(3.237.178.91) 您好!臺灣時間:2021/03/04 07:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李筱媛
研究生(外文):Hsiao-Yuan Lee
論文名稱:早產兒以家庭為中心介入計畫於矯齡24個月之神經行為療效及其與早期神經生理功能之關聯
論文名稱(外文):Effect of Family-Centered Intervention Program on Neurobehavioral Outcome at 24 Months of Corrected Age and Its Relations with Early Neurophysiological Function in Preterm Infants
指導教授:鄭素芳鄭素芳引用關係
指導教授(外文):Suh-Fang Jeng
口試日期:2017-07-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:物理治療學研究所
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:75
中文關鍵詞:早產兒以家庭為中心照護早期介入神經生理功能介入療效
外文關鍵詞:preterm infantfamily-centered careearly interventionneurophysiological functionintervention effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:115
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
背景與目的:極低出生體重早產兒(出生體重小於1500g)為發展障礙之高危險群。過去文獻顯示西方國家早產兒實施早期介入能夠獲得顯著的神經發展療效,然而東方國家之介入研究甚少,且有關介入療效機轉的探討亦相當有限。因此,本篇研究目的為探討臺灣極低出生體重早產兒以家庭為中心之早期介入於矯正年齡兩歲時之發展功能療效以及檢驗早期神經生理功能的改變是否中介矯正年齡兩歲之神經發展療效。方法: 本研究為多中心臨床實驗已徵召三家醫學中心極低出生體重早產兒並隨機分配於介入組及常規組接受為期一年的介入,兩組早產兒皆於矯正年齡1及4個月使用睡眠腦波測試以及事件相關電位之聽覺特異刺激評估神經生理功能,並於矯正年齡24個月時接受第三版貝萊氏嬰幼兒發展測驗與兒童行爲量表評估,以及收集臨床診斷與健康資料。結果: 以家庭為中心介入組比控制組在矯齡24個月呈現較佳之粗大動作發展(p=0.02),並且於6到24個月期間有較低的發展遲緩診斷比例 (p=0.03),然而兩組在認知及語言發展則無顯著差異。在數個早期具明顯神經生理療效的參數中,僅左側額葉之不匹配負向波的平均振幅呈現中介24個月矯齡粗大動作發展療效的趨勢 (p=0.06)。結論:以家庭為中心之早期介入有效改善臺灣極低出生體重早產兒於24個月矯齡之動作發展並降低發展遲緩的比例,所發現之早期神經生理參數有助於了解動作療效的可能神經機轉。
Background and purpose: Preterm infants with very low birth weight (VLBW, birth weight < 1,500 g) are at risk of developmental disabilities. Previous studies showed favorable effect of family-centered intervention on neurobehavioral outcome in preterm infants in Western societies. However, the effect has rarely been elucidated in Eastern societies and the neural mechanism remains unclear. The purposes of this study were therefore to examine the effectiveness of a family-centered intervention program (FCIP) on developmental outcomes in VLBW preterm infants in Taiwan at 24 months of corrected age (CA) compared with a usual care program (UCP) and to assess if early neurophysiological changes mediated the 24-month neurobehavioral outcome. Methods: In a three-centered, randomized controlled trial, VLBW preterm infants were randomly assigned to the FCIP and UCP group for interventions from hospitalization to 12 months CA. Infants were assessed neurophysiological function using the electroencephalography in sleep and event-related potentials in an auditory oddball paradigm at 1 and 4 months CA, followed by neurobehavioral assessment using the Bayley Scales of Infant and Toddler Development- Third Edition (Bayley-III) and behavioral outcome by the Child Behavioral Check List for Ages 1.5-5 (CBCL/1.5-5) at 24 months CA. Clinical diagnosis and heath data were also collected. Results: The FCIP yielded beneficial effect on the gross motor development (p=0.02) and decreased the rate of developmental delay at 6 to 24 months CA (p=0.03) in VLBW preterm infants compared with the UCP. However, the FCIP showed no obvious effect on their cognitive, language and behavioral outcome. Among the significant early neurophysiological variables, only the mean amplitude of mismatch negativity in the left frontal region showed a tendency of mediating the intervention effect on gross motor outcome in preterm infants (p=0.06). Conclusions: Family-centered care favors the motor development and lowers the risk of developmental delay in Taiwanese VLBW preterm infants by 24 months CA than standard care. The identified early neurophysiological parameter provides some clues to the neurological mechanism for motor benefit.
