跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/18 22:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:侯國亮
研究生(外文):Kuo-Liang Hou
論文名稱:SIRT6可藉由抑制過氧化物及醣解作用減緩成骨細胞低氧所誘導的發炎反應: 發炎性骨吸收的治療應用
論文名稱(外文):Sirtuin 6 suppresses hypoxia-induced inflammatory response in human osteoblasts via inhibition of reactive oxygen species production and glycolysis - A therapeutic implication in inflammatory bone resorption
指導教授:林思洸
指導教授(外文):Sze-Kwan Lin
口試委員:郭彥彬洪志遠蕭宏昇郭生興
口試日期:2016-12-14
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:臨床牙醫學研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2016
畢業學年度:105
語文別:中文
論文頁數:92
中文關鍵詞:Sirtuin 6發炎反應過氧化物醣解作用骨吸收
外文關鍵詞:Sirtuin 6InflammationReactive oxygen speciesGlycolysisBone resorption
相關次數:
  • 被引用被引用:0
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
低氧誘導的醣解作用及氧化還原訊息傳遞在發炎性骨吸收的相關機制還不清楚。過往的文獻指出SIRT6在葡萄糖代謝及氧化還原訊息傳遞扮演重要的腳色。本篇研究中我們探討在人類成骨細胞(human osteoblast)中醣解作用和過氧化物(reactive oxygen species,ROS)生成之間的關聯性,並研究SIRT6是否會透過調節這些途徑來影響發炎反應。人類成骨細胞在低氧環境下,我們測量乳酸脫氫酶(lactate dehydrogenase A, LDHA)、乳酸及過氧化物的產生,並探討乳酸及過氧化物之間的相互關係,了解這兩個機制對於誘導發炎因子的影響。透過成骨細胞過量表現SIRT6的方式了解SIRT6是如何影響過氧化物生成及糖解作用。在大鼠關節炎模式中,我們利用lentivirus基因治療的方式將SIRT6基因或empty vector表現在關節中,利用免疫組織染色測量成骨細胞LDHA、Cyr61及巨噬細胞的吸引在發炎程度中的相關性。我們的結果顯示低氧會促進LDHA蛋白的表現和過氧化物的生成,兩者之間利用正回饋的方式相互活化。另外低氧會促進發炎因子Cyr61、TNF-α、IL-1β和IL-6的表現,並且這個現象會透過SIRT6調控醣解作用和過氧化物的生成所抑制。在關節炎動物模式中,利用基因治療的方式將SIRT6過量表現於關節時,可以減緩發炎反應、骨細胞合成Cyr61及巨噬細胞的吸引,同時也會降低LDHA及氧化性病灶組織的量。我們的結果顯示出SIRT6可藉由調控葡萄糖代謝及氧化還原平衡來減緩成骨細胞的發炎反應。在未來藉由調控代謝重組的機制,可能成為治療發炎性骨吸收的一個治療策略。
Relation between hypoxia-enhanced glycolysis and redox signaling in inflammatory bone diseases is unclear. Sirtuin 6 (SIRT6) is pivotal for glucose metabolism and redox homeostasis. In the study we examined the connection between glycolysis and reactive oxygen species (ROS) production in human osteoblasts (HOB) and assessed whether SIRT6 modulates inflammation via regulation of these activities. In HOB cultured under hypoxia, expression of lactate dehydrogenase A (LDHA), lactate production and ROS generation were examined. The reciprocal effects between lactate and ROS production and their impact on inflammatory cytokine induction were assessed. The action of SIRT6 on the above reactions was determined. In a rat model of collagen-induced arthritis (CIA), the relation between inflammatory activity and osteoblastic expression of LDHA, oxidative lesions, Cyr61 synthesis and macrophage recruitment were evaluated in joints with or without lentiviral-SIRT6 gene therapy. Results showed that hypoxia enhanced lactate and LDHA production in HOB. ROS generation also increased and there was a positive feedback between glycolysis and ROS formation. Overexpression of SIRT6 attenuated hypoxia-enhanced glycolysis and ROS generation. Hypoxia-induced expressions of Cyr61, TNF-α, IL-1β and IL-6 were suppressed by SIRT6 and the inhibitory effects overlapped with anti-glycolytic and anti-oxidation mechanisms. In CIA, overexpression of SIRT6 ameliorated inflammation, osteoblastic synthesis of Cyr61 and macrophage recruitment. Expression of LDHA and oxidative lesions were decreased in osteoblasts of SIRT6-treated joints. Our findings suggest that SIRT6 suppresses inflammatory response in osteoblasts via modulation of glucose metabolism and redox homeostasis. Reprogramming cellular metabolism may possess therapeutic potential for inflammatory bone resorption.
