跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/01/17 19:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:游硯婷
研究生(外文):Yen-Ting Yu
論文名稱:以家庭為中心介入計劃於極低出生體重早產兒之新生兒時期神經行為與神經生理功能預後療效探討
論文名稱(外文):Effectiveness of a Family-Centered Intervention Program on Neonatal Neurobehavioral and Neurophysiological Functions in Preterm Infants with Very Low Birth Weight
指導教授:鄭素芳鄭素芳引用關係
指導教授(外文):Suh-Fang Jeng
口試日期:2017-05-31
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:物理治療學研究所
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:105
中文關鍵詞:早產兒以家庭為中心介入計畫腦波圖/事件相關電位錯配負向波介入療效神經行為發展
外文關鍵詞:preterm infantsfamily-centered interventionelectroencephalography / event related potentialmismatch negativityintervention effectneurobehavioral development
相關次數:
  • 被引用被引用:1
  • 點閱點閱:259
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
背景:以家庭為中心之早產兒的早期介入在西方社會執行時呈現短至中期的療效,然而其在東方社會的介入療效與神經機制卻很少被探討。本研究主要有四個目的: (1)探討臺灣極低出生體重早產兒(出生體重低於1,500公克)實施以家庭為中心之早期介入計劃與醫院現行的常規照護,於新生兒階段的醫療狀況、神經行為以及神經生理功能之療效;(2)檢驗介入組早產兒家長的介入依從性與孩子神經行為發展之相關性;(3)檢驗兩組早產兒之神經行為與神經生理功能之間的關聯性;以及(4)探討子宮內生長狀況是否調節早期介入於神經生理功能的效果。方法:本研究為隨機分配與預後評估者單盲實驗設計,於臺灣的三家醫學中心招募251名無嚴重新生兒併發症之極低出生體重早產兒。介入組於住院期接受五次介入,出院後至矯正年齡一歲則接受7次介入;常規組則是在住院期接受醫院現行常規照護,在出院後接受七次電話諮詢,諮詢的時間點與介入組接受介入的時間點相同。在新生兒階段測量各項合併症之比率、餵食、生長、神經行為(使用中文版新生兒神經行為評估量表測量)以及神經生理功能(使用腦波圖/事件相關電位技術測得睡眠時腦部電位關聯性以及特異刺激作業時之錯配負向波)。結果:介入組早產兒比常規組早產兒呈現較早完全以口進食(β= –1.1週, 95%信賴區間= –1.9至–0.2週, p=0.02)、較早出院(β值= –0.6週, 95%信賴區間= –1.1至–0.1週, p值=0.03)、較多的體重增加(β值=3.3 克/天, 95%信賴區間=0.1至6.6克/天, p值=0.04)、較佳的神經行為表現 (β值=1.2分, 95%信賴區間=0.2至2.3分, p值=0.03)以及較成熟的神經生理表現(介入組在前額葉與額葉位置所測得的錯配負向波平均振幅負值更大;且在體重低於懷孕週數標準的早產兒次群體中,介入組同側腦半球前額葉到中央區位置之腦部電位關聯性較常規組為低;但在體重符合懷孕週數標準的早產兒次群體中,介入組兩側腦半球額葉位置之腦部電位關聯性較常規組為高)。此外,家長參與介入的動機越高、介入目標是否達成以及居家活動項目執行的完整度越高,則早產兒之神經行為表現和體重增加的就越好(r=0.20至0.31, 所有p<0.05)。至於體重符合懷孕週數標準的早產兒之同側腦半球額葉位置腦部電位關聯性與新生兒神經行為總分顯著相關(r=0.20, p=0.05),同時所有早產兒之錯配負向波的平均振幅則與肌肉張力與動作模式分數呈現臨界相關 (r= –0.13,p=0.09)。結論:以家庭為中心的早期介入有助於臺灣極低出生體重早產兒,於新生兒階段的餵食、體重增加、住院天數、神經生理成熟度和的神經行為的表現,而介入組神經行為的療效可能是因為家長的高動機參予介入活動與對居家活動的高依從性所致。再而,子宮內生長狀況扮演了調節介入對於神經生理功能療效的角色。而且,早期神經生理功能的改變可能是早產兒早期介入神經行為療效的中介機制。
Background and Purposes: Family-centered care for preterm infants in Western societies has yielded short- to medium-term effects. However, such benefits have rarely been validated in Eastern societies and the underlying neurological mechanisms remain unclear. This study aimed for four purposes: (1) to examine the short-term effects of the family-centered care intervention program (FCIP) on the medical outcome, neurobehavioral performance, and neurophysiological function in preterm infants with very low birth weight (VLBW, birth weight < 1,500 g) in Taiwan during the neonatal period compared to a usual care program (UCP), (2) to assess the relations of parental adherence with neurobehavioral performance in the FCIP group, (3) to investigate the relation of neurophysiological function with neurobehavioral performance in all preterm infants, and (4) to determine whether intrauterine growth status moderated the intervention effect on preterm infants’ neurophysiological function. Method: This study was a randomized controlled trial and assessor blind design. Two hundred and fifty-one VLBW preterm infants without severe perinatal complications were recruited from three medical centers in Taiwan. The FCIP group infants received 5-session in-hospital intervention and 7-session after-discharge intervention until 12 months of corrected age (CA). The control group infants received standard developmental care during hospitalization and then regular telephone calls after discharge scheduled at the same time as the FCIP. Infant morbidities, feeding, growth, neurobehavioral performance (using the Neonatal Neurobehavioral Examination-Chinese version) and neurophysiological function (using the