Contents
口試委員會審定書.........................................................................................................i
致謝……………………………………………………………………………………ii
中文摘要.......................................................................................................................iii
English Abstract.............................................................................................................v
Contentss......................................................................................................................vii
Chapter I. Introduction...................................................................................................1
1.1 Epidemiology of preterm birth and developmental disabilities..........................1
1.2 Brain structures and function connectivity in preterm infants............................2
1.3 The relationship between brain structures and developmental outcome............4
1.4 The frameworks of family-centered intervention and effectiveness...................5
1.5 Effect of early intervention on brain structure and neurophysiological functions in preterm infants………………………………………………………………8
1.6 Early intervention for preterm infants in Taiwan…………………………..…11
1.7 Rationale of the study…………………………………………………………13
1.8 Purposes and Hypotheses………………………………………...…………..13
Chapter II. Method……………………………………………………………….…..15
2.1 Participants…………………………………………………………….……...15
2.2 Procedure…………………………………………………………………......16
2.3 Intervention and usual care…….…………………… ………………….....…17
2.4 Outcome measurements……………………………………………………….18
2.4.1 Neurophysiological outcome: EEG coherence and mismatch negativity…………………………………………………………….…18
2.4.2 Bayley Scales of Infant and Toddler Development-III………...………21
2.4.3 Child Behavioral Check List for Ages 1.5-5…………………….……..23
2.4.4 Developmental diagnosis and health outcomes………………………....23
2.5 Statistical analysis……………………….………………………………….…24
Chapter III. Results…………………………………………...……….………..……27
3.1 Study sample …………...………………………..……………...…….……....27
3.2 Significant neurophysiological variables in our follow up study …………….27
3.3 Developmental diagnosis and health outcomes………....……………………28
3.4 Neurobehavioral outcomes at 24 months corrected age: Bayley Scales of Infant and Toddler Development-III………………………………………………..29
3.5 Behavioral outcomes at 24 months corrected age: Child Behavioral Check List for Ages 1.5-5…………………...……….………………………………..….30
3.6 Mediator analysis……………………………………………………………...30
3.7 The EEG variables between developmental delay group and non-developmental delay group…………………………………………...………31
Chapter IV. Discussion………………………………………………….……..…….32
Chapter V. Conclusion………………………………………………………………38
Tables and Figure………………………………………………….............................39
Table 1. Infant and socio-demographic characteristics at 24 months corrected age ...........................................................................................................................39
Table 2. Illustration of significant electrophysiological variables obtained in our previous study.……………………………………………..…………….…….…40
Table 3. Illustration of neurodevelopmental outcomes in the FCIP and UCP group at 24 months corrected age ..…………………………………………….….…….41
Table 4. Illustration of behavioral outcomes in the FCIP and UCP group at 24 months corrected age………………………………….…….……………...…..…42
Table 5. Outpatient clinic record of the FCIP and UCP group from 0 to 24 months corrected age ………………...................................................................................43
Table 6. Emergency visit record from 0 to 12 months corrected age ………….....46
Table 7. Rehospitalization record from 0 to 12 months corrected age ………..….47
Table 8. Illustration of the mediator analysis of 1-month coherence for intervention effect on gross motor outcome in preterm infants…………………...……………48
Table 9. Illustration of the mediation analysis of change of coherence for developmental outcome…………………………………………...………...…….49
Table 10. Illustration of the mediator analysis of ERP for intervention effect on gross motor outcome in preterm infants …………………...……………..…...….50
Table 11. Illustration of the coherence at 1 month by diagnosis of developmental delay …………………………………………………………………………….51
Table 12. Illustration of the change of coherence by diagnosis of developmental delay in delta band……………………………………………………………….52
Table 13. Illustration of the change of coherence by diagnosis of developmental delay in theta band……………………………………………………………….53
Table 14. Illustration of ERP by diagnosis of developmental delay…………….54
Figure 1. Flow chart……………………………………………………………….55
References…………………………………………………………………..……..56
Appendices…………………………………………………………………..….…72
Appendix 1. Program characteristics for the intervention and control groups.....72
Appendix 2. Neonatal morbidity, feeding and growth……………………..……73
Appendix 3. Coding sheets of health record………………………………….....74
Appendix 4. Coding sheets of health record ……………………………..………75
Aarnoudse-Moens, C. S., Weisglas-Kuperus, N., van Goudoever, J. B., & Oosterlaan, J. (2009). Meta-analysis of neurobehavioral outcomes in very preterm and/or very low birth weight children. Pediatrics, 124(2), 717-728.