口試委員審定書 1
中文摘要 2
Abstract 3
第一章 導論 5
1.1 低氧與類風溼性關節炎 5
1.2 低氧對粒線體的影響 6
1.3 乳酸對類風溼性關節炎的影響 8
1.4 ROS對細胞的影響 9
1.5 SIRT6與發炎反應的關聯 10
1.6 趨化因子CCL2與monocyte的浸潤 11
第二章 材料與方法 12
2.1 抗體列表 12
2.2 人類骨髓成骨細胞初待培養 12
2.3 總量ROS測量 12
2.4 西方點墨法 13
2.5 乳酸測量 13
2.6 HOB細胞利用慢病毒SIRT6基因感染過度表現及shRNA抑制 14
2.7 定量型即時聚合酶鏈式反應 (qRT-PCR) 14
2.8 關節炎動物模式 15
2.9 動物關節炎臨床上的診斷 16
2.10 動物關節炎影響上的評量 16
2.11 免疫組織染色及組織學分析 17
2.12 統計分析 17
第三章 結果 18
3.1 低氧會誘導人類成骨細胞ROS的生成及促進醣解作用 18
3.2 醣解作用和ROS生成的正回饋現象 18
3.3 SIRT6會抑制低氧所誘導的ROS生成及醣解作用 19
3.4 SIRT6可藉由抑制ROS及醣解作用降低低氧所促進的發炎因子合成 19
3.5 SIRT6在關節炎動物模式上的治療潛力 20
3.6 SIRT6抑制發炎關節中成骨細胞的ROS生成及醣解作用 21
第四章 討論 22
4.1 SIRT6在類風溼性關節炎扮演的角色 22
4.2 SIRT6調控醣解作用和氧化壓力的機制 23
4.3 SIRT6在關節炎動物模式中扮演的角色 24
4.4 總結 25
4.5 未來展望 25
參考資料 26
圖一 低氧促進成骨細胞ROS的生成 39
圖二 低氧促進LDHA蛋白表現 40
圖三 低氧促進乳酸的分泌 41
圖四 ROS促進醣解作用 42
圖五 乳酸促進ROS生成 43
圖六 SIRT6抑制低氧所促進的ROS生成 44
圖七 SIRT6抑制低氧所促進的醣解作用 45
圖八 SIRT6抑制低氧所促進的醣解作用 46
圖九 成骨細胞藉由轉染LDHA shRNA抑制表現 47
圖十 SIRT6藉由抑制ROS/醣解作用降低Cyr61的表現 48
圖十一 SIRT6藉由抑制ROS/醣解作用降低TNF-a的表現 49
圖十二 SIRT6藉由抑制ROS/醣解作用降低IL-1b的表現 50
圖十三 SIRT6藉由抑制ROS/醣解作用降低IL-6的表現 51
圖十四 IVIS imaging system分析SIRT6基因治療的表現 52
圖十五 SIRT6基因治療可減緩關節炎腫脹程度 53
圖十六 Arthritis Index 54
圖十七 Radiographic Score 55
圖十八 empty vector HE染色 56
圖十九 SIRT6基因治療HE染色 57
圖二十 empty vector SIRT6 IHC染色 58
圖二十一 SIRT6基因治療組SIRT6 IHC染色 59
圖二十二 empty vector LDHA IHC染色 60
圖二十三 empty vector 8-OHdG IHC染色 61
圖二十四 empty vector Cyr61 IHC染色 62
圖二十五 empty vector CD68 IHC染色 63
圖二十六 SIRT6基因治療組LDHA IHC染色 64
圖二十七 SIRT6基因治療組8-OHdG IHC染色 65
圖二十八 SIRT6基因治療組Cyr61 IHC染色 66
圖二十九 SIRT6基因治療組CD68 IHC染色 67
表一 Semi-quantitative analyses of histopathology and immunohistochemistry of CIA joints injected with empty pLVX vector or pLVX-SIRT6. 68
附錄一 歷年文獻發表 69
附錄二 畢業論文文稿一 71
附錄三 畢業論文文稿二 82
1.Sivakumar B, Akhavani MA, Winlove CP, Taylor PC, Paleolog EM, Kang N. Synovial hypoxia as a cause of tendon rupture in rheumatoid arthritis. J Hand Surg Am 2008;33(1):49-58.