electroencephalography/event-related potentials [EEG/ERPs] to obtain brain coherence in sleep and mismatch negativity [MMN] in an auditory oddball procedure, respectively) were evaluated during the neonatal period. Results: The FCIP promoted earlier full enteral feeding (β= –1.1 weeks, 95% CI= –1.9 to –0.2 weeks, p=0.02) and hospital discharge (β= –0.6 week, 95% CI= –1.1 to –0.1 weeks, p=0.03), greater weight gain (β=3.3 g/day, 95% CI=0.1 to 6.6 g/day, p=0.04), better neurobehavioral performance (β=1.2 points, 95% CI=0.2 to 2.3 points, p=0.03), and more mature neurophysiological function than the UCP (greater negative MMN mean amplitude in the prefrontal and frontal regions, lower intra-hemispheric prefrontal to central coherence among preterm infants with small for gestational age [SGA], and higher inter-hemispheric frontal coherence among preterm infants with appropriate for gestational age [AGA]). Furthermore, a higher degree of parental motivation in intervention, goal attainment and comprehensiveness of home activities were significantly associated with greater effects in infants’ neurobehavioral performance and weight gain (r=0.20 to 0.31, all p<0.05). The inter-hemispheric frontal coherence was associated with the total neurobehavioral score among preterm infants with AGA (r=0.20, p=0.05), while the right prefrontal MMN mean amplitude had a borderline association with the tone and motor patterns scores in all preterm infants (r= –0.13, p=0.09). Conclusions Family-centered care facilitates neonatal feeding, weight gain, hospital discharge, neurophysiological maturation and neurobehavioral performance in VLBW preterm infants in Taiwan. The neurobehavioral benefit in the FCIP-group infants might be via their higher parental motivation and parental adherence to home activities. Intrauterine growth status plays a moderating role in the neurophysiological function in preterm infants following intervention. Furthermore, the early changes of neurophysiological functions may underlie the neurobehavioral effect in preterm infants under intervention.
Contents
論文口試委員審定書 I
致謝 II
中文摘要 III
Abstract V
List of Figures X
List of Tables X
CHAPTER 1. Background and Purposes 1
CHAPTER 2. Method 8
2.1 Participants 8
2.2 Experimental Design, Recruitment Procedure, and Randomization 9
2.3 Interventions 10
2.3.1 The FCIP Intervention 10
2.3.2 The UCP Intervention 12
2.3.3 Modifications of Intervention 13
2.4 Sample Size Estimation 14
2.5 Primary Outcome Measurement 15
2.6 Secondary Outcome Measurements 15
2.6.1 Parental Adherence to Intervention 16
2.6.2 Neurophysiological Function 17
2.6.3 Processing and Analysis of Neurophysiological Data 17
2.7 Statistical Analysis 19
CHAPTER 3. Results 21
3.1 Participating Subjects 21
3.2 Neonatal Morbidity, Feeding and Growth 21
3.3 Neonatal Neurobehavioral Performance 22
3.4 Parental Adherence to Intervention and Its Relation with Outcomes 22
3.5 Neonatal Neurophysiological Function 23
3.6 Relations between Neurobehavioral and Neurophysiological Function 25
CHAPTER 4. Discussion 26
4.1 Family-centered Intervention Favored Neonatal Medical Outcomes 26
4.2 Family-Centered Intervention Promoted Neonatal Neurobehavioral Performance 28
4.3 Parental Adherence to Intervention Enhanced Outcomes 29
4.4 Cultural Aspects of Family-Centered Intervention in an Eastern Society 30
4.5 Family-centered Intervention Enhanced Maturation of Brain Connectivities 31
4.6 Family-Centered Intervention Facilitated Maturation of Auditory Memory Function 35
4.7 Recommendations for Clinical Practice 36
4.8 Limitations 37
CHAPTER 5. Conclusions 38
CHAPTER 6. References 39
Appendices 59
Achermann, P., & Borbély, A. A. (1998). Coherence analysis of the human sleep electroencephalogram. Neuroscience, 85, 1195-1208.