Achenbach, T. M., Phares, V., Howell, C. T., Rauh, V. A., & Nurcombe, B. (1990). Seven-year outcome of the Vermont Intervention Program for low-birthweight infants. Child Dev, 61(6), 1672-1681.
Achenbach, T. M., Thomas, M., & Rescorla, L. A. (2000). Manual for the ASEBA Preschool Forms & Profiles : an Integrated System of Multi-informant Assessment. Burlington, Vt.,USA: ASEBA.
Als, H. (1994). Individualized developmental care for the very low-birth-weight preterm infant. Medical and neurofunctional effects. JAMA, 272(11), 853-858.
Als, H., Duffy, F. H., McAnulty, G., Butler, S. C., Lightbody, L., Kosta, S., Weisenfeld, N. I., Robertson, R., Parad, R. B.. Ringer, S. A., Blickman, J. G., Zurakowski, D., & Warfield, S. K. (2012). NIDCAP improves brain function and structure in preterm infants with severe intrauterine growth restriction. J Perinatol, 32(10), 797-803.
Als, H., Duffy, F. H., McAnulty, G. B., Fischer, C. B., Kosta, S., Butler, S. C., Parad, R. B., Blickman, J. G., Zurakowski, D., & Ringer, S. A. (2011). Is the Newborn Individualized Developmental Care and Assessment Program (NIDCAP) effective for preterm infants with intrauterine growth restriction? J Perinatol, 31(2), 130-136.
Als, H., Duffy, F. H., McAnulty, G. B., Rivkin, M. J., Vajapeyam, S., Mulkern, R. V., Warfield, S. K., Huppi, P. S., Butler, S. C., Conneman, N., Fischer, C., & Eichenwald, E. C. (2004). Early experience alters brain function and structure. Pediatrics, 113(4), 846-857.
Baron, I. S., Kerns, K. A., Muller, U., Ahronovich, M. D., & Litman, F. R. (2012). Executive functions in extremely low birth weight and late-preterm preschoolers: effects on working memory and response inhibition. Child Neuropsychol, 18(6), 586-599.
Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J Pers Soc Psychol, 51(6), 1173.
Bayley, N. (2006). Bayley Scales of infant and Toddler Development. 3rd ed. San Antonio, TX, USA: The Psychological Corporation, Harcourt Brace & Company.
Bisiacchi, P. S., Mento, G., & Suppiej, A. (2009). Cortical auditory processing in preterm newborns: an ERP study. Biol Psychol, 82(2), 176-185.
Blencowe, H., Cousens, S., Chou, D., Oestergaard, M., Say, L., Moller, A. B., Kinney, M., & Lawn, J. (2013). Born too soon: the global epidemiology of 15 million preterm births. Reprod Health, 10 (Suppl 1), S2.
Brouwer, M. J., van Kooij, B. J., van Haastert, I. C., Koopman-Esseboom, C., Groenendaal, F., de Vries, L. S., & Benders, M. J. (2014). Sequential cranial ultrasound and cerebellar diffusion weighted imaging contribute to the early prognosis of neurodevelopmental outcome in preterm infants. PLoS One, 9(10), e109556.
Cheng, C. H., Chan, P. Y., Hsieh, Y. W., & Chen, K. F. (2016). A meta-analysis of mismatch negativity in children with attention deficit-hyperactivity disorders. Neurosci Lett, 612, 132-137.
Cheong, J. L., Thompson, D. K., Spittle, A. J., Potter, C. R., Walsh, J. M., Burnett, A. C., Lee, K. J., Chen, J., Beare, R., Matthews, L. G., Hunt, R. W., Anderson, P. J., Doyle, L. W. (2016). Brain volumes at term-equivalent age are associated with 2-year neurodevelopment in moderate and late preterm children. J Pediatr, 174, 91-97.e91.
