021/03/06 23:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐采罄
研究生(外文):Tsai-Ching Hsu
論文名稱:莪朮地上部成分之研究
論文名稱(外文):Chemical constituents from the aerial part of Curcuma aeruginosa Roxb.
指導教授:李水盛
口試日期:2017-07-31
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:藥學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:134
中文關鍵詞:薑科薑黃屬莪朮類黃酮倍半萜類
外文關鍵詞:ZingiberaceaeCurcuma aeruginosaaerial partflavonolsesquiterpenoid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:101
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
根據本研究室過去的研究,薑科植物薑黃地上部富含黃酮醇類成分,同屬植物莪朮地上部揮發油成分已有報導,但較高極性成分仍無報導,因此本研究擬探討莪朮地上部之成分。
將莪朮地上部之乙醇萃取物經極性分割後劃分為乙腈、乙酸乙酯、正丁醇和水可溶部分,並進一步對乙腈、乙酸乙酯和正丁醇可溶部分進行成分分離。過程中使用Sephadex LH-20、silica gel和逆相層析管柱、離心式分配層析,以及半製備HPLC等分離技術,共計得到23個化合物,經由核磁共振譜及質譜技術分析確認其結構,包括14個黃酮醇類:quercetin (3)、quercetin 3-O– β-D-glucuronide (1)、α-L-rhamnosyl-(1→2)-β-D-glucuronide (4)、α-L-rhamnosyl-(1→2)-β-D-galactoside (8)、β-D-glucoside (12)、α-L-arabinopyranoside (14)、α-L-rhamnoside (15)、β-D-glucuronide methyl ester (16)及α-L-rhamnosyl-(1→2)-α-L-arabinopyranoside (17),kaempferol 3-O– β-D-glucuronide (2)、α-L-rhamnosyl-(1→2)-β-D-glucuronide (7)、α-L-rhamnosyl-(1→2)-β-D-galactoside (9)、β-D-glucoside (11)及β-D-galactoside (13); 2個核苷類:adenosine (5)與uridine (6); 3個苯丙烷類:5-O-caffeoylshikimic acid (10)、methyl feruloyl malate (19)及p-coumaric acid (20);3個倍半萜類:epi-oxycurcumenol (21)、(1E,4Z)-8-hydroxy-6-oxogermacra-1(10),4,7(11)-trieno-12,8-lactone (22)及zedoarondiol (23)和1個苯甲酸衍生物:4-hydroxybenzoic acid (18)。其中化合物21為首次分離出之天然物,雖然已由合成製備。
Our recent studies on the aerial part of Curcuma longa (Zingiberaceae) indicated it to be rich in flavonols. The essential oils from the aerial part of the related species, Curcuma aeruginosa Roxb., have been reported but other constituents remain disclosed. Thus this thesis was aimed to investigate the chemical constituents from the aerial part.
The ethanol extract of the aerial part of C. aeruginosa was divided into fractions soluble in MeCN, EtOAc, n-BuOH, and water via liquid-liquid partitioning. The MeCN, EtOAc, and n-BuOH -soluble fractions were chromatographed over Sephadex LH-20, silica gel, and reversed-phase columns, centrifugal partition chromatography, and semi-preparative RP-HPLC, monitored by ESI-MS and TLC. This effort led to the isolation of 23 compounds, whose structures were determined based on 1H and 13C NMR spectroscopic analyses and MS data. They are 14 flavonols: quercetin (3), quercetin 3-O– β-D-glucuronide (1), α-L-rhamnosyl-(1→2)-β-D-glucuronide (4), α-L-rhamnosyl-(1→2)-β-D-galactoside (8), β-D-glucoside (12), α-L-arabinopyranoside (14), α-L-rhamnoside (15), β-D-glucuronide methyl ester (16), and α-L-rhamnosyl-(1→2)-α-L-arabinopyranoside (17); kaempferol 3-O– β-D-glucuronide (2), α-L-rhamnosyl-(1→2)-β-D-glucuronide (7), α-L-rhamnosyl-(1→2)-β-D-galactoide (9), β-D-glucoside (11), and β-D-galactoide (13); two nucleosides: adenosine (5) and uridine (6); three phenylpropanoids: 5-O-caffeoylshikimic acid (10), methyl feruloyl malate (19), and p-coumaric acid (20); three sesquiterpenoids: epi-oxycurcumenol (21), (1E,4Z)-8-hydroxy-6-oxogermacra-1(10),4,7(11)-trieno-12,8-lactone (22), and zedoarondiol (23); one phenolics: 4-hydroxybezoic acid (18). Among these, compound 21 is a new natural product although it has been prepared synthetically.