Alix, J. J. P., Ponnusamy, A., Pilling, E., & Hart, A. R. (2017). An introduction to neonatal EEG. Paediatrics and Child Health, 27, 135-142.

Als, H. (1986). A synactive model of neonatal behavioral organization. Physical & Occupational Therapy in Pediatrics, 6, 3-53.

Als, H., Duffy, F. H., McAnulty, G., Butler, S. C., Lightbody, L., Kosta, S., Weisenfeld, N. I., Robertson, R., Parad, R. B., Ringer, S. A., Blickman, J. G., Zurakowski, D., & Warfield, S. K. (2012). NIDCAP improves brain function and structure in preterm infants with severe intrauterine growth restriction. Journal of Perinatology, 32, 797-803.

Als, H., Duffy, F. H., McAnulty, G. B., Fischer, C. B., Kosta, S., Butler, S. C., Parad, R. B., Blickman, J. G., Zurakowski, D., & Ringer, S. A. (2011). Is the newborn individualized developmental care and assessment program (NIDCAP) effective for preterm infants with intrauterine growth restriction. Journal of Perinatology, 31, 130-136.

Als, H., Duffy, F. H., McAnulty, G. B., Rivkin, M. J., Vajapeyam, S., Mulkern, R. V., Warfield, S. K., Huppi, P. S., Butler, S. C., Conneman, N., Fischer, C., & Eichenwald, E. C. (2004). Early experience alters brain function and structure. Pediatrics, 113, 846-857.

Als, H., Gilkerson, L., Duffy, F. H., Mcanulty, G. B., Buehler, D. M., Vandenberg, K., Sweet, N., Sell, E., Parad, R. B., Ringer, S. A., Butler, S. C., Blickman, J. G., & Jones, K. J. (2003). A three-center, randomized, controlled trial of individualized developmental care for very low birth weight preterm infants: Medical, neurodevelopmental, parenting, and caregiving effects. Journal of Developmental and Behavioral Pediatrics, 24, 399-408.

Als, H., Lawhon, G., Duffy, F. H., McAnulty, G. B., Gibes-Grossman, R., & Blickman, J. G. (1994). Individualized developmental care for the very low-birth-weight preterm infant. Medical and neurofunctional effects. Journal of the American Medical Association, 272, 853-858.

Aly, H., Moustafa, M. F., Hassanein, S. M., Massaro, A. N., Amer, H. A., & Patel, K. (2004). Physical activity combined with massage improves bone mineralization in premature infants: A randomized trial. Journal of Perinatology, 24, 305-309.

Bell, M. A., & Fox, N. A. (1996). Crawling experience is related to changes in cortical organization during infancy: Evidence from EEG coherence. Developmental Psychobiology, 29, 551-561.

Bernbaum, J. C., Pereira, G. R., Watkins, J. B., & Peckham, G. J. (1983). Nonnutritive sucking during gavage feeding enhances growth and maturation in premature infants. Pediatrics, 71, 41-45.

Bisiacchi, P. S., Mento, G., & Suppiej, A. (2009). Cortical auditory processing in preterm newborns: An ERP study. Biological Psychology, 82, 176-185.