2.Harris ED, Jr. Rheumatoid arthritis. Pathophysiology and implications for therapy. N Engl J Med 1990;322(18):1277-1289.
3.Mansson B, Carey D, Alini M, Ionescu M, Rosenberg LC, Poole AR, et al. Cartilage and bone metabolism in rheumatoid arthritis. Differences between rapid and slow progression of disease identified by serum markers of cartilage metabolism. J Clin Invest 1995;95(3):1071-1077.
4.McInnes IB, Schett G. The pathogenesis of rheumatoid arthritis. N Engl J Med 2011;365(23):2205-2219.
5.Lund-Olesen K. Oxygen tension in synovial fluids. Arthritis Rheum 1970;13(6):769-776.
6.Ng CT, Biniecka M, Kennedy A, McCormick J, Fitzgerald O, Bresnihan B, et al. Synovial tissue hypoxia and inflammation in vivo. Ann Rheum Dis 2010;69(7):1389-1395.
7.Li ZC, Xiao J, Peng JL, Chen JW, Ma T, Cheng GQ, et al. Functional annotation of rheumatoid arthritis and osteoarthritis associated genes by integrative genome-wide gene expression profiling analysis. PLoS One 2014;9(2):e85784.
8.Jawed S, Gaffney K, Blake DR. Intra-articular pressure profile of the knee joint in a spectrum of inflammatory arthropathies. Ann Rheum Dis 1997;56(11):686-689.
9.Walsh DA, Catravas J, Wharton J. Angiotensin converting enzyme in human synovium: increased stromal [(125)I]351A binding in rheumatoid arthritis. Ann Rheum Dis 2000;59(2):125-131.
10.Semenza GL. Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology (Bethesda) 2009;24:97-106.
11.Semenza GL. Regulation of cancer cell metabolism by hypoxia-inducible factor 1. Semin Cancer Biol 2009;19(1):12-16.
12.Dang EV, Barbi J, Yang HY, Jinasena D, Yu H, Zheng Y, et al. Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell 2011;146(5):772-784.
13.Li GQ, Liu D, Zhang Y, Qian YY, Zhu YD, Guo SY, et al. Anti-invasive effects of celastrol in hypoxia-induced fibroblast-like synoviocyte through suppressing of HIF-1alpha/CXCR4 signaling pathway. Int Immunopharmacol 2013;17(4):1028-1036.
14.Biniecka M, Connolly M, Gao W, Ng CT, Balogh E, Gogarty M, et al. Redox-mediated angiogenesis in the hypoxic joint of inflammatory arthritis. Arthritis Rheumatol 2014;66(12):3300-3310.
15.Pucino V, Bombardieri M, Pitzalis C, Mauro C. Lactate at the crossroads of metabolism, inflammation and autoimmunity. Eur J Immunol 2016.
16.Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, et al. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 2007;11(1):37-51.
17.Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 2006;3(3):177-185.
18.Clancy RM, Rediske J, Tang X, Nijher N, Frenkel S, Philips M, et al. Outside-in signaling in the chondrocyte. Nitric oxide disrupts fibronectin-induced assembly of a subplasmalemmal actin/rho A/focal adhesion kinase signaling complex. J Clin Invest 1997;100(7):1789-1796.
19.Chang X, Wei C. Glycolysis and rheumatoid arthritis. Int J Rheum Dis 2011;14(3):217-222.
20.Haas R, Smith J, Rocher-Ros V, Nadkarni S, Montero-Melendez T, D''Acquisto F, et al. Lactate Regulates Metabolic and Pro-inflammatory Circuits in Control of T Cell Migration and Effector Functions. PLoS Biol 2015;13(7):e1002202.