De Haan, M. (2013). Infant EEG and Event-Related Potentials.New York, NY, USA: Psychology Press.
de Kieviet, J. F., Piek, J. P., Aarnoudse-Moens, C. S., & Oosterlaan, J. (2009). Motor development in very preterm and very low-birth-weight children from birth to adolescence: a meta-analysis. JAMA, 302(20), 2235-2242.
Duffy, F. H., Als, H., & McAnulty, G. B. (2003). Infant EEG spectral coherence data during quiet sleep: unrestricted principal components analysis--relation of factors to gestational age, medical risk, and neurobehavioral status. Clin Electroencephalogr, 34(2), 54-69.
Edelman, G. M. (1987). Neural Darwinism: The Theory of Neuronal Group Selection. New York, NY, USA: Basic Books.
Fellman, V., Kushnerenko, E., Mikkola, K., Ceponiene, R., Leipala, J., & Naatanen, R. (2004). Atypical auditory event-related potentials in preterm infants during the first year of life: a possible sign of cognitive dysfunction? Pediatr Res, 56(2), 291-297.
Frank, M. J., Samanta, J., Moustafa, A. A., & Sherman, S. J. (2007). Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism. Science, 318(5854), 1309-1312.
George, J. M., Boyd, R. N., Colditz, P. B., Rose, S. E., Pannek, K., Fripp, J., Lingwood, B. E., Lai, M. M., Kong, A. H., Ware, R. S., Coulthard, A., Finn, C. M., & Bandaranayake, S. E. (2015). PPREMO: a prospective cohort study of preterm infant brain structure and function to predict neurodevelopmental outcome. BMC Pediatr, 15, 123.
Grieve, P. G., Isler, J. R., Izraelit, A., Peterson, B. S., Fifer, W. P., Myers, M. M., & Stark, R. I. (2008). EEG functional connectivity in term age extremely low birth weight infants. Clin Neurophysiol, 119(12), 2712-2720.
Hüppi, P. S., Warfield, S., Kikinis, R., Barnes, P. D., Zientara, G. P., Jolesz, F. A., Tsuji, M. K., Volpe, J. J. (1998). Quantitative magnetic resonance imaging of brain development in premature and mature newborns. Ann Neurology, 43(2), 224-235.
Hart, A. R., Whitby, E. H., Clark, S. J., Paley, M. N., & Smith, M. F. (2010). Diffusion-weighted imaging of cerebral white matter and the cerebellum following preterm birth. Dev Med Child Neurol, 52(7), 652-659.
Hayes, A. F. (2013). Introduction to mMediation, Moderation, and Conditional Process Analysis: A Regression-based Approach. New York, NY,USA: Guilford Press.
Heldmann, M., Munte, T. F., Paracka, L., Beyer, F., Bruggemann, N., Saryyeva, A., Rasche, D., Krauss, J. K., & Tronnier, V. M. (2017). Human subthalamic nucleus - Automatic auditory change detection as a basis for action selection. Neuroscience, 355, 141-148.
Herd, M., Whittingham, K., Sanders, M., Colditz, P., & Boyd, R. N. (2014). Efficacy of preventative parenting interventions for parents of preterm infants on later child behavior: a systematic review and meta-analysis. Infant Ment Health J, 35(6), 630-641.
Hovel, H., Partanen, E., Tideman, E., Stjernqvist, K., Hellstrom-Westas, L., Huotilainen, M., & Fellman, V. (2015). Auditory event-related potentials are related to cognition at preschool age after very preterm birth. Pediatr Res, 77(4), 570-578.
Huang, W. C. (2016). Effectiveness of Family-Centered Intervention Program on Neurobehavioral and Neurophysiological Functions in Preterm Infants with Very Low Birth Weight. School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei,Taiwan.
Hughes, A. J., Redsell, S. A., & Glazebrook, C. (2016). Motor development interventions for preterm infants: a systematic review and meta-analysis. Pediatrics, 138(4), e20160147.
Jacobs, S. E., Sokol, J., & Ohlsson, A. (2002). The Newborn Individualized Developmental Care and Assessment Program is not supported by meta-analyses of the data. J Pediatr, 140(6), 699-706.
Kaiser, M. L., Schoemaker, M. M., Albaret, J. M., & Geuze, R. H. (2014). What is the evidence of impaired motor skills and motor control among children with attention deficit hyperactivity disorder (ADHD)? Systematic review of the literature. Res Dev Disabil, 36c, 338-357.