Boiron, M., Nobrega, L. D., Roux, S., Henrot, A., & Saliba, E. (2007). Effects of oral stimulation and oral support on non-nutritive sucking and feeding performance in preterm infants. Developmental Medicine and Child Neurology, 49, 439-444.

Brazy, J. E., Eckerman, C. O., Oehler, J. M., Goldstein, R. F., & O''Rand, A. M. (1991). Nursery neurobiologic risk score: Important factors in predicting outcome in very low birth weight infants. Journal of Pediatrics, 118, 783-792.

Buehler, D. M., Als, H., Duffy, F. H., McAnulty, G. B., & Liederman, J. (1995). Effectiveness of individualized developmental care for low-risk preterm infants: Behavioral and electrophysiologic evidence. Pediatrics, 96, 923-932.

Cai, R., Guo, F., Zhang, J., Xu, J., Cui, Y., & Sun, X. (2009). Environmental enrichment improves behavioral performance and auditory spatial representation of primary auditory cortical neurons in rat. Neurobiology of Learning and Memory, 91, 366-376.

Caskey, M., Stephens, B., Tucker, R., & Vohr, B. (2014). Adult talk in the nicu with preterm infants and developmental outcomes. Pediatrics, 133, e578-e584.

Castro-Alamancos, M. A. (2002). Role of thalamocortical sensory suppression during arousal: Focusing sensory inputs in neocortex. Journal of Neuroscience, 22, 9651-9655.

Charan, J., & Biswas, T. (2013). How to calculate sample size for different study designs in medical research? Indian Journal of Psychological Medicine, 35, 121-126.

Chen, L. C., Wu, Y. C., Hsieh, W. S., Hsu, C. H., Leng, C. H., Chen, W. J., Chiu, N. C., Lee, W. T., Yang, M. C., Fang, L. J., Hsu, H. C., & Jeng, S. F. (2013). The effect of in-hospital developmental care on neonatal morbidity, growth and development of preterm Taiwanese infants: A randomized controlled trial. Early Human Development, 89, 301-306.

Corbetta, D., Friedman, D. R., & Bell, M. A. (2014). Brain reorganization as a function of walking experience in 12-month-old infants: Implications for the development of manual laterality. Frontiers in Psychology, 5, 245.

de Bie, H. M. A., Oostrom, K. J., & Delemarre-van de Waal, H. A. (2010). Brain development, intelligence and cognitive outcome in children born small for gestational age. Hormone Research in Paediatrics, 73, 6-14.

de Graaf-Peters, V. B., & Hadders-Algra, M. (2006). Ontogeny of the human central nervous system: What is happening when? Early Human Development, 82, 257-266.

de Haan, M. (2007). Infant EEG and Event-related Potentials. New York: Psychology Press.

de la Cruz, D. M., Mañas, S., Pereda, E., Garrido, J., López, S., De Vera, L., & González, J. J. (2007). Maturational changes in the interdependencies between cortical brain areas of neonates during sleep. Cerebral Cortex, 17, 583-590.

Doyle, L. W., Cheong, J. L., Burnett, A., Roberts, G., Lee, K. J., Anderson, P. J., & Group, V. I. C. S. (2015). Biological and social influences on outcomes of extreme-preterm/low-birth weight adolescents. Pediatrics, 136, e1513-e1520.

Dunn, M. S., Reilly, M. C., Johnston, A. M., Hoopes, R. D., & Abraham, M. R. (2006). Development and dissemination of potentially better practices for the provision of family-centered care in neonatology: The family-centered care map. Pediatrics, 118, S95-S107.

Fellman, V., Kushnerenko, E., Mikkola, K., Ceponiene, R., Leipala, J., & Naatanen, R. (2004). Atypical auditory event-related potentials in preterm infants during the first year of life: A possible sign of cognitive dysfunction. Pediatric Research, 56, 291-297.

Fleisher, B. E., VandenBerg, K., Constantinou, J., Heller, C., Benitz, W. E., Johnson, A., Rosenthal, A., & Stevenson, D. K. (1995). Individualized developmental care for very-low-birth-weight premature infants. Clinical Pediatrics, 34, 523-529.