21.Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 2014;513(7519):559-563.
22.Pejovic M, Stankovic A, Mitrovic DR. Lactate dehydrogenase activity and its isoenzymes in serum and synovial fluid of patients with rheumatoid arthritis and osteoarthritis. J Rheumatol 1992;19(4):529-533.
23.Mishra S, Jha AB, Dubey RS. Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma 2011;248(3):565-577.
24.Trachootham D, Alexandre J, Huang P. Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 2009;8(7):579-591.
25.Andersen JK. Oxidative stress in neurodegeneration: cause or consequence? Nat Med 2004;10 Suppl:S18-25.
26.Paravicini TM, Touyz RM. Redox signaling in hypertension. Cardiovasc Res 2006;71(2):247-258.
27.Haigis MC, Yankner BA. The aging stress response. Mol Cell 2010;40(2):333-344.
28.Li Z, Xu X, Leng X, He M, Wang J, Cheng S, et al. Roles of reactive oxygen species in cell signaling pathways and immune responses to viral infections. Arch Virol 2016.
29.Ichijo H, Nishida E, Irie K, ten Dijke P, Saitoh M, Moriguchi T, et al. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 1997;275(5296):90-94.
30.Holgado-Madruga M, Wong AJ. Gab1 is an integrator of cell death versus cell survival signals in oxidative stress. Mol Cell Biol 2003;23(13):4471-4484.
31.Wang T, Arifoglu P, Ronai Z, Tew KD. Glutathione S-transferase P1-1 (GSTP1-1) inhibits c-Jun N-terminal kinase (JNK1) signaling through interaction with the C terminus. J Biol Chem 2001;276(24):20999-21003.
32.Shen HM, Lin Y, Choksi S, Tran J, Jin T, Chang L, et al. Essential roles of receptor-interacting protein and TRAF2 in oxidative stress-induced cell death. Mol Cell Biol 2004;24(13):5914-5922.
33.Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S, et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 2012;36(3):401-414.
34.Shore D. The Sir2 protein family: A novel deacetylase for gene silencing and more. Proc Natl Acad Sci U S A 2000;97(26):14030-14032.
35.Sundaresan NR, Vasudevan P, Zhong L, Kim G, Samant S, Parekh V, et al. The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nat Med 2012;18(11):1643-1650.
36.Kawahara TL, Michishita E, Adler AS, Damian M, Berber E, Lin M, et al. SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell 2009;136(1):62-74.
37.Lee HS, Ka SO, Lee SM, Lee SI, Park JW, Park BH. Overexpression of sirtuin 6 suppresses inflammatory responses and bone destruction in mice with collagen-induced arthritis. Arthritis Rheum 2013;65(7):1776-1785.
38.Zhong L, D''Urso A, Toiber D, Sebastian C, Henry RE, Vadysirisack DD, et al. The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha. Cell 2010;140(2):280-293.
39.Maksin-Matveev A, Kanfi Y, Hochhauser E, Isak A, Cohen HY, Shainberg A. Sirtuin 6 protects the heart from hypoxic damage. Exp Cell Res 2015;330(1):81-90.
40.Gravallese EM, Harada Y, Wang JT, Gorn AH, Thornhill TS, Goldring SR. Identification of cell types responsible for bone resorption in rheumatoid arthritis and juvenile rheumatoid arthritis. Am J Pathol 1998;152(4):943-951.
41.Volejnikova S, Laskari M, Marks SC, Jr., Graves DT. Monocyte recruitment and expression of monocyte chemoattractant protein-1 are developmentally regulated in remodeling bone in the mouse. Am J Pathol 1997;150(5):1711-1721.
42.Lisignoli G, Toneguzzi S, Pozzi C, Piacentini A, Riccio M, Ferruzzi A, et al. Proinflammatory cytokines and chemokine production and expression by human osteoblasts isolated from patients with rheumatoid arthritis and osteoarthritis. J Rheumatol 1999;26(4):791-799.