Kita, T., Osten, P., & Kita, H. (2014). Rat subthalamic nucleus and zona incerta share extensively overlapped representations of cortical functional territories. J Comp Neurol, 522(18), 4043-4056.
Krasner, A. J., Turner, J. B., Feldman, J. F., Silberman, A. E., Fisher, P. W., Workman, C. C., Posner, J. E., Greenhill, L. L., Lorenz, J. M., Shaffer, D., Whitaker, A. H. (2015). ADHD symptoms in a non-referred low birthweight/preterm cohort: longitudinal profiles, outcomes, and associated features. J Atten Disord, (1), 12.
Lai, W. Y. (2016). Family-Centered Intervention for Very Low Birth Weight Preterm Infants: Developmental Outcomes and Influences of Body Position of Activities and Adherence of Home Programs. School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.
Landsem, I. P., Handegård, B. H., Ulvund, S. E., Tunby, J., Kaaresen, P. I., & Rønning, J. A. (2015). Does an early intervention influence behavioral development until age 9 in children born prematurely? Child Dev, 86(4), 1063-1079.
Lee, H. Y., Hsieh, W. S., Hsu, C. H., Lin, C. H., Lin, Y. J., Chen, W. J., Lu, L., Jeng, S. F. (2016). Effectiveness of Family-Centered Intervention Program on Growth in Preterm Infants with Very Low Birth Weight. Paper presented at the The Asian Confederation for Physical Therapy (ACPT), Kuala Lumpur.
Li, X., & Hu, L. (2016). The Role of Stress Regulation on Neural Plasticity in Pain Chronification. Neural Plast, 2016, 6402942.
Liu, F. C. (2016). Effects of Family-Centered Interevntion Program on Parent-Child Interaction and Developmental Outcome in Preterm Infants with Very Low Birth Weight. School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.
Loe, I. M., Lee, E. S., & Feldman, H. M. (2013). Attention and internalizing behaviors in relation to white matter in children born preterm. J Dev Behav Pediatr, 34(3), 156-164.
Manuck, T. A., Rice, M. M., Bailit, J. L., Grobman, W. A., Reddy, U. M., Wapner, R. J., Thorp, J. M., Caritis, S. N., Prasad, M., Tita, A. T., Saade, G. R., Sorokin, Y., Rouse, D. J., Blackwell, S. C., & Tolosa, J. E. (2016). Preterm neonatal morbidity and mortality by gestational age: a contemporary cohort. Am J Obstet Gynecol, 215(1), 103.e101-103.e114.
McAnulty, G., Duffy, F. H., Kosta, S., Weisenfeld, N. I., Warfield, S. K., Butler, S. C., Alidoost, M., Bernstein, J. H., Robertson, R., Zurakowski, D., & Als, H. (2013). School-age effects of the newborn individualized developmental care and assessment program for preterm infants with intrauterine growth restriction: preliminary findings. BMC Pediatr, 13, 25.
Milgrom, J., Newnham, C., Anderson, P. J., Doyle, L. W., Gemmill, A. W., Lee, K., Hunt, R. W., Bear, M., & Inder, T. (2010). Early sensitivity training for parents of preterm infants: impact on the developing brain. Pediatr Res, 67(3), 330-335.
Minks, E., Jurak, P., Chladek, J., Chrastina, J., Halamek, J., Shaw, D. J., & Bares, M. (2014). Mismatch negativity-like potential (MMN-like) in the subthalamic nuclei in Parkinson''s disease patients. J Neural Transm (Vienna), 121(12), 1507-1522.
Montagna, A., & Nosarti, C. (2016). Socio-Emotional Development Following Very Preterm Birth: Pathways to Psychopathology. Front Psychol, 7, 80.
Myers, M. M., Grieve, P. G., Stark, R. I., Isler, J. R., Hofer, M. A., Yang, J., Ludwig, R. J., & Welch, M. G. (2015). Family Nurture Intervention in preterm infants alters frontal cortical functional connectivity assessed by EEG coherence. Acta Paediatr, 104(7), 670-677.
Naatanen, R., Paavilainen, P., Rinne, T., & Alho, K. (2007). The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol, 118(12), 2544-2590.