總目錄
中文摘要 I
英文摘要 ⅠⅠ
目錄 III
表目錄 (List of tables) Ⅴ
圖目錄 (List of figures) ⅤⅠ
流程圖目錄 (List of scheme) ⅤⅠⅠ
辭彙 (Glossary) ⅤIII
目錄
1. 緒論及研究目的 1
1.1 研究目的 1
1.2 莪朮之簡介 2
1.3 莪朮生物活性之研究 3
1.4 薑黃屬 (Curcuma) 成分之文獻回顧 4
2. 實驗結果與討論 25
2.1 黃酮醇化合物 (Flavonols) 27
2.1.1 Quercetin 3-O-β-D-glucuronide (1) 之結構解析 27
2.1.2 Kaempferol 3-O-β-D-glucuronide (2) 之結構解析 27
2.1.3 Quercetin (3) 之結構解析 29
2.1.4 Quercetin 3-O-α-L-rhamnosyl-(1→2)-β-D-glucuronide (4) 之結構解析 30
2.1.5 Kaempferol 3-O-α-L-rhamnosyl-(1→2)-β-D-glucuronide (7) 之結構解析 30
2.1.6 Quercetin 3-O-α-L-rhamnosyl-(1→2)-β-D-galactopyranoside (8) 之結構解析 32
2.1.7 Kaempferol 3-O-α-L-rhamnosyl-(1→2)-β-D-galactopyranoside (9) 之結構解析 33
2.1.8 化合物11~16之結構解析 37
2.1.9 Quercetin 3-O-α-L-rhamnosyl-(1→2)-α-L-arabinopyranoside (17)之結構解析 41
2.2 核苷類(neucleoside)成分 43
2.2.1 Adenosine (5) 之結構解析 43
2.2.2 Uridine (6) 之結構解析 43
2.3 苯丙烷類(Phenylpropanoid)成分 45
2.3.1 5-O-Caffeoylshikimic acid (10) 之結構解析 45
2.3.2 Methyl feruloyl malate (19) 之結構解析 47
2.3.3 p-Coumaric acid (20) 之結構解析 49
2.4 倍半萜類成分 (Sesquiterpenoids) 50
2.4.1 Epi-oxycurcumenol (21) 之結構解析 50
2.4.2 (1E,4Z)-8-hydroxy-6-oxogermacra-1(10),4,7(11)-trieno-12,8-lactone (22) 之結構解析 52
2.4.3 Zedoarondiol (23) 之結構解析 55
2.5 苯甲酸衍生物 (Benzoic acid derivatives) 57
2.5.1 4-Hydroxybenzoic acid (18) 之結構解析 57
2.6 討論 58
2.6.1黃酮醇的分離 58
2.6.2 Epi-oxycurcumenol (21) 結構解析與文獻比較………..…………………………………………………………….. ...58
2.6.3 Zedoarondiol (23) 結構解析與文獻比較…………………………..60
3. 實驗部分 61
3.1 儀器與材料 61
3.1.1 理化性質測定儀器 61
3.1.2 成分分離之儀器與材料 61
3.1.3 試劑與溶媒 62
3.1.4 電腦軟體 63
3.2 植物來源 63
3.3 莪朮地上部成分萃取與純化 63
3.3.1 莪朮之萃取 63
3.3.2 莪朮地上部正丁醇可溶部分之分離 64
3.3.3 莪朮地上部乙酸乙酯可溶部分之分離 68
3.3.4 莪朮地上部乙腈可溶部分之來源 71
3.3.5 莪朮地上部乙腈可溶部分之分離 72
3.4 HPLC-DAD-SPE-NMR分析 74
3.4.1 Fr. E-7-4之分析條件 74
3.4.2 Fr. E-6-5之分析條件 74
3.5 化合物之物理數據 77
參考資料 82
附圖 91

表目錄 (List of tables)
Table 1. Compounds isolated from Curcuma plants. 4
Table 2. 1H NMR (200 MHz for 1, 400MHz for 2) and 13C NMR data (100 MHz) data of 1 and 2 (CD3OD). 28
Table 3. 1H NMR data of 3 (CD3OD, 200 MHz). 29
Table 4. 1H NMR data of 4 and 7 (CD3OD, 400 MHz). 31
Table 5. 1H NMR (600 MHz for 8, 500 MHz for 9) data of 8 and 9 (CD3OD). 35
Table 6. Results of HPLC-DAD analysis of 8 and 9. 36
Table 7. 1H NMR (400 MHz for 11、12, 600 MHz for 13) data of 11-13 (CD3OD). 39
Table 8. 1H NMR data of 14-16 (CD3OD, 600 MHz). 40
Table 9. 1H NMR data of 17 (CD3OD, 600 MHz). 42
Table 10. 1H NMR (400 MHz for 5, 200 MHz for 6) data of 5 and 6 (CD3OD). 44
Table 11. 1H NMR (200 MHz) and 13C NMR data (100 MHz) of 10 (CD3OD). 46
Table 12. 1H NMR of 19 (CD3OD, 400 MHz). 48
Table 17 1H NMR data of 20 (CD3OD, 200 MHz) 49
Table 13. 1H NMR of 21 (CDCl3, 200 MHz) 51
Table 14 1H (400 MHz) and 13C NMR (100 MHz) data of 22 (CDCl3) 54
Table 15 1H (400 MHz) and 13C NMR (100 MHz) data of 23. 56
Table 16. 1H NMR data of 18 (CD3OD, 200 MHz). 57
Table 18 13C NMR (50 MHz) of 21, oxycurcumenol and epi-oxycurcumenol88 (CDCl3) 59
圖目錄 (List of figures)
Figure 1. Curcuma aeruginosa Roxb. 2
Figure 2. Monoterpenoids and sesquiterpenoids isolated from Curcuma plants. 12
Figure 3. Sesquiterpenoids isolated from Curcuma plants (I) 13
Figure 4. Sesquiterpenoids isolated from Curcuma plants (II). 14