43.Rahimi P, Wang CY, Stashenko P, Lee SK, Lorenzo JA, Graves DT. Monocyte chemoattractant protein-1 expression and monocyte recruitment in osseous inflammation in the mouse. Endocrinology 1995;136(6):2752-2759.
44.Williams SR, Jiang Y, Cochran D, Dorsam G, Graves DT. Regulated expression of monocyte chemoattractant protein-1 in normal human osteoblastic cells. Am J Physiol 1992;263(1 Pt 1):C194-199.
45.Kok SH, Hou KL, Hong CY, Wang JS, Liang PC, Chang CC, et al. Simvastatin inhibits cytokine-stimulated Cyr61 expression in osteoblastic cells: a therapeutic benefit for arthritis. Arthritis Rheum 2011;63(4):1010-1020.
46.Panerai AE, Locatelli L, Sacerdote P. Inhibitory effect of NSAIDs on the chemotaxis induced by substance P on human monocytes and polymorphonuclear cells. Ann Ist Super Sanita 1993;29(3):375-377.
47.Lin SK, Chang HH, Chen YJ, Wang CC, Galson DL, Hong CY, et al. Epigallocatechin-3-gallate diminishes CCL2 expression in human osteoblastic cells via up-regulation of phosphatidylinositol 3-Kinase/Akt/Raf-1 interaction: a potential therapeutic benefit for arthritis. Arthritis Rheum 2008;58(10):3145-3156.
48.Paik JY, Jung KH, Lee JH, Park JW, Lee KH. Reactive oxygen species-driven HIF1alpha triggers accelerated glycolysis in endothelial cells exposed to low oxygen tension. Nucl Med Biol 2016;45:8-14.
49.Grimley R, Polyakova O, Vamathevan J, McKenary J, Hayes B, Patel C, et al. Over expression of wild type or a catalytically dead mutant of Sirtuin 6 does not influence NFkappaB responses. PLoS One 2012;7(7):e39847.
50.Giatromanolaki A, Sivridis E, Maltezos E, Athanassou N, Papazoglou D, Gatter KC, et al. Upregulated hypoxia inducible factor-1alpha and -2alpha pathway in rheumatoid arthritis and osteoarthritis. Arthritis Res Ther 2003;5(4):R193-201.
51.Fisher-Wellman KH, Gilliam LA, Lin CT, Cathey BL, Lark DS, Neufer PD. Mitochondrial glutathione depletion reveals a novel role for the pyruvate dehydrogenase complex as a key H2O2-emitting source under conditions of nutrient overload. Free Radic Biol Med 2013;65:1201-1208.
52.Muller FL, Liu Y, Van Remmen H. Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem 2004;279(47):49064-49073.
53.Quinlan CL, Orr AL, Perevoshchikova IV, Treberg JR, Ackrell BA, Brand MD. Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. J Biol Chem 2012;287(32):27255-27264.
54.Murphy MP. How mitochondria produce reactive oxygen species. Biochem J 2009;417(1):1-13.
55.Pan H, Guan D, Liu X, Li J, Wang L, Wu J, et al. SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2. Cell Res 2016;26(2):190-205.
56.Lottes RG, Newton DA, Spyropoulos DD, Baatz JE. Lactate as substrate for mitochondrial respiration in alveolar epithelial type II cells. Am J Physiol Lung Cell Mol Physiol 2015;308(9):L953-961.
57.de Bari L, Valenti D, Atlante A, Passarella S. L-lactate generates hydrogen peroxide in purified rat liver mitochondria due to the putative L-lactate oxidase localized in the intermembrane space. FEBS Lett 2010;584(11):2285-2290.
58.Pinheiro CH, Silveira LR, Nachbar RT, Vitzel KF, Curi R. Regulation of glycolysis and expression of glucose metabolism-related genes by reactive oxygen species in contracting skeletal muscle cells. Free Radic Biol Med 2010;48(7):953-960.
59.Lu H, Forbes RA, Verma A. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem 2002;277(26):23111-23115.
60.Vegran F, Boidot R, Michiels C, Sonveaux P, Feron O. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-kappaB/IL-8 pathway that drives tumor angiogenesis. Cancer Res 2011;71(7):2550-2560.
61.Morgan MJ, Liu ZG. Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res 2011;21(1):103-115.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