Naatanen, R., Sussman, E. S., Salisbury, D., & Shafer, V. L. (2014). Mismatch negativity (MMN) as an index of cognitive dysfunction. Brain Topogr, 27(4), 451-466.
Ohlsson, A., & Jacobs, S. E. (2013). NIDCAP: a systematic review and meta-analyses of randomized controlled trials. Pediatrics, 131(3), e881-893.
Orcesi, S., Olivieri, I., Longo, S., Perotti, G., La Piana, R., Tinelli, C., Spinillo, A., Balottin, U., & Stronati, M. (2012). Neurodevelopmental outcome of preterm very low birth weight infants born from 2005 to 2007. Eur J Paediatr Neurol, 16(6), 716-723.
Ramey, C. T., & Ramey, S. L. (1998). Early intervention and early experience. Am Psychol, 53(2), 109-120.
The Premature Baby Foundation of ROC. (2010). Services for Premature Babies. Taipei, Taiwan.
Rommel, A. S., James, S. N., McLoughlin, G., Brandeis, D., Banaschewski, T., Asherson, P., & Kuntsi, J. (2017). Association of preterm birth with attention-deficit/hyperactivity disorder-like and wider-ranging neurophysiological impairments of attention and inhibition. J Am Acad Child Adolesc Psychiatry, 56(1), 40-50.
Rose, J., Cahill-Rowley, K., Vassar, R., Yeom, K. W., Stecher, X., Stevenson, D. K., Hinz, S. R., Barnea-Goraly, N. (2015). Neonatal brain microstructure correlates of neurodevelopment and gait in preterm children 18-22 month of age: an MRI and DTI study. Pediatr Res, 78(6), 700-708.
Rose, S. E., Hatzigeorgiou, X., Strudwick, M. W., Durbridge, G., Davies, P. S., & Colditz, P. B. (2008). Altered white matter diffusion anisotropy in normal and preterm infants at term-equivalent age. Magn Reson Med, 60(4), 761-767.
Rosenbaum, P., King, S., Law, M., King, G., & Evans, J. (1998). Family-centred service: A conceptual framework and research review. Phys Occup Ther Pediatr, 18(1), 1-20.
Saby, J. N., & Marshall, P. J. (2012). The utility of EEG band power analysis in the study of infancy and early childhood. Dev Neuropsychol, 37(3), 253-273.
Saltzberg, B., Burton, W. D., Jr., Burch, N. R., Fletcher, J., & Michaels, R. (1986). Electrophysiological measures of regional neural interactive coupling. Linear and non-linear dependence relationships among multiple channel electroencephalographic recordings. Int J Biomed Comput, 18(2), 77-87.
Scher, M. S., Jones, B. L., Steppe, D. A., Cork, D. L., Seltman, H. J., & Banks, D. L. (2003). Functional brain maturation in neonates as measured by EEG-sleep analyses. Clin Neurophysiol, 114(5), 875-882.
Scher, M. S., Ludington-Hoe, S., Kaffashi, F., Johnson, M. W., Holditch-Davis, D., & Loparo, K. A. (2009). Neurophysiologic assessment of brain maturation after an 8-week trial of skin-to-skin contact on preterm infants. Clin Neurophysiol, 120(10), 1812-1818.
Schieve, L. A., Tian, L. H., Rankin, K., Kogan, M. D., Yeargin-Allsopp, M., Visser, S., & Rosenberg, D. (2016). Population impact of preterm birth and low birth weight on developmental disabilities in US children. Ann Epidemiol, 26(4), 267-274.
Shah, D. K., Anderson, P. J., Carlin, J. B., Pavlovic, M., Howard, K., Thompson, D. K., Warfield, S. K., & Inder, T. E. (2006). Reduction in cerebellar volumes in preterm infants: relationship to white matter injury and neurodevelopment at two years of age. Pediatr Res, 60(1), 97-102.
Skranes, J., Vangberg, T. R., Kulseng, S., Indredavik, M. S., Evensen, K. A., Martinussen, M., Dale, A. M., Haraldseth, O., & Brubakk, A. M. (2007). Clinical findings and white matter abnormalities seen on diffusion tensor imaging in adolescents with very low birth weight. Brain, 130(Pt 3), 654-666.
Soleimani, F., Zaheri, F., & Abdi, F. (2014). Long-term neurodevelopmental outcomes after preterm birth. Iran Red Crescent Med J, 16(6), e17965.