González, J. J., Mañas, S., De Vera, L., Méndez, L. D., López, S., Garrido, J. M., & Pereda, E. (2011). Assessment of electroencephalographic functional connectivity in term and preterm neonates. Clinical Neurophysiology, 122, 696-702.

Gonzalez, S. L., Reeb-Sutherland, B. C., & Nelson, E. L. (2016). quantifying motor experience in the infant brain: EEG power, coherence, and mu desynchronization. Frontiers in Psychology, 7, 216.

Grieve, P. G., Isler, J. R., Izraelit, A., Peterson, B. S., Fifer, W. P., Myers, M. M., & Stark, R. I. (2008). EEG functional connectivity in term age extremely low birth weight infants. Clinical Neurophysiology, 119, 2712-2720.

Guyer, C., Huber, R., Fontijn, J., Bucher, H. U., Nicolai, H., Werner, H., Molinari, L., Latal, B., & Jenni, O. G. (2015). Very preterm infants show earlier emergence of 24-hour sleep–wake rhythms compared to term infants. Early Human Development, 91, 37-42.

Guzzetta, A., Baldini, S., Bancale, A., Baroncelli, L., Ciucci, F., Ghirri, P., Putignano, E., Sale, A., Viegi, A., Berardi, N., Boldrini, A., Cioni, G., & Maffei, L. (2009). Massage accelerates brain development and the maturation of visual function. Journal of Neuroscience, 29, 6042.

Guzzetta, A., D’Acunto, M. G., Carotenuto, M., Berardi, N., Bancale, A. D. A., Biagioni, E., Boldrini, A., Ghirri, P., Maffei, L., & Cioni, G. (2011). The effects of preterm infant massage on brain electrical activity. Developmental Medicine and Child Neurology, 53, 46-51.

Hack, M., Cartar, L., Schluchter, M., Klein, N., & Forrest, C. B. (2007). Self-perceived health, functioning and well-being of very low birth weight infants at age 20 years. Journal of Pediatrics, 151, 635-641.e632.

Hirasawa, K. (2014). Mismatch negativity in healthy neonates and premature babies. In T. Sawaguchi (Ed.), Sudden Infant Death Syndrome: From Pathophysiological Prospects (pp. 117-128). Tokyo: Springer Japan.

Hoehl, S., & Wahl, S. (2012). Recording infant ERP data for cognitive research. Developmental Neuropsychology, 37, 187-209.

Hovel, H., Partanen, E., Tideman, E., Stjernqvist, K., Hellstrom-Westas, L., Huotilainen, M., & Fellman, V. (2015). Auditory event-related potentials are related to cognition at preschool age after very preterm birth. Pediatric Research, 77, 570-578.

Hsieh, W. S., Wu, H. C., Jeng, S. F., Liao, H. F., Su, Y. N., Lin, S. J., Hsieh, C. J., & Chen, P. C. (2006). Nationwide singleton birth weight percentiles by gestational age in Taiwan, 1998-2002. Acta Paediatrica Taiwanica, 47, 25.

Jasper, H. H. (1958). Report of the committee on methods of clinical examination in electroencephalography. Electroencephalography and Clinical Neurophysiology, 10, 370-375.

Jeng, S. F., & Hsieh, W. S. (2004). Predictive ability of early neuromotor examinations on walking attainment in very-low-birth-weight infants at 18 months corrected age. Formosan Journal of Physical Therapy, 29, 9-20.

Kühn-Popp, N., Kristen, S., Paulus, M., Meinhardt, J., & Sodian, B. (2016). Left hemisphere EEG coherence in infancy predicts infant declarative pointing and preschool epistemic language. Social Neuroscience, 11, 49-59.

Lahat, S., Mimouni, F. B., Ashbel, G., & Dollberg, S. (2007). Energy expenditure in growing preterm infants receiving massage therapy. Journal of the American College of Nutrition, 26, 356-359.

Lau, C., Ambalavanan, N., Chakraborty, H., Wingate, M. S., & Carlo, W. A. (2013). Extremely low birth weight and infant mortality rates in the United States. Pediatrics, 131, 855.

Leppänen, P. H. T., Guttorm, T. K., Pihko, E., Takkinen, S., Eklund, K. M., & Lyytinen, H. (2004). Maturational effects on newborn ERPs measured in the mismatch negativity paradigm. Experimental Neurology, 190, 91-101.