Figure 5. Sesquiterpenoids and diterpenoids isolated from Curcuma plants. 15
Figure 6. Curcuminoids isolated from Curcuma plants (I). 16
Figure 7. Curcuminoids isolated from Curcuma plants (II). 17
Figure 8. Curcuminoids isolated from Curcuma plants (III). 18
Figure 9. Curcuminoids isolated from Curcuma plants (IV). 19
Figure 10. Curcuminoids isolated from Curcuma plants (V). 20
Figure 11. Curcuminoids isolated from Curcuma plants (VI). 21
Figure 12. Curcuminoids isolated from Curcuma plants.(VII) 22
Figure 13. Curcuminoids, flavonoids and triacylglycerol isolated from Curcuma plants. 23
Figure 14. Fatty acids, phenylpropanoid and other compounds isolated from Curcuma plants. 24
Figure 15. Key HMBC correlation of compound 22 53
Figure 16. Structure of isozedoarondiol. 56
Figure 17. (a) Oxycurcumenol (b) epi-oxycurcumenol (ketal form) (c) epi-oxycurcumenol 59
Figure 18. Structure of ent-zedoarondiol 60
Figure 19. CD data of compound 23 60
Figure 20. HPLC chromatograms of Fr. E-7-4 and Fr. E-6-5. 76
流程圖目錄 (List of scheme)
Scheme 1 Fractionation of the EtOH extract of Curcuma aeruginosa 63
Scheme 2 Separation scheme of the n-BuOH soluble layer of the EtOH extract of Curcuma aeruginosa 67
Scheme 3 Separation scheme of the EtOAc soluble layer of the EtOH extract of Curcuma aeruginosa 70
Scheme 4 Fractionation of the CH2Cl2 soluble part of Curcuma aeruginosa 71
Scheme 5 Separation scheme of the ACN soluble layer of the EtOH extract of Curcuma aeruginosa 73
(1) Simoh, S.; Zainal, A. Chemical profiling of Curcuma aeruginosa Roxb. rhizome using different techniques of solvent extraction. Asian Pac. J. Trop. Biomed. 2015, 5(5), 412–417.
(2) Suphrom, N.; Pumthong, G.; Khorana, N.; Waranuch, N.; Limpeanchob, N.; Ingkaninan, K. Anti-androgenic effect of sesquiterpenes isolated from the rhizomes of Curcuma aeruginosa Roxb. Fitoterapia 2012, 83(5), 864–871.
(3) Jirovetz, L.; Buchbauer, G.; Puschmann, C.; Shafi, M. P.; Nambiar, M. K. G. Essential oil analysis of Curcuma aeruginosa Roxb. leaves from south India. J. Essent. Oil Res. 2000, 12(1), 47–49.
(4) Sukari, A. H.; Lajis, N. H.; Muse, R.; Riyanto, S. Chemical constituents and bioactivity of Curcuma aeruginosa Roxb. Nat. Prod. Sci. 2007, 13(3), 175–179.
(5)中國科學院編委會 (1959-2004) 。中國植物志。中國:科學出版社。.
(6)Tips Curing Disease. (2017, August 16). Zedoary (Curcuma zedoaria) overview, health benefits, side effects [Picture file]. Retrieved from http://www.tipdisease.com/2015/10/zedoary-curcuma-zedoaria-overview.html.
(7) Pumthong, G.; Asawanonda, P.; Varothai, S.; Jariyasethavong, V.; Triwongwaranat, D.; Suthipinittharm, P.; Ingkaninan, K.; Leelapornpisit, P.; Waranuch, N. Curcuma aeruginosa, a novel botanically derived 5α-reductase inhibitor in the treatment of male-pattern baldness: a multicenter, randomized, double-blind, placebo-controlled study. J. Dermatol. Treat. 2012, 23(5), 385–392.
(8)Chen, W.; Lu, Y.; Gao, M.; Wu, J.; Wang, A.; Shi, R. Anti-angiogenesis effect of essential oil from Curcuma zedoaria in vitro and in vivo. J. Ethnopharmacol. 2011, 133(1), 220–226.
(9) Ravindran, P. N.; Babu, K. N.; Sivaraman, K. (Eds.). (2007). Turmeric: the genus Curcuma. Boca Raton, FL: CRC Press.
(10) 臺灣生物多樣性資訊網 (2001) 。 Curcuma 薑黃屬。2017年6月29日,取自 http://taibif.tw/zh/catalogue_of_life/page/d5e1-7f1d-69ad-a4bc-a661-718d-9ff8-863d
(11) Pitasawat, B.; Champakaew, D.; Choochote, W.; Jitpakdi, A.; Chaithong, U.; Kanjanapothi, D.; Rattanachanpichai, E.; Tippawangkosol, P.; Riyong, D.; Tuetun, B.; Chaiyasit, D. Aromatic plant-derived essential oil: an alternative larvicide for mosquito control. Fitoterapia 2007, 78(3), 205–210.
(12) Kelkar, N. C.; Rao, B. S. Essential oil from the rhizomes of Curcuma longa, Linn. J. Indian Inst. Sci. 2013, 17(7), 7–24.
(13) Liu, Y.; Nair, M. G.Curcuma longa and Curcuma mangga leaves exhibit functional food property. Food chemistry 2012, 135(2), 634–640.
(14) Dieterle, H.; Kaiser, P. Über die Inhaltsstoffe des Rhizoms von Curcuma domestica (Temoe Lawak). Arch. Pharm. (Weinheim) 1933, 271(6), 337–342.
(15) Hamdi, O. A. A.; Anouar, E. H.; Shilpi, J. A.; Trabolsy, Z. B. K. A.; Zain, S. B. M.; Zakaria, N. S. S.; Awang, K. A Quantum chemical and statistical study of cytotoxic activity of compounds isolated from Curcuma zedoaria. Int. J. Mol. Sci. 2015, 16(5), 9450–9468.
(16) Shiobara, Y.; Asakawa, Y.; Kodama, M.; Yasuda, K.; Takemoto, T. Curcumenone, curcumanolide A and curcumanolide B, three sesquiterpenoids from Curcuma zedoaria. Phytochemistry 1985, 24(11), 2629–2633.
(17) Chen, J. J.; Tsai, T. H.; Liao, H. R.; Chen, L. C.; Kuo, Y. H.; Sung, P. J.; Chen, C. L.; Wei, C. S. New sesquiterpenoids and anti-platelet aggregation constituents from the rhizomes of Curcuma zedoaria. Molecules 2016, 21(10), 1385.
(18) Hikino, H.; Meguro, K.; Sakurai, Y.; Takemoto, T. Structure of curcumol. Chem. Pharm. Bull. (Tokyo) 1966, 14(11), 1241–1249.
(19) Pandji, C.; Grimm, C.; Wray, V.; Witte, L.; Proksch, P. Insecticidal constituents from four species of the Zingiberaceae. Phytochemistry 1993, 34(2), 415–419.
(20) Kasahara, K.; Nomura, S.; Matsuura, H.; Yamasaki, M.; Yamato, O.; Maede, Y.; Yoshihara, T. Anti-babesial compounds from Curcuma zedoaria. Planta Med. 2005, 71(5), 482–484.
(21) Matsuda, H.; Morikawa, T.; Ninomiya, K.; Yoshikawa, M. Absolute stereostructure of carabrane-type sesquiterpene and vasorelaxant-active sesquiterpenes from Zedoariae Rhizoma. Tetrahedron 2001, 57(40), 8443–8453.
(22) Ohshiro, M.; Kuroyanagi, M.; Ueno, A. Structures of sesquiterpenes from Curcuma longa. Phytochemistry 1990, 29(7), 2201–2205.
(23) Matsuda, H.; Ninomiya, K.; Morikawa, T.; Yoshikawa, M. Inhibitory effect and action mechanism of sesquiterpenes from Zedoariae Rhizoma on D-galactosamine / lipopolysaccharide-induced liver injury. Bioorg. Med. Chem. Lett. 1998, 8(4), 339–344.
(24) Jang, M. K.; Sohn, D. H.; Ryu, J. H. A curcuminoid and sesquiterpenes as inhibitors of macrophage TNF-α release from Curcuma zedoaria. Planta Med. 2001, 67(06), 550–552.
(25) Syu, W. J.; Shen, C. C.; Don, M. J.; Ou, J. C.; Lee, G. H.; Sun, C. M. Cytotoxicity of curcuminoids and some novel compounds from Curcuma zedoaria. J. Nat. Prod. 1998, 61(12), 1531–1534.
(26) 天津耀宇生物技术有限公司 (2016) 。中華人民共和國專利公開號CN105601599 A。
(27)Matsuda, H.; Morikawa, T.; Ninomiya, K.; Yoshikawa, M. Hepatoprotective constituents from Zedoariae Rhizoma: absolute stereostructures of three new carabrane-type sesquiterpenes, curcumenolactones A, B, and C. Bioorg. Med. Chem. 2001, 9(4), 909–916.
(28)Shiobara, Y.; Asakawa, Y.; Kodama, M.; Takemoto, T. Zedoarol, 13-hydroxygermacrone and curzeone, three sesquiterpenoids from Curcuma zedoaria. Phytochemistry 1986, 25(6), 1351–1353.
(29) Hikino, H.; Konno, C.; Agatsuma, K.; Takemoto, T.; Horibe, I.; Tori, K.; Takeda, K. I. Structure, configuration, conformation, and thermal rearrangement of furanodienone, isofuranodienone, curzerenone, epicurzerenone, and pyrocurzerenone, sesquiterpenoids of Curcuma zedoaria. J. Chem. Soc. Perkin Trans. I, 1975, 5, 478–484.
(30)Eun, S. H.; Choi, I. H.; Shim, S. H. A new sesquiterpenoid from the rhizome of Curcuma zedoaria. Bull. Korean Chem. Soc. 2010, 31(5), 1387–1388.
(31) Hikino, H.; Konno C.; Takemoto T. Structure of curcumadiol, a sesquiterpenoid of Curcuma zedoaria. Chem. Pharm. Bull. (Tokyo) 1971, 19(1), 93–96.
(32) Uematsu, S.; Akahori, Y.; Fukushima, S.; Saiki, Y.; Ueno, A.; Kuroyanagi, M. A nuclear magnetic resonance study of the curzerenone. Chem. Pharm. Bull. (Tokyo) 1970, 18(6), 1118–1123.
(33) Jacob, J. N. (2015). U.S. Patent Application No. 14/657,529.
(34) Golding, B. T.; Pombo, E.; Samuel, C. J Turmerones: Isolation from turmeric and their structure determination. J. Chem. Soc. Chem. Commun. 1982, 6, 363–364.
(35) Del Prete, D.; Millán, E.; Pollastro, F.; Chianese, G.; Luciano, P.; Collado, J. A.; Munoz, E.; Appendino, G.; Taglialatela-Scafati, O. Turmeric sesquiterpenoids: expeditious resolution, comparative bioactivity, and a new bicyclic turmeronoid. J. Nat. Prod. 2016, 79(2), 267–273.
(36) Xu, J.; Ji, F.; Kang, J.; Wang, H.; Li, S.; Jin, D.-Q.; Zhang, Q.; Sun, H.; Guo, Y. Absolute configurations and no inhibitory activities of terpenoids from Curcuma longa. J. Agric. Food Chem. 2015, 63(24), 5805–5812.
(37) Li, J.; Wang, H. F.; Chen, G.; Huang, S. D.; Zhang, W. Y.; Hua, H. M.; Pei, Y. H. Structure determination of two new bisabolane-type sesquiterpenes from the rhizomes of Curcuma longa by NMR spectroscopy. Magn. Reson. Chem. 2015, 53(7), 536–538.
(38)Zeng, Y.; Qiu, F.; Takahashi, K.; Liang, J.; Qu, G.; Yao, X. New sesquiterpenes and calebin derivatives from Curcuma longa. Chem. Pharm. Bull. (Tokyo) 2007, 55(6), 940–943.
(39)Kiso, Y.; Suzuki, Y.; Oshima, Y.; Hikino, H. Stereostructure of curlone, a sesquiterpenoid of Curcuma longa rhizomes. Phytochemistry 1983, 22(2), 596–597.
(40)El Demerdash, A.; Dawidar, A. M.; Keshk, E. M.; Abdel-Mogib, M. Gingerdione from the rhizomes of Curcuma longa. Chem. Nat. Compd. 2012, 48(4), 646–648.
(41) Jayaprakasha, G. K.; Jagan Mohan Rao, L.; Sakariah, K. K. Improved HPLC method for the determination of curcumin, demethoxycurcumin, and bisdemethoxycurcumin. J. Agric. Food Chem. 2002, 50(13), 3668–3672.
(42)Lee, H. S.; Jung, K. K.; Cho, J. Y.; Rhee, M. H.; Hong, S.; Kwon, M.; Kim, S. H.; Kang, S. Y. Neuroprotective effect of curcumin is mainly mediated by blockade of microglial cell activation. Pharm. 2007, 62(12), 937–942.
(43)Kachler, J. Notizen Über das Curcumin. Berichte Dtsch. Chem. Ges. 1870, 3(2), 713–716.
(44)Du, Z.; Liu, R.; Shao, W.; Mao, X.; Ma, L.; Gu, L.; Huang, Z.; Chan, A. S. C. α-Glucosidase inhibition of natural curcuminoids and curcumin analogs. Eur. J. Med. Chem. 2006, 41(2), 213–218.
(45) Park, S.-Y.; Kim, D. S. H. L. Discovery of natural products from Curcuma longa that protect cells from beta-amyloid insult:  a drug discovery effort against Alzheimer’s Disease. J. Nat. Prod. 2002, 65(9), 1227–1231.
(46) Nakayama, R.; Tamura, Y.; Yamanaka, H.; Kikuzaki, H.; Nakatani, N. Two curcuminoid pigments from Curcuma domestica. Phytochemistry 1993, 33 (2), 501–502.
(47) Kuroyanagi, M.; Natori, S. Some observation on curcuminoids from Zingiberaceae plants. Yakugaku Zasshi 1970, 90(11), 1467–1470.
(48) Rasmussen, H. B.; Christensen, S. B.; Kvist, L. P.; Karazmi, A. A Simple and efficient separation of the curcumins, the antiprotozoal constituents of Curcuma longa. Planta Med. 2000, 66(04), 396–398.
(49) Matthes, H. W. D.; Luu, B.; Ourisson, G. Cytotoxic components of Zingiber zerumbet, Curcuma zedoaria and C. domestica. Phytochemistry 1980, 19 (12), 2643–2650.
(50)Stebbins, J. H. Upon the preparation of artificial indigo and some of its derivatives. J. Am. Chem. Soc. 1882, 4(6), 81–86.
(51) Masuda, T.; Jitoe, A.; Isobe, J.; Nakatani, N.; Yonemori, S. Anti-oxidative and anti-inflammatory curcumin-related phenolics from rhizomes of Curcuma domestica. Phytochemistry 1993, 32(6), 1557–1560.
(52) Xiao, Y. C.; Xie, J.; Yu, M.; Liu, M.; Ran, J.; Xi, Z.; Li, W.; Huang, J. Bisabocurcumin, a new skeleton curcuminoid from the rhizomes of Curcuma longa L. Chin. Chem. Lett. 2011, 22(12), 1457–1460.
(53)Dao, T. T.; Nguyen, P. H.; Won, H. K.; Kim, E. H.; Park, J.; Won, B. Y.; Oh, W. K. Curcuminoids from Curcuma longa and their inhibitory activities on influenza a neuraminidases. Food Chem. 2012, 134(1), 21–28.
(54)Srinivasan, K. R. A Chromatographic study of the curcuminoids in Curcuma longa, L. J. Pharm. Pharmacol. 1953, 5(1), 448–457.
(55)Park, B. S.; Kim, J. G.; Kim, M. R.; Lee, S. E.; Takeoka, G. R.; Oh, K. B.; Kim, J. H. Curcuma longa L. constituents inhibit Sortase A and Staphylococcus Aureus cell adhesion to fibronectin. J. Agric. Food Chem. 2005, 53(23), 9005–9009.
(56) Masuda, T.; Toi, Y.; Bando, H.; Maekawa, T.; Takeda, Y.; Yamaguchi, H. Structural identification of new curcumin dimers and their contribution to the antioxidant mechanism of curcumin. J. Agric. Food Chem. 2002, 50(9), 2524–2530.
(57) Kiuchi, F.; Goto, Y.; Sugimoto, N.; Akao, N.; Kondo, K.; Tsuda, Y. Nematocidal activity of turmeric : synergistic action of curcuminoids. Chem. Pharm. Bull. (Tokyo) 1993, 41(9), 1640–1643.
(58)Kita, T.; Imai, S.; Sawada, H.; Seto, H. Isolation of dihydrocurcuminoids from cell clumps and their distribution in various parts of turmeric (Curcuma longa). Biosci. Biotechnol. Biochem. 2009, 73(5), 1113–1117.
(59) Song, E. K.; Cho, H.; Kim, J. S.; Kim, N. Y.; An, N. H.; Kim, J. A.; Lee, S. H.; Kim, Y. C. Diarylheptanoids with free radical scavenging and hepatoprotective activity in vitro from Curcuma longa. Planta Med. 2001, 67(09), 876–877.
(60) Woo-Song, L. E. E., Ryu, Y. B., Kim, Y. M., Park, S. J., Rho, M. C., Jeong, H. J., & Kwon, H. J. (2012). U.S. Patent Application No. 14/126,106.
(61) Lin, X.; Ji, S.; Qiao, X.; Hu, H.; Chen, N.; Dong, Y.; Huang, Y.; Guo, D.; Tu, P.; Ye, M. Density functional theory calculations in stereochemical determination of terpecurcumins J–W, cytotoxic terpene-conjugated curcuminoids from Curcuma longa L. J. Org. Chem. 2013, 78(23), 11835–11848.
(62) Xiao, Y. C.; Lei, J.; Liu, M.; Yu, M.; Ran, J.; Xie, J.; Li, W.; Huang, J. Three new bisabolocurcumin ethers from the rhizomes of Curcuma longa L. Helv. Chim. Acta 2012, 95 (2), 327–332.
(63) Lin, X.; Ji, S.; Li, R.; Dong, Y.; Qiao, X.; Hu, H.; Yang, W.; Guo, D.; Tu, P.; Ye, M. Terpecurcumins A–I from the rhizomes of Curcuma longa: absolute configuration and cytotoxic activity. J. Nat. Prod. 2012, 75(12), 2121–2131.
(64)Li, W.; Wang, S.; Feng, J.; Xiao, Y.; Xue, X.; Zhang, H.; Wang, Y.; Liang, X. Structure elucidation and NMR assignments for curcuminoids from the rhizomes of Curcuma longa. Magn. Reson. Chem. 2009, 47(10), 902–908.