Spittle, A., Orton, J., Anderson, P. J., Boyd, R., & Doyle, L. W. (2015). Early developmental intervention programmes provided post hospital discharge to prevent motor and cognitive impairment in preterm infants. Cochrane Database Syst Rev(11), Cd005495.
Stoelhorst, G. M., Martens, S. E., Rijken, M., van Zwieten, P. H., Zwinderman, A. H., Wit, J. M., & Veen, S. (2003). Behaviour at 2 years of age in very preterm infants (gestational age < 32 weeks). Acta Paediatr, 92(5), 595-601.
Symington, A., & Pinelli, J. (2006). Developmental care for promoting development and preventing morbidity in preterm infants. Cochrane Database Syst Rev(2), Cd001814.
Thompson, D. K., Warfield, S. K., Carlin, J. B., Pavlovic, M., Wang, H. X., Bear, M., Kean, M. J., Doyle, L. W., Egan, G. F., & Inder, T. E. (2007). Perinatal risk factors altering regional brain structure in the preterm infant. Brain, 130(Pt 3), 667-677.
van Hulst, B. M., de Zeeuw, P., Rijks, Y., Neggers, S. F. W., & Durston, S. (2017). What to expect and when to expect it: an fMRI study of expectancy in children with ADHD symptoms. Eur Child Adolesc Psychiatry, 26(5), 583-590.
Wacongne, C., Changeux, J. P., & Dehaene, S. (2012). A neuronal model of predictive coding accounting for the mismatch negativity. J Neurosci, 32(11), 3665-3678.
Walsh, J. M., Doyle, L. W., Anderson, P. J., Lee, K. J., & Cheong, J. L. (2014). Moderate and late preterm birth: effect on brain size and maturation at term-equivalent age. Radiology, 273(1), 232-240.
Welch, M. G., Myers, M. M., Grieve, P. G., Isler, J. R., Fifer, W. P., Sahni, R., Hofer, M. A., Austin, J., Ludwig, R. J., & Stark, R. I. (2014). Electroencephalographic activity of preterm infants is increased by Family Nurture Intervention: a randomized controlled trial in the NICU. Clin Neurophysiol, 125(4), 675-684.
Whedon, M., Perry, N. B., Calkins, S. D., & Bell, M. A. (2016). Changes in frontal EEG coherence across infancy predict cognitive abilities at age 3: The mediating role of attentional control. Dev Psychol, 52(9), 1341-1352.
Wu, Y. C., Chen, W. J., Hsieh, W. S., Chen, P. C., Liao, H. F., Su, Y. N., & Jeng, S. F. (2012). Maternal-reported behavioral and emotional problems in Taiwanese preschool children. Res Dev Disabil, 33(3), 866-873.
Wu, Y. C., Leng, C. H., Hsieh, W. S., Hsu, C. H., Chen, W. J., Gau, S. S., Chiu, N. C., Yang, M. C., Li-Jung, Fang, Hsu, H. C., Yu, Y. T., Wu, Y. T., Chen, L. C., Jeng, S. F. (2014). A randomized controlled trial of clinic-based and home-based interventions in comparison with usual care for preterm infants: effects and mediators. Res Dev Disabil, 35(10), 2384-2393.
Yu, Y. T. (2017). Effectiveness of a Family-centered Intervention on Neurobehavioral and Neurophysiological Functions in Preterm Infants with Very Low Birth Weight. School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan.
Yu, Y. T., Hsieh, W. S., Hsu, C. H., Chen, L. C., Lee, W. T., Chiu, N. C., Wu, Y. C., & Jeng, S. F. (2013). A psychometric study of the Bayley Scales of Infant and Toddler Development - 3rd Edition for term and preterm Taiwanese infants. Res Dev Disabil, 34(11), 3875-3883.
Yu, Y. T., Hsieh, W. S., Hsu, C. H., Lin, Y. C., Lin, C. H., Hsieh, S. L., & Jeng, S. F. Short-term effect of family-centered intervention on neurobehavioral and neurophysiological functions in preterm infants with very low birth weight. Phys Ther (In Press).
Zhao, X., John, G., & Chen, Q., J. (2010). Reconsidering Baron and Kenny: myths and truths about mediation analysis. J Consum Res, 37(2), 197-206.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