Maguire, C. M., Walther, F. J., van Zwieten, P. H. T., Le Cessie, S., Wit, J. M., Veen, S., & Project, L. D. C. (2009). Follow-up outcomes at 1 and 2 years of infants born less than 32 weeks after newborn individualized developmental care and assessment program. Pediatrics, 123, 1081-1087.

McAnulty, G., Duffy, F. H., Butler, S., Parad, R., Ringer, S., Zurakowski, D., & Als, H. (2009). Individualized developmental care for a large sample of very preterm infants: health, neurobehaviour and neurophysiology. Acta Paediatrica, 98, 1920-1926.

Milgrom, J., Newnham, C., Anderson, P. J., Doyle, L. W., Gemmill, A. W., Lee, K., Hunt, R. W., Bear, M., & Inder, T. (2010). Early sensitivity training for parents of preterm infants: impact on the developing brain. Pediatric Research, 67, 330-335.

Milgrom, J., Newnham, C., Martin, P. R., Anderson, P. J., Doyle, L. W., Hunt, R. W., Achenbach, T. M., Ferretti, C., Holt, C. J., Inder, T. E., & Gemmill, A. W. (2013). Early communication in preterm infants following intervention in the NICU. Early Human Development, 89, 755-762.

Mundy, P., Card, J., & Fox, N. (2000). EEG correlates of the development of infant joint attention skills. Developmental Psychobiology, 36, 325.

Mundy, P., Fox, N., & Card, J. (2003). EEG coherence, joint attention and language development in the second year. Developmental Science, 6, 48-54.

Myers, M. M., Grieve, P. G., Stark, R. I., Isler, J. R., Hofer, M. A., Yang, J., Ludwig, R. J., & Welch, M. G. (2015). Family nurture intervention in preterm infants alters frontal cortical functional connectivity assessed by EEG coherence. Acta Paediatrica, 104, 670-677.

Näätänen, R. (1990). The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function. Behavioral and Brain Sciences, 13, 201-233.

Näätänen, R. (2000). Mismatch negativity (MMN): Perspectives for application. International Journal of Psychophysiology, 37, 3-10.

Örtenstrand, A., Westrup, B., Broström, E. B., Sarman, I., Åkerström, S., Brune, T., Lindberg, L., & Waldenström, U. (2010). The Stockholm neonatal family centered care study: effects on length of stay and infant morbidity. Pediatrics, 125, e278-e285.

Oza, S., Lawn, J. E., Hogan, D. R., Mathers, C., & Cousens, S. N. (2015). Neonatal cause-of-death estimates for the early and late neonatal periods for 194 countries: 2000-2013. Bulletin of the World Health Organization, 93, 19-28.

Paquette, N., Vannasing, P., Tremblay, J., Lefebvre, F., Roy, M. S., McKerral, M., Lepore, F., Lassonde, M., & Gallagher, A. (2015). Early electrophysiological markers of atypical language processing in prematurely born infants. Neuropsychologia, 79, Part A, 21-32.

Peters, K. L., Rosychuk, R. J., Hendson, L., Cote, J. J., McPherson, C., & Tyebkhan, J. M. (2009). Improvement of short- and long-term outcomes for very low birth weight infants: Edmonton NIDCAP trial. Pediatrics, 124, 1009-1020.

Pike, K., Pillow, J. J., & Lucas, J. S. (2012). Long term respiratory consequences of intrauterine growth restriction. Seminars in Fetal and Neonatal Medicine, 17, 92-98.

Rabinowicz, T., de Courten-Myers, G. M., Petetot, J. M.-C., Xi, G., & de los Reyes, E. (1996). Human cortex development: estimates of neuronal numbers indicate major loss late during gestation. Journal of Neuropathology and Experimental Neurology, 55, 320-328.

Ramey, C. T., & Ramey, S. L. (1998). Early intervention and early experience. American Psychologist, 53, 109-120.

Ricciuti, A. E., & Scarr, S. (1990). Interaction of early biological and family risk factors in predicting cognitive development. Journal of Applied Developmental Psychology, 11, 1-12.

Rosenbaum, P., King, S., Law, M., King, G., & Evans, J. (1998). Family-centred service: A conceptual framework and research review. Physical & Occupational Therapy in Pediatrics, 18, 1-20.

Sauseng, P., & Klimesch, W. (2008). What does phase information of oscillatory brain activity tell us about cognitive processes? Neuroscience and Biobehavioral Reviews, 32, 1001-1013.

Sauseng, P., Klimesch, W., Stadler, W., Schabus, M., Doppelmayr, M., Hanslmayr, S., Gruber, W. R., & Birbaumer, N. (2005). A shift of visual spatial attention is selectively associated with human EEG alpha activity. European Journal of Neuroscience, 22, 2917-2926.

Spittle, A., Orton, J., Anderson, P. J., Boyd, R., & Doyle, L. W. (2015). Early developmental intervention programmes provided post hospital discharge to prevent motor and cognitive impairment in preterm infants. Cochrane Database of Systematic Reviews, 11. No.: CD005495.

Steriade, M., Dossi, R. C., & Nunez, A. (1991). Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression. Journal of Neuroscience, 11, 3200-3217.

Symington, A. J., & Pinelli, J. (2006). Developmental care for promoting development and preventing morbidity in preterm infants. Cochrane Database of Systematic Reviews, 2. No.: CD001814.

Thatcher, R. W., North, D. M., & Biver, C. J. (2008). Development of cortical connections as measured by EEG coherence and phase delays. Human Brain Mapping, 29, 1400-1415.

van Wijk, B. C. M., Neumann, W.-J., Schneider, G.-H., Sander, T. H., Litvak, V., & Kühn, A.(In press) A. Low-beta cortico-pallidal coherence decreases during movement and correlates with overall reaction time. Neuroimage.

Vuguin, P. (2002). Animal models for assessing the consequences of intrauterine growth restriction on subsequent glucose metabolism of the offspring: A review. Journal of Maternal Fetal & Neonatal Medicine, 11, 254-257.

Weiss, S., & Rappelsberger, P. (1998). Left frontal EEG coherence reflects modality independent language processes. Brain Topography, 11, 33-42.

Weiss, S., & Rappelsberger, P. (2000). Long-range EEG synchronization during word encoding correlates with successful memory performance. Cognitive Brain Research, 9, 299-312.

Westrup, B., Kleberg, A., von Eichwald, K., Stjernqvist, K., & Lagercrantz, H. (2000). A randomized, controlled trial to evaluate the effects of the newborn individualized developmental care and assessment program in a Swedish Setting. Pediatrics, 105, 66-72.

Whedon, M., Perry, N. B., Calkins, S. D., & Bell, M. A. (2016). Changes in frontal EEG coherence across infancy predict cognitive abilities at age 3: The mediating role of attentional control. Developmental Psychology, 52, 1341-1352.

Wu, Y. C., Leng, C. H., Hsieh, W. S., Hsu, C. H., Chen, W. J., Gau, S. S. F., Chiu, N. C., Yang, M. C., Fang. L. J., Hsu, H. C., Yu, Y. T., Wu, Y. T., Chen, L. C., & Jeng, S. F. (2014). A randomized controlled trial of clinic-based and home-based interventions in comparison with usual care for preterm infants: Effects and mediators. Research in Developmental Disabilities, 35, 2384-2393.

Wu, Y. C., Hsieh, W. S., Hsu, C. H., Chang, J. H., Chou, H. C., Hsu, H. C., Chiu, N. C., Lee, W. T., Chen, W. J., Ho, Y. W., & Jeng, S. F. (2016). Intervention effects on emotion regulation in preterm infants with very low birth weight: A randomize controlled trial. Research in Developmental Disabilities, 48, 1-12.

Young, V. R., & Torun, B. (1981). Physical activity: impact on protein and amino acid metabolism and implications for nutritional requirements. Progress in Clinical and Biological Research, 77, 57-85.

Yu, Y. T., Hsieh, W. S., Hsu, C. H., Lin, Y. J., Lin, C. H., Hsieh, S., Lu, L., Cherng, R. J., Chang, Y. J., Fan, P. C., Yao, N. J., Chen, W. J., & Jeng, S. F. (Under review). Family-centered care improved neonatal medical and neurobehavioral outcomes in preterm infants: A randomized controlled trial. Physical Therapy.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