(65) Gow, R. T., Li, D., Manville, H. B., Sypert, G. W., & Alberte, R. S. (2007). U.S. Patent Application No. 11/725,140.
(66) Roth, G. N.; Chandra, A.; Nair, M. G. Novel bioactivities of Curcuma longa constituents. J. Nat. Prod. 1998, 61(4), 542–545.
(67) Nakayama, M.; Roh, M. S.; Uchida, K.; Yamaguchi, Y.; Takano, K.; Koshioka, M. Malvidin 3-rutinoside as the pigment responsible for bract color in Curcuma alismatifolia. Biosci. Biotechnol. Biochem. 2000, 64 (5), 1093–1095.
(68)Nualkaew, S.; Gritsanapan, W.; Petereit, F.; Nahrstedt, A. New fatty acid esters originate during storage by the interaction of components in Prasaplai, a Thai traditional medicine. Planta Med. 2004, 70(12), 1243–1246.
(69) Arima, H.; Danno, G. Isolation of antimicrobial compounds from guava (Psidium guajava L.) and their structural elucidation. Biosci. Biotechnol. Biochem. 2002, 66(8), 1727–1730.
(70) Kim, J. R., Son, J. K., Yang, H. H., & Hwangbo, K. (2013). U.S. Patent Application No. 14/425,951.
(71) Granica, S.; Czerwińska, M. E.; Żyżyńska-Granica, B.; Kiss, A. K. Antioxidant and anti-inflammatory flavonol glucuronides from Polygonum aviculare L. Fitoterapia 2013, 91, 180–188.
(72) Tor, Y. S.; Yazan, L. S.; Foo, J. B.; Wibowo, A.; Ismail, N.; Cheah, Y. K.; Abdullah, R.; Ismail, M.; Ismail, I. S.; Yeap, S. K. Induction of apoptosis in MCF-7 cells via oxidative stress generation, mitochondria-dependent and caspase-independent pathway by ethyl acetate extract of Dillenia suffruticosa and its chemical profile. PloS one 2015, 10(6), e0127441.
(73) Claudia, F.; Schimmer, O. Flavonoid glycosides from Alchemilla speciosa. Planta Med. 1999, 65(7), 668–670.
(74) Furusawa, M.; Tanaka, T.; Ito, T.; Nakaya, K. I.; Iliya, I.; Ohyama, M.; Iinuma, M.; Murata, H.; Inatomi, Y.; Inada, A.; Nakanishi, T.; Matsushita, S.; Kubota, Y.; Sawa, R.; Takahashi Y. Flavonol glycosides in leaves of two Diospyros species. Chem Pharm Bull (Tokyo) 2005, 53(5), 591–593.
(75) Leite, J. P. V.; Rastrelli, L.; Romussi, G.; Oliveira, A. B.; Vilegas, J. H. Y.; Vilegas, W.; Pizza, C. Isolation and HPLC quantitative analysis of flavonoid glycosides from Brazilian beverages (Maytenus ilicifolia and M. aquifolium). J. Agric. Food Chem. 2001, 49(8), 3796–3801.
(76) Han, S.; Hanh Nguyen, T. T.; Hur, J.; Kim, N. M.; Kim, S.-B.; Hwang, K. H.; Moon, Y. H.; Kang, C.; Chung, B.; Kim, Y. M.; Kim, T. S.; Park, J. S.; Kim, D. Synthesis and characterization of novel astragalin galactosides using β-galactosidase from Bacillus circulans. Enzyme Microb. Technol. 2017, 103, 59–67.
(77) He, Z., Lian, W., Liu, J., Zheng, R., Xu, H., Du, G., & Liu, A. Isolation, structural characterization and neuraminidase inhibitory activities of polyphenolic constituents from Flos caryophylli. Phytochem Lett. 2017, 19, 160–167.
(78) Jung, M.; Choi, J.; Chae, H. S.; Cho, J. Y.; Kim, Y. D.; Htwe, K. M.; Lee, W. S.; Chin, Y. W.; Kim, J.; Yoon, K. D. Flavonoids from Symplocos racemosa. Molecules 2014, 20(1), 358–365.
(79)Bernard, F. X.; Sablé, S.; Cameron, B.; Provost, J.; Desnottes, J. F.; Crouzet, J.; Blanche, F. Glycosylated flavones as selective inhibitors of topoisomerase IV. Antimicrob. Agents Chemother. 1997, 41(5), 992–998.
(80) Wang, P. H.; Lee, S. S. Polar chemical constituents from Phoebe formosana. J. Chin. Chem. Soc. 1999, 46(2), 215–219.
(81) Yang, N. Y., Tao, W. W., & Duan, J. A. Antithrombotic flavonoids from the faeces of Trogopterus xanthipes. Nat. Prod. Res. 2010, 24(19), 1843–1849.
(82) Halabalaki, M.; Urbain, A.; Paschali, A.; Mitakou, S.; Tillequin, F.; Skaltsounis, A. L. Quercetin and kaempferol 3-O-[α-L-rhamnopyranosyl-(1→2)- α-L-arabinopyranoside]-7-O-α-L -rhamnopyranosides from Anthyllis hermanniae: Structure determination and conformational studies. J. Nat. Prod. 2011, 74(9), 1939–1945.
(83) Ferreira, F. P., de Oliveira, D. C. R. New constituents from Mikania laevigata Shultz Bip. ex Baker. Tetrahedron Lett. 2010, 51(52), 6856–6859.
(84) Kumar, V.; Yadav, N.; Kartha, K. P. R. In (III) triflate-catalyzed detritylation and glycosylation by solvent-free ball milling. Carbohydr. Res. 2014, 397, 18–26.
(85) Xu, S.; Shang, M. Y.; Liu, G. X.; Xu, F.; Wang, X.; Shou, C. C.; Cai, S. Q. Chemical constituents from the rhizomes of Smilax glabra and their antimicrobial activity. Molecules 2013, 18(5), 5265–5287.
(86) Fukuoka, M. Isolation of 5-O-caffeoylshikimic acid as an antithiamine factor. Chem. Pharm. Bull. (Tokyo) 1982, 30(9), 3219–3224.
(87) Pedras, M. S. C.; Zheng, Q. A.; Gadagi, R. S.; Rimmer, S. R. Phytoalexins and polar metabolites from the oilseeds canola and rapeseed: differential metabolic responses to the biotroph Albugo candida and to abiotic stress. Phytochemistry 2008, 69(4), 894–910.
(88) Firman, K.; Kinoshita, T.; Itai, A.; Sankawa, U. Terpenoids from Curcuma heyneana. Phytochemistry 1988, 27(12), 3887–3891.
(89) Wu, B.; He, S.; Wu, X. D.; Pan, Y. J. New tyrosinase inhibitory sesquiterpenes from Chloranthus henryi. Chem. Biodivers. 2008, 5(7), 1298–1303.
(90) Takano, I.; Yasuda, I.; Takeya, K.; Itokawa, H. Guaiane sesquiterpene lactones from Curcuma aeruginosa. Phytochemistry 1995, 40(4), 1197–1200.
(91) Kuroyanagi, M.; Ueno, A.; Ujiie, K.; Sato, S. Structures of sesquiterpenes from Curcuma aromatica SALISB. Chem. Pharm. Bull. (Tokyo) 1987, 35(1), 53–59.
(92) Chan, C. C.; Chen, Y. W.; Su, C. S.; Lin, H. P.; Lee, C. F. Green catalysts derived from agricultural and industrial waste products: the preparation of phenols from CsOH and aryl iodides using CuO on mesoporous silica. Eur. J. Org. Chem. 2011, 2011(36), 7288–7293.
(93) Li, Z. J.; Cai, L.; Mei, R. F.; Dong, J. W.; Li, S. Q.; Yang, X. Q.; Zhou, Y.; Yin, T. P.; Ding, Z. T. A highly efficient transformation of cis-to trans-cinnamic acid derivatives by iodine. Tetrahedron Lett. 2015, 56(52), 7197–7200.
(94) 遠藤次郎、糸川秀治 (1978) 。54 フタバアオイの精油成分の研究。天然有機化合物討論会講演要旨集,21,401–408。
(95) Furusawa, M.; Tanaka, T.; Ito, T.; Nakaya, K.; Iliya, I.; Ohyama, M.; Iinuma, M.; Murata, H.; Inatomi, Y.; Inada, A.; Nakanishi, T.; Matsushita, S.; Kubota, Y.; Sawa, R.; Takahashi, Y. Flavonol glycosides in leaves of two Diospyros species. Chem. Pharm. Bull. (Tokyo) 2005, 53(5), 591–593.
(96) Komissarenko, N. F.; Chernobai, V. T.; Derkach, A. I. Flavonoids of inflorescences of calendula officinalis. Chem. Nat. Compd. 1988, 24(6), 675–680.
(97)Ding, Y.; Liang, C.; Nguyen, H. T.; Choi, E. M.; Kim, J. A.; Kim, Y. H. Chemical constituents from acer mandshuricum and their effects on the function of osteoblastic MC3T3-E1 cells. Bull. Korean Chem. Soc. 2010, 31(4), 929–933.
(98) Yasinov, R. K.; Yakovlev, G. P. Flavonoids of Astragalus babatagi. Chem. Nat. Compd. 1986, 22(3), 349–34.
(99) Bellamy, F. D.; Bondoux, M.; Dodey, P. A new, short and efficient synthesis of both enantiomers of carnitine. Tetrahedron Lett. 1990, 31(50), 7323–7326.
(100) Liu, Y.; Ma, J.; Zhao, Q.; Liao, C.; Ding, L.; Chen, L.; Zhao, F.; Qiu, F. Guaiane-type sesquiterpenes from Curcuma phaeocaulis and their inhibitory effects on nitric oxide production. J. Nat. Prod. 2013, 76(6), 1150–1156.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